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Abstract
Monitoring is a runtime verification technique that
can be used to check whether an execution of a sys-
tem (trace) satisfies or not a given set of proper-
ties. Compared to other formal verification tech-
niques, e.g., model checking, one needs to spec-
ify the properties to be monitored, but a com-
plete model of the system is no longer necessary.
First, we introduce the pure past fragment of Signal
Temporal Logic (ppSTL), and we use it to define
the monitorable safety (G(ppSTL)) and cosafety
(F(ppSTL)) fragments of STL, which properly ex-
tend the commonly-used bounded-future fragment.
Then, we devise a multi-objective genetic program-
ming algorithm to automatically extend the set of
properties to monitor on the basis of the history of
failure traces collected over time. The framework
resulting from the integration of the monitor and
the learning algorithm is then experimentally val-
idated on various public datasets. The outcomes
of the experimentation confirm the effectiveness of
the proposed solution.

1 Introduction
In this paper, we propose a tight integration of monitoring
and machine learning for preemptive failure detection, with
formal guarantees on interpretability, monitorability, and ex-
pressiveness.

Monitoring is a runtime verification technique for the anal-
ysis of complex systems [Leucker and Schallhart, 2009]. It
consists of the generation of a monitor that is paired with the
system under analysis, and it reports a positive (resp., nega-
tive) verdict whenever the current execution, and all its con-
tinuations, are guaranteed to be good (resp., bad). Therefore,
verdicts of monitors are always irrevocable. Expressing good
and bad behaviors to be monitored is done by means of tem-
poral logics, in particular Signal Temporal Logic (STL) which
proved to be quite effective in this context [Maler and Nick-
ovic, 2004]. Not all formulas of STL are monitorable: there
are formulas for which it is impossible to produce a verdict

Appendix and Supplementary materials are available at: https:
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by a finite number of observations [Bauer et al., 2011]. Al-
though not being able to check exhaustively all possible ex-
ecutions of a system, like, e.g., model checking, monitoring
offers a number of advantages, including: (i) it can be applied
directly on the implementation of the system, avoiding the
risk of modeling errors; (ii) monitoring algorithms are usually
very fast. However, an important limitation, which severely
affects the effectiveness of monitoring, remains. Modern sys-
tems possess such a level of complexity that it is impossible
for a system engineer to specify in advance all properties to
be monitored. Moreover, even when this is possible, minor
changes to the system may introduce unforeseen bugs.

In this paper, we investigate how to solve this problem
by pairing monitoring with machine learning, which is used
to learn in an iterative fashion new formulas to monitor by
analysing trace prefixes that lead to failure. The method that
we propose has three distinguishing features:

• interpretability: the machine learning methods that we
use manipulate and produce only STL formulae, that can
be easily inspected by a system engineer;

• formal guarantees on monitorability: every learned for-
mula is guaranteed to be monitorable;

• expressiveness: the language for the specification of
properties is proved to be able to express more properties
than languages typically used in this context.

Our contributions are the following. First, we focus on
the specification language to be used to specify properties.
We introduce G(ppSTL) and F(ppSTL), the syntactic safety
and cosafety fragments of STL, respectively. A formula of
G(ppSTL) is of the form G(α) where G is the globally op-
erator (which forces α to be always true) and α is a formula
looking only to the past. Therefore, formulas of G(ppSTL)
are used to express conditions that has to hold always, i.e.,
invariants. Similarly, F(ppSTL) is used to express proper-
ties that should hold at least one time in the future, like, e.g.,
planning goals. A key feature of the two fragments is that
they can look arbitrarily back into the past, a feature which is
not offered by the fragments of STL that are commonly used
in this context, in particular the bounded future fragment of
STL (bfSTL). In the following, we formally prove that these
fragments are more expressive than bfSTL.

We also give formal guarantees on the monitorability of
the formulas of the fragments: we prove that each formula
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in G(ppSTL) and F(ppSTL) is monitorable. On the one
hand, this avoids the risk of generating nonmonitorable for-
mulas in the learning phase that we will describe later; on the
other hand, checking monitorability, which can be cumber-
some [Havelund and Peled, 2023], is no more necessary. In
addition, for the case of formulas interpreted over qualitative
time, i.e., system’s executions with no timestamps attached to
each time point, we prove that G(ppSTL) and F(ppSTL) cap-
ture the entire class of safety and cosafety properties, which
form an important subclass of monitorable properies.

Third, we devise a framework for the automatic discovery
of relevant properties, written in G(ppSTL) and F(ppSTL),
based on traces that lead to failure. The objective here is to
generate a pool of formulas that helps anticipating the iden-
tification of failures, a task carried out by a multi-objective
genetic algorithm. The results of our experiments show that
the pool of formulas obtained in this way can be effectively
used for anticipating the detection of failures. Moreover, they
can be easily checked by a system engineer, making the inter-
pretability of results a distinguished feature of our method. In
a dedicated section, we discuss the differences of our method-
ology with respect to existing solutions for the integration of
monitoring and machine learning.

The paper is structured as follows. In Section 2, we provide
some background knowledge. Section 3 is dedicated to the
safety and cosafety fragments of STL and to their theoretical
properties (monitorability and expressiveness). In Section 4,
we describe our methodology to learn new formulas based
on genetic programming. The outcomes of the experimental
evaluation are reported in Section 5. In Section 6, we discuss
the work done, highlight its strength and some limitations still
present, and provide future research directions.

2 Background
2.1 Signal and Metric Temporal Logic
Let T be a set of timestamps, which are numbers attached
to each time point that represent the (real) time at which
an event has occurred. There are several possible choices
for T, depending on how time instants are modeled, mainly:
(i) T := N, for qualitative-time; (ii) T := R, for real-time.

Syntax
From now on, given a set of variables x1, . . . , xn, we denote
by D their domain. We define the syntax of Signal Temporal
Logic [Maler and Nickovic, 2004] as follows.
Definition 1 (Signal Temporal Logic). Formulas ϕ of Signal
Temporal Logic (STL, for short) are inductively defined as
follows:

ϕ := fi(x)⊗ c | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ UI ϕ | Yϕ | ϕ SI ϕ

where x := ⟨x1, . . . , xn⟩ for some n ∈ N, each variable xj ,
for 1 ≤ j ≤ n, takes value in the set D, fi : Dn → D is a
computable function, c ∈ D, and ⊗ ⊆ D × D. In addition,
we require I to be an interval of the form [a, b], with a ≤ b,
or [a,∞), where a, b ∈ T are two timestamps represented in
binary notation.

Formulas of type fi(x) ⊗ c are called atomic for-
mulas. Modalities UI and SI are called until and

since, respectively. We define the standard shortcut op-
erators as follows: (i) true: ⊤ := fi(x) ∨ ¬fi(x);
(ii) weak tomorrow: X̃ϕ := ¬X¬ϕ; (iii) eventually:
FIϕ := ⊤ UI ϕ; (iv) globally: GIϕ := ¬FI¬ϕ; (v) re-
lease: ϕ1 RI ϕ2 := ¬(¬ϕ1 UI ¬ϕ2); (vi) weak yesterday:
Ỹϕ := ¬Y¬ϕ; (vii) once: OIϕ := ⊤ SI ϕ; (viii) historically:
HIϕ := ¬OI¬ϕ; (ix) triggers: ϕ1 TI ϕ2 := ¬(¬ϕ1 SI ¬ϕ2).

When I = [0,∞), we say that UI (resp., SI ) is unbounded
and we simply write U (resp., S); otherwise, it is bounded.
The same holds for the other operators. Modalities X, UI , and
all shortcuts derived from them, are called future modalities,
while Y, SI , and all shortcuts derived from them, are called
past modalities. We denote by STL the set of STL formulas.

The bounded future fragment of STL (denoted by bfSTL) is
the set of STL formulas such that each of its temporal modali-
ties is bounded by an interval of the form [a, b], with a, b ∈ T.

Metric Temporal Logic (denoted by MTL) is the set of for-
mulas obtained from the same grammar as STL, but by re-
placing the base case, i.e., fi(x)⊗c, by an atomic proposition
p taken from a set AP .

Semantics
From now on, we fix a set of n variables x1, . . . , xn. A real-
time n-valued state is a pair (t, v), where t ∈ T is a timestamp
and v ∈ Dn represents the n values d1, . . . , dn for the vari-
ables x1, . . . , xn, respectively. A real-time n-valued trace σ
is a sequence of real-time n-valued states: σ is infinite when
σ ∈ (T × Dn)ω and finite when σ ∈ (T × Dn)∗. We often
write σ as the sequence ⟨σ0, σ1, . . .⟩. We denote by |σ| the
length of σ, i.e., the number of its states; if σ is infinite, then
we set |σ| = ω. For any 0 ≤ i < |σ|, we denote by σ[0,i] the
prefix of σ up to position i. For all σ ∈ (T × Dn)∗ and all
σ′ ∈ (T × Dn)∗ ∪ (T × Dn)ω , we denote by σ · σ′ the trace
obtained by concatenating σ′ to σ.

We interpret STL formulas with variables x1, . . . , xn over
infinite real-time n-valued traces σ = ⟨σ0, σ1, . . . , σi, . . .⟩
that have to satisfy the following conditions:

• (strict) monotonicity: for all i, j ∈ N, with i < j, if
σi = (t, v) and σj = (t′, v′), then t < t′;

• progress: for all n ∈ N, there exists i ∈ N such that
σi = (t, v) and n < t.

A real-time n-valued languageL is a set of real-time n-valued
traces. By L we denote the complement of L, that is, L :=
{σ ∈ (T × Dn)ω | σ ̸∈ L}. We say that L is a real-time
multi-valued language if and only if it is a real-time n-valued
language, for some n ∈ N \ {0}.

Given an STL formula ϕ with variables x1, . . . , xn, an infi-
nite real-time n-valued trace σ ∈ (T×Dn)ω , and a position i,
with i ≥ 0, we define the satisfaction of ϕ over σ at position
i, written σ, i |= ϕ, inductively as follows:

1. σ, i |= fi(x) ⊗ c iff σi = (t, (v1, . . . , vn)) and
fi(v1, . . . , vn)⊗ c is true;

2. σ, i |= ¬ϕ iff σ, i ̸|= ϕ;
3. σ, i |= ϕ1 ∨ ϕ2 iff σ, i |= ϕ1 or σ, i |= ϕ2;
4. σ, i |= Xϕ1 iff σ, i+ 1 |= ϕ1;
5. σ, i |= ϕ1 U[a,b] ϕ2 iff there exists a j ≥ i such that:

(i) σ, j |= ϕ2 and t+ a ≤ t′ ≤ t+ b, where σi = (t, v)
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and σj = (t′, v′), and (ii) for all i ≤ k < j, it holds that
σ, k |= ϕ1;

6. σ, i |= Yϕ1 iff i > 0 and σ, i− 1 |= ϕ;
7. σ, i |= ϕ1 S[a,b] ϕ2 iff there exists a 0 ≤ j ≤ i such that:

(i) σ, j |= ϕ2 and t− b ≤ t′ ≤ t− a, where σi = (t, v)
and σj = (t′, v′), and (ii) for all j < k ≤ i, it holds that
σ, k |= ϕ1;

Formulas of STL are interpreted at the first position of the
trace σ: we say that σ is a model of the STL formula ϕ (writ-
ten σ |= ϕ) iff σ, 0 |= ϕ. We define the language of an STL
formula as follows.
Definition 2 (Language of an STL formula). Given an STL
formula ϕ with variables x1, . . . , xn, the language of ϕ, de-
noted by L(ϕ), is the real-time n-valued language {σ ∈
(T× Dn)ω | σ |= ϕ}.

The semantics of MTL is defined by considering infinite
real-time traces in (T × 2AP )ω , for a given set of atomic
propositions AP , instead of real-time multi-valued traces,
like for STL. The base case of the semantics is defined as
follows:

1. σ, i |= p iff σi = (t, v) and p ∈ v.
The rest of the semantic clauses remain the same as in the
case of STL. The language of an MTL formula ϕ over
the propositional atoms AP , denoted by L(ϕ), is defined as
L(ϕ) := {σ ∈ (T× 2AP)ω | σ, 0 |= ϕ}.

2.2 Safety and Cosafety Fragments
Cosafety real-time multi-valued languages are defined as fol-
lows.
Definition 3 (Cosafety real-time multi-valued language). Let
L ⊆ (T × Dn)ω be a real-time multi-valued language. We
say that L is a cosafety language iff, for all σ ∈ (T × Dn)ω ,
if σ ∈ L, then there exists i ≥ 0 such that σ[0,i] · σ′ ∈ L, for
all σ′ ∈ (T× Dn)ω .

Safety real-time multi-valued languages are defined as the
duals of cosafety ones.
Definition 4 (Safety real-time multi-valued language). Let
L ⊆ (T × Dn)ω be a real-time multi-valued language. We
say that L is a safety language iff L is a cosafety real-time
multi-valued language.

2.3 Monitoring
Monitoring is a lightweight runtime verification tech-
nique [Leucker and Schallhart, 2009] and it consists of the
generation of a monitor that checks an execution of a system
either in an online fashion (i.e., at runtime) or in an offline
fashion (e.g., by analysing the log of the system). A monitor
reports two types of results: an inconclusive output (denoted
by ?) or an irrevocable verdict, in particular a violation (resp.,
a satisfaction) in case all the continuations of that execution
are bad (resp., good). We define a monitor for a language
L ⊆ (T×Dn)ω as a function monL : (T×Dn)∗ → {⊤,⊥, ?}
such that, for all σ ∈ (T× Dn)∗,

monL(σ) :=


⊤ iff ∀σ′ ∈ (T× Dn)ω . σ · σ′ ∈ L
⊥ iff ∀σ′ ∈ (T× Dn)ω . σ · σ′ ̸∈ L
? otherwise

Given an STL formula ϕ, we will denote with monϕ the mon-
itor monL(ϕ). When the monitor returns ⊤, we know that all
continuations are good w.r.t. the property ϕ: this is the case,
e.g., of planning problems [Ghallab et al., 2004], where ϕ ex-
presses the achievement of a goal. If the monitor returns ⊥,
we know that there has been an irremediable violation of ϕ:
this is the case, for instance, of invariance properties, requir-
ing that something bad never happens [Kupferman and Vardi,
2001].

We point out the similarity between the ⊤ (resp., ⊥) result
of monitors and cosafety (resp., safety) properties. In fact, all
cosafety properties and all safety properties are monitorable,
in the sense that, for every trace σ, there exists at least one
continuation σ′ such that monϕ(σ · σ′) ∈ {⊤,⊥}. We define
monitorability as follows.

Definition 5 (Monitorability). For each L ⊆ (T× Dn)ω , we
say that L is monitorable iff, for all σ ∈ (T × Dn)∗, there
exists a σ′ ∈ (T× Dn)∗, such that monϕ(σ · σ′) ̸=?.

We say that an STL formula ϕ is monitorable iff L(ϕ) is
monitorable. Not all STL formulas are monitorable. As an
example, the formula G(x > 0→ Fy < 0) stating that every
time x is greater than 0 there exists a point in the future where
y is negative, is not monitorable. However, every (co)safety
property is monitorable.

Proposition 1 ([Bauer et al., 2011]). For every L ⊆ (T ×
Dn)ω , if L is safety or cosafety, then L is monitorable.

We point out that the vice versa of Proposition 1 does not
hold: there exist monitorable languages that are neither safety
nor cosafety [Bauer et al., 2011].

3 Monitorable Fragments of STL
In this section, we define the safety and the cosafety syntac-
tic fragments of STL. We show that they express, respec-
tively, only safety and cosafety languages, and thus only mon-
itorable properties. In addition, in the case of qualitative time,
we prove also the vice versa, i.e., all safety and all cosafety
languages definable in STL can be defined in (one of) the
two fragments. The proof of all lemmas and theorems can be
found in the Appendix A.

3.1 The G(ppSTL) and the F(ppSTL) Fragments
The safety and the cosafety syntactic fragments of STL are
based on the pure past fragment of STL, which comprises for-
mulas of STL that can look only into the past, and is defined
as follows.

Definition 6 (The pure past fragment of STL). The pure past
fragment of STL, denoted by ppSTL, is the set of STL formu-
las devoid of future operators.

Unlike the case of STL formulas, in the case of ppSTL we
consider only finite, nonempty real-time multi-valued traces.
Formulas of ppSTL are interpreted at the last position of a
trace σ ∈ (T × Dn)+, and we say that σ is a model of the
ppSTL formula ϕ iff σ, |σ| − 1 |= ϕ.

We define the syntactic safety and cosafety fragments of
STL as follows.
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Definition 7 (Safety and Cosafety syntactic fragments of
STL). We define the safety (resp., cosafety) syntactic frag-
ment of STL, denoted by G(ppSTL) (resp., F(ppSTL)), as the
set of STL formulas of the form G(ψ) (resp., F(ψ)), where ψ
is a formula of ppSTL.

There are three distinguishing features of the syntax of
G(ppSTL) and F(ppSTL) that are worth pointing out:

1. The use of past modalities, which allows one to avoid
the risk of considering non-monitorable formulas.

2. The use of unbounded intervals, which allows formulas
of these fragments to constrain arbitrarily long (yet fi-
nite) traces, in contrast to formulas of the bounded frag-
ment of STL which are able to constrain only finite and
bounded portions of a trace.

3. The use multi-variable functions. In [Brunello et al.,
2023], only functions with arity 1 were allowed (e.g.,
x+ 1 ≤ 3). Here, we deal with multi-variable functions
to allow, for instance, the specification of constraints of
the form |x1 − x2| > 0. This is in line with [Maler and
Nickovic, 2004; Donzé and Maler, 2010].

Examples
Here, we give some examples of G(ppSTL) and F(ppSTL)
formulas. They concern an arbiter that has to give some re-
sources (grants) to the processes that make a request. We sup-
pose to have two variables xg and xr, with domain D := N,
that are set to a value strictly greater than 0 iff the arbiter gives
a grant and the processes perform a request, respectively.

The simple requirement that “a grant is always preceded
by a request in at least 2.1 and at most 7.4 time units” is cap-
tured by the formula ϕ := G(xg > 0 → O[2.1,7.4](xr > 0)).
Suppose we want to express the unbounded version of the
previous requirement, that is, “a grant is always preceeded
by a request”. The G(ppSTL) formula for this requirement is
G(xg > 0→ YO(xr > 0)).

The requirement “there is at least one request followed by
a grant ” is modelled by the F(ppSTL) formula F(xg > 0 ∧
YOxr > 0). Other examples are reported in the Appendix B.

Comparison with bfSTL
In the following, we prove that G(ppSTL) and F(ppSTL) are
more expressive than bfSTL (the bounded fragment). The ra-
tionale is based on the fact that, while bfSTL formulas can
constrain only bounded intervals of a trace, G(ppSTL) and
F(ppSTL) can do the same but also over intervals of un-
bounded length. To show it, we first prove that ppSTL is
more expressive than bfSTL.
Proposition 2 (ppSTL is more expressive than bfSTL). There
exists a language L ⊆ (T×Dn)∗ (for some n ∈ N) such that:

• there exists a ppSTL formula ϕ such that L(ϕ) = L;
• there exists no bfSTL formula ψ such that L(ψ) = L.
We define G(bfSTL) as the set of formulas of the form

G(α), where α ∈ bfSTL, and we define F(bfSTL) analo-
gously. From the previous proposition, and from the fact
that G(bfSTL) and F(bfSTL) are syntactic fragments of
G(ppSTL) and F(ppSTL), respectively, it follows that:

• G(ppSTL) is strictly more expressive than G(bfSTL);
• F(ppSTL) is strictly more expressive than F(bfSTL).

STL

safety
G(ppSTL)

cosafety

F(ppSTL)
bfSTL

monitorable

Figure 1: Summary of G(ppSTL) and F(ppSTL) expressive power
for qualitative time.

Monitorability of G(ppSTL) and F(ppSTL)

In the following, we show that G(ppSTL) (resp., F(ppSTL))
expresses only safety (resp., cosafety) real-time multi-valued
languages (cf. Definitions 3 and 4).

Lemma 1. For all ϕ ∈ G(ppSTL) (resp., ϕ ∈ F(ppSTL)),
it holds that L(ϕ) is a safety (resp., cosafety) real-time multi-
valued language.

It follows from Proposition 1 that all properties definable
in G(ppSTL) or in F(ppSTL) are monitorable.

Theorem 1. For all ϕ ∈ G(ppSTL)∪F(ppSTL), it holds that
L(ϕ) is monitorable.

In addition, we prove that, when interpreted over qualita-
tive time, the fragments G(ppSTL) and F(ppSTL) are expres-
sively complete, that is, every safety (resp., cosafety) multi-
valued language that can be defined by an STL formula is
definable also in G(ppSTL) (resp., in F(ppSTL)).

Theorem 2 (Expressive Completeness over qualitative-time).
For all multi-valued languages L ⊆ (N × Dn)∗ definable in
STL, it holds that:

• L is safety iff there exists a formula ϕ of G(ppSTL) such
that L(ϕ) = L;

• L is cosafety iff there exists a formula ϕ of F(ppSTL)
such that L(ϕ) = L.

We point out that, to the best of our knowledge, it is un-
known whether Theorem 2 holds for the case of real-time. A
recap of the expressiveness results is given in Fig. 1.

4 Failure Detection Framework
In this section, we describe the proposed framework and the
formula learning algorithm that it uses.

4.1 The Overall Framework
Algorithm 1 describes the framework training phase. It mon-
itors, one after the other, all available failure system traces
and, for each one, it simulates its point-by-point arrival (i.e.,
all the prefixes of the trace). At the end, it returns a pool of
formulas P characterizing bad behaviours of the system.

The procedure gets, as its input, a pool P of formulas en-
coding bad behaviours. The pool may be empty, or it may al-
ready include some formulas, if they were previously defined
by domain experts. In addition, a training set X is provided,
consisting of pairs (σ, is failure), where σ represents a sys-
tem execution trace and is failure its corresponding label
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Algorithm 1: Framework training phase
input: P initial (possibly empty) pool of formulas,

X dataset of labelled traces (σ, is failure),
q quality requirements

1: Σ⊤ ← {σ | (σ, is failure) ∈ X ∧ is failure = ⊤}
2: Σ⊥ ← {σ | (σ, is failure) ∈ X ∧ is failure = ⊥}
3: Σ⊥ ← GENAUGMENTEDTRACES(Σ⊥)
4: for σ ∈ Σ⊤ do
5: failure detected← ⊥
6: for i← 0 to |σ| − 1 do
7: F ← {ψ ∈ P | monψ(σ[0,i]) = ⊥}
8: if F ̸= ∅ then
9: failure detected← ⊤

10: T ← GENAUGMENTEDTRACES(σ[0,i])
11: Φ← LEARNFORMULA(T ,Σ⊥, q)
12: P ← P ∪ Φ
13: break
14: end if
15: end for
16: if failure detected = ⊥ then
17: T ← GENAUGMENTEDTRACES(σ)
18: Φ← LEARNFORMULA(T ,Σ⊥, q)
19: P ← P ∪ Φ
20: end if
21: end for
22: return P

(⊤, if σ is a trace ending with a failure; ⊥ otherwise).1 Fi-
nally, quality requirements q are considered that should be
satisfied by any new formula extracted during the training
process. They will be described more in detail later.

On Line 1 (resp., Line 2) the subset of failure (resp., good)
traces is extracted from X . For each good trace, naug vari-
ants (a framework global parameter) are generated by adding
random Gaussian noise as a counter-overfitting measure. As
the result, a set of |Σ⊥|+ naug ∗ |Σ⊥| traces is obtained.

At this point, the framework starts its iterative part, during
which a failure trace σ is monitored sequentially, point-by-
point (Lines 6–15). At each iteration, the framework restricts
its attention to the prefix σ[0,i] of trace σ, and it computes the
set F of formulas leading to a violation (Line 7). To such an
extent, it executes the monitoring tool rtamt [Ničković and
Yamaguchi, 2020]. Since all formulas ψ ∈ P are meant to
encode bad behaviors, we say that a formula ψ leads to a vio-
lation if monψ(σ[0,i]) = ⊥ (mon is defined as in Section 2.3).

If at least one violation is detected, data to be used for the
extraction of a new formula are generated by the function
GENAUGMENTEDTRACES (Line 10). Again, the execution
trace σ[0,i] is perturbed by adding random Gaussian noise as
a counter-overfitting measure, thus producing a set of aug-
mented traces T of cardinality naug + 1.

Next, function LEARNFORMULA (Line 11) tries to extract
a set of formulae Φ able to identify a bad behaviour of the
system that anticipates, over the traces in T , the violation de-

1Since failures are terminating events, it is reasonable to assume
that they can be detected as they occur. This allows to appropriately
label the time series and to generate such a training set X . The same
assumption does not hold, e.g., for anomaly detection, a task which
is not covered in this paper.

tected by the monitor at time instant i. In our case, the extrac-
tion is carried out by the genetic algorithm described in Sec-
tion 4.2, limiting to maximum one formula ϕ, i.e., |Φ| ≤ 1.
Notice that Φ may be empty, an event that occurs if no for-
mula satisfying the quality criteria q can be extracted. The
quality criteria relate to the actual ability of a given formula
ϕ ∈ Φ to elicit an anticipatory bad behavior from the traces
T , while maintaining a False Alarm Rate (the fraction of
false failure detections, FAR) that does not exceed a speci-
fied threshold for the traces in Σ⊥. In setting such a thresh-
old, it should be considered that formulas with a high FAR
may cause a degradation of the monitoring pool, where other
ill-founded formulas are added as a result of their triggering.

The monitoring executed over all prefixes of σ ends when
either σ is correctly recognized as a failure trace by a for-
mula in P (break instruction on Line 13), or σ has run out
of points without any failure detection. In the latter case,
since trace σ was a failure one, we force the formula ex-
traction process (Lines 15–19). This approach is inspired by
the teacher forcing technique in deep learning [Williams and
Zipser, 1989]. Initially, the framework starts with a possibly
empty pool P of properties. In the extreme case P = ∅, it
cannot identify any bad behavior of the system and the pool
update process is forcibly triggered by the code in Lines 15–
19. This is akin to having an oracle guiding the framework.
Over time, as P expands, it is expected to gradually replace
the oracle’s function in identifying failures.

During Algorithm 1 operation, the pool of formulas P
is iteratively refined by adding new formulas which ought
to predict bad behaviors earlier and with increased reliabil-
ity and coverage. In addition to this refinement process au-
tonomously operated by the framework, at any time, domain
experts can, in principle, make changes to the pool P , e.g., by
manually specifying a new formula encoding a bad behavior.

4.2 Genetic Programming Algorithm
The function LEARNFORMULA is realized by means of a ge-
netic algorithm implementing a genetic programming task,
the idea being to evolve formulas starting from an initial pop-
ulation of random solutions [Poli et al., 2008].

In practice, we utilize a multi-objective evolutionary algo-
rithm due to its inherent flexibility. This approach enables us
to define a specific grammar that the formulas must adhere to,
and it also facilitates the straightforward setup and adjustment
of optimization objectives for their extraction. The algorithm
is implemented through the library DEAP (Distributed Evo-
lutionary Algorithms in Python) [Fortin et al., 2012].

Figure 2 reports its intuitive operation. The algorithm
gets in input the set T of augmented traces generated by
genAugmentedTraces, each of length tl, the set of aug-
mented good training traces Σ⊥, and the set of quality re-
quirements q that the output formula has to satisfy. These
include, as we will see, minacc and maxfar ; they are related
to respectively T and Σ⊥. As for the result, as already men-
tioned, in our case the algorithm returns a set Φ composed of
at most one logic formula such that it satisfies the quality re-
quirements expressed in q and it captures an anticipatory bad
behaviour exhibited by traces in T .
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Figure 2: Overview of the genetic algorithm for formula extraction.

1848.04 30.86

Figure 3: Computation tree of the formula G(¬((smart198 ≥
1848.04) S (smart198 ≥ 30.86)) ).

Population and Its Initialization
As the first step, the population is initialized. Each individual
of the population encodes a pair (ϕ,w), where ϕ is a compu-
tation tree representing either a bfSTL or a ppSTL formula
(refer to Fig. 3 for an example) and w is an integer in the
interval [1, tl − 1].

The computation tree ϕ is generated using DEAP’s gen-
HalfAndHalf method, configured to output a tree with a max-
imum height of 6, as recommended by Koza in his seminal
work [Koza, 1994]. Specifically, half the time a tree whose
leaves are all at the same depth is returned; in the remaining
cases, different leaves may lay at different depths. In addition,
care is taken to generate a population of individuals stratified
with respect to the height of the trees.

The leaves of a computation tree may represent a variable
v that refers to one of the signals that compose each multi-
variate trace t ∈ T , or a constant c ∈ [0, 1] ⊆ R. Note that,
although the choice of the domain for the constants may seem

restrictive, in fact, as its first operation, the genetic algorithm
normalizes the input traces into the interval [0, 1]. Constants
c and variables v are compared by means of the ≥ operator,
in two manners: either a variable is compared with a constant
v ≥ c, or a variable is compared to another variable v1 ≥ v2,
where v1 ̸= v2, i.e., they refer to two different signals.

Concerning the internal nodes of the tree, they encode logic
operators following the syntax of either bfSTL or ppSTL. In
addition, each temporal operator may be (always be, in the
case of bfSTL formulas) paired with two interval bounds, i.e.,
[a, b], with the constants a, b ∈ N and a ≤ b. In generating a
computation tree, idempotence is exploited to streamline the
formula representation. This is achieved by the definition of
a suitable grammar that avoids the combination of redundant
operations, such as ¬¬ϕ, where ϕ is a bfSTL or a ppSTL
formula.

All constants (including the individual’s window w) are
implemented through DEAP’s EphemeralConstant.

As for w, it is used during the fitness evaluation step to
partition each trace t ∈ T into a “good behaviour” and a “bad
behaviour” sub-trace, as we will now discuss.

Fitness Function
Next, the fitness of each individual (ϕ, w) is updated along 4
dimensions. The first 2 pertain to the set of traces T , while
the latter 2 refer, respectively, to the sets Σ′

⊥ and Σ′′
⊥. Both

are randomly sampled from Σ⊥, in a way such that |Σ′
⊥| =

|Σ′′
⊥| = fractgood ∗ |Σ⊥| (where fractgood ∈ [0, 1] is a global

parameter of the framework).
As for the traces in T , recall that they are all of the same

length tl and their last time instant corresponds to the one
immediately preceding the failure detected within the frame-
work training loop, either by means of a formula in the pool
P or through teacher forcing. Thus, we would like the for-
mula ϕ encoded by an individual to be able to elicit an an-
ticipatory bad behaviour of that failure. To such an extent,
each trace t ∈ T is divided into a good behaviour sub-trace
good(t) = t[0,w−1] and a bad behaviour sub-trace bad(t) as
follows:

bad(t) =

{
t[w,tl−1] if formula ϕ is bfSTL
t[0,w] if formula ϕ is ppSTL .

The idea is that the last time points of t are those closer to the
detected failure, and thus should contain some prelude of it.

By means of rtamt, the monitor monϕ is applied over all
good and bad sub-traces, and the first fitness element, to be
maximized, is obtained as follows:

acc(T ) = |{ t | t ∈ T ∧ monGϕ(good(t)) ∈ {⊤, ?} }|
|T |

+
|{ t | t ∈ T ∧ monϕ(bad(t)) = ⊥}|

|T |
.

Intuitively, acc(T ) represents the fraction of sub-traces cor-
rectly identified as good and failure ones; note how formula
Gϕ is considered on good(t), as ϕ must be checked with re-
spect to every time point in such traces.

The second fitness element, to be maximized, refers to the
quantitative semantics of STL [Donzé and Maler, 2010]:

rob(T ) = min(robgood,−robbad) ,
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where robgood (resp., robbad) is the average robustness of
monϕ calculated over all good (resp., bad) sub-traces. Due
to the traces normalization step performed at the beginning
of the genetic algorithm, in our case, both are real numbers
in the interval [−1, 1]. Intuitively, the robustness of a for-
mula ϕ with respect to a trace t tells us how far (or close)
the formula is to be satisfied on a trace. For example, given
t1 = [1, 0.9, 0.7], t2 = [0, 0.3, 0.4], and ϕ = G(x ≥ 0.5), the
former trace has a robustness of 0.2, while the latter of −0.1.
Note how the sign is switched on robbad to make it positive.
Maximizing such a formula is akin to the concept of maxi-
mum margin separating hyperplane in the context of support
vector machines [Hastie et al., 2009].

As for set Σ′
⊥, again, rtamt is applied over all its traces,

and the related third fitness element, to be minimized, intu-
itively represents the fraction of good traces of Σ′

⊥ in which
a failure is incorrectly signalled. It is obtained as:

far(Σ′
⊥) =

|{σ | σ ∈ Σ′
⊥ ∧ monGϕ(σ) = ⊥}|
|Σ′

⊥|
.

Similarly, for the fitness element over Σ′′
⊥, we calculate the

fraction of good traces of Σ′′
⊥ in which a failure is incorrectly

signalled:

far(Σ′′
⊥) =

|{σ | σ ∈ Σ′′
⊥ ∧ monGϕ(σ) = ⊥}|
|Σ′′

⊥|
.

Objectives acc(T ), rob(T ) and far(Σ′
⊥) guide the evolu-

tionary process, while far(Σ′′
⊥) is used to implement an early

stopping strategy (which requires a fixed, i.e., not changing
during the generations, reference set).

The initialization step of the algorithm finishes by saving
the population along with its four fitness elements and the
hypervolume calculated with respect to acc(T ), rob(T ) and
far(Σ′′

⊥).
Let us now focus on the evolutionary part of the algo-

rithm. Every rinterval generations, the set Σ′
⊥ is resampled

from Σ⊥ as a counter-overfitting measure (see, for instance,
[Gonçalves and Silva, 2013]). If a resample is performed,
the fitness element far(Σ′

⊥) is updated for each individual.
Then, crossover and mutation operators are applied over the
population, generating an offspring. Such operators are de-
fined as follows.

Crossover
Let i1 = (ϕ1, w1), i2 = (ϕ2, w2) be two individuals from
the population. From them, two other individuals can be cre-
ated according to several crossover operations, randomly se-
lected with uniform probability. The simplest one involves
exchanging their windows, thus obtaining two new individu-
als i′1 = (ϕ1, w2), i′2 = (ϕ2, w1).

Also, the two computation trees corresponding to ϕ1 and
ϕ2 can be hybridized by means of DEAP’s cxOnePointLeaf-
Biased operator. In short, it randomly selects a crossover
point in each tree and exchanges the subtrees rooted in them.
Again following suggestions by Koza [Koza, 1994], our oper-
ator is biased to choose the crossover point on internal nodes
90% of the times, while a leaf is chosen 10% of the times.
Finally, we set a limit of 17 [Koza, 1994] on the generated

individuals’ height (DEAP’s staticLimit). When an over-the-
height-limit individual is generated, it is simply replaced by
one of its parents, randomly selected.

Mutation
Given an individual i = (ϕ,w), also the mutation can be per-
formed according to several strategies, chosen according to a
uniform random probability. As for the window w, it can be
re-generated by randomly choosing a number in the interval
[1, tl− 1]; or, it can be adjusted by a small random amount of
points to the left or right, to allow for a finer tuning.

Concerning the computation tree corresponding to ϕ, three
operations can be performed, taken from the DEAP primi-
tives: mutNodeReplacement, which replaces a randomly cho-
sen node by a randomly chosen operation with the same
number of arguments; mutShrink, which shrinks the tree
by choosing randomly a branch and replacing it with one
of the branch’s arguments (also randomly chosen); and,
mutEphemeral, which randomly changes the values of all of
the constants in the tree.

Once the offspring has been produced, their four previ-
ously defined fitness elements are determined. Next, the
parent population and the offpring are merged, and a selec-
tion is performed relying on the classic strategy implemented
in NSGA-II [Deb et al., 2002], based on the concepts of
ranking and crowding distance. Specifically, for each in-
dividual, the fitness elements acc(T ) (maximized), rob(T )
(maximized) and far(Σ′

⊥) (minimized) are considered. The
newly obtained population is then saved, along with its fit-
ness elements and the hypervolume calculated with respect
to acc(T ), rob(T ), and far(Σ′′

⊥).
The evolutionary part may end according to two condi-

tions: either the maximum number of generations maxgen
(global parameter of the framework) has been reached, or the
early stopping condition is triggered. The latter is defined as
follows: the population hypervolume, calculated with respect
to acc(T ), rob(T ) and far(Σ′′

⊥) (i.e., the fixed set of good
traces), is tracked along the generations. Then, if no improve-
ment is observed for patience generations, the execution is
halted.

Recall that, during the execution of the algorithm, each
generation’s population has been saved. After the end of the
iterative part of the evolutionary process, the population with
the highest hypervolume with respect to acc(T ), rob(T ) and
far(Σ′′

⊥) is recovered, and its individuals’ false alarm rate
with respect to all Σ⊥ traces, far(Σ⊥), is established.2 Then,
the Pareto front of optimal solutions with respect to acc(T ),
rob(T ) and far(Σ⊥) is extracted and filtered to keep only in-
dividuals satisfying the quality criteria q: acc(T ) > minacc

and far(Σ⊥) ≤ maxfar , where minacc ,maxfar ∈ [0, 1].
Also, they are required to correctly classify the good and bad
sub-traces originated from the original, unperturbed trace,
always included in T . Finally, among the remaining indi-
viduals, the formula of the best performing one is returned.
This latter selection is based on choosing the individual with
the highest hypervolume, calculated in relation to acc(T ),
rob(T ), and far(Σ⊥).

2We use Σ′′
⊥ instead of Σ⊥ for computational efficiency.
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4.3 Comparison To Related Work
Let us briefly contrast our framework with existing ap-
proaches to the integration of monitoring and learning.

Compared to contributions in the literature that extract tem-
poral relations in time series data [Aggarwal et al., 2018;
Lu et al., 2020; Petmezas et al., 2021; Gao et al., 2022],
which are based on black-box techniques such as deep learn-
ing, our framework is highly interpretable (we refer the reader
to Appendix E for some examples of extracted formulas). In-
terpretability is a paramount requirement in critical scenarios,
such as healthcare and avionics. This is relevant especially in
the light of recent results that underscore the issues behind
feature attribution methods [Bilodeau et al., 2024].

The closest proposal is the one described in [Brunello et
al., 2023], that uses genetic programming to learn new for-
mulas of bfSTL. Here, we improved it under several respects.

From the theoretical point of view, we introduced the un-
bounded past variant of STL and defined the formalisms
G(ppSTL) and F(ppSTL) which are strictly more expres-
sive than bfSTL, that is, they can express more properties
while still remaining in the realm of monitorability, remov-
ing the need of checking whether a newly learned formula
is monitorable. In such respect, recall that, while bfSTL can
only constrain bounded intervals of a trace, G(ppSTL) and
F(ppSTL) do not inherit such a limitation, being able to con-
strain arbitrarily long intervals. Extending the learning al-
gorithm of [Brunello et al., 2023] to the new formalism was
not trivial, and it advantageously led to the dismissal of the
concept of horizon. The generation of monitorable-only for-
mulas in the genetic algorithm is ensured by the design of
a type-based grammar that allows only well-formed formu-
las adhering to the chosen formalism to be generated, while
removing redundant operators (exploiting idempotence). In
addition to these changes necessary to deal with the past, we
introduced several new features:

• quality requirements for the new formulas are now
clearly stated by means of q . Above all, it can be en-
sured that a formula’s FAR (i.e., the False Alarm Rate)
does not exceed a specified threshold. This was not pos-
sible previously, resulting, over time, in a large number
of formulas being removed from the pool after they had
been learned;

• the imposed FAR threshold allowed us to redesign the
offline learning phase of the framework increasing its ef-
ficiency. Now, it is sufficient to iterate only over failures,
rather than the entire dataset;

• the refactored genetic algorithm makes use of a rotation-
based strategy to counter overfitting on the good traces,
includes an enriched set of crossover and mutation op-
erations, and exploits an enhanced early stopping strat-
egy, that returns the best population among the observed
ones.

5 Experimental Evaluation
Here, we present the results of the application of the frame-
work on three well-known datasets from the literature, com-
paring its performance with other recent contributions.

The Backblaze Hard Drive dataset contains information on
the “health” status of hard drives, tracked by means of Self
Monitoring Analysis and Reporting Technology (SMART).
Each trace is described by: date of the report, serial num-
ber of the drive, a label indicating a drive failure, and 21 nu-
merical SMART parameters. For comparison with the litera-
ture, we focus on [Brunello et al., 2023] Split S1. The Ten-
nessee Eastman Process (TEP) dataset is composed of simu-
lated data from a fictitious chemical plant. Each trace has the
features: trace ID, normal/faulty label, and 52 variables track-
ing data about the operating values of plant components. The
NASA Commercial Modular Aero-Propulsion System Simu-
lation (C-MAPSS) dataset includes run-to-failure simulated
data of turbofan jet engines. Specifically, we focus on the
dataset FD001 and on the detection of the Unhealthy state
class [Kim and Sohn, 2020]. Each simulation is represented
by a multivariate time series, sampled at one value per sec-
ond, obtained from 21 engine sensors. Details about the three
datasets are included in Appendix C.

We instantiate two versions of the framework, using two
different fragments of STL. The first, GP-bfSTL, relies on
bfSTL formulas, as specified in the work by [Brunello et
al., 2023]. The second, GP-G(ppSTL), uses the more ex-
pressive G(ppSTL) fragment. Thereafter, we proceeded by
first confirming the literature results by means of GP-bfSTL.
Then, given such a baseline, we assess the performance of
GP-G(ppSTL) to determine the contribution brought by the
newly isolated logical fragment.

For each dataset, the GP-bfSTL framework is tuned con-
sidering a separate validation set obtained from training data
(details are provided in Appendix D). Then, the best hy-
per parameters are used to run both the GP-bfSTL and GP-
G(ppSTL) framework over all the training sets. Finally, per-
formance is established by applying the monitor to classify
each test set trace independently by means of the pool of
properties obtained during training. To account for the in-
herent stochasticity of our approach, each experiment is re-
peated various times (of course, the same seeds are used with
GP-bfSTL and GP-G(ppSTL)). Appendix F reports all the
details about the code and how to use it to reproduce and use
our framework for new research.

5.1 Results
Table 1 reports the main outcomes of the experiments; a dis-
cussion about the metrics employed as well as additional find-
ings and analyses are in Appendix E. Note that the competi-
tors’ results are based on a single execution (still reported
under the Avg columns), except for [Brunello et al., 2023].
Thus, to allow for a fair comparison, for the F1 and MCC3

metrics, which summarize the overall performance of the
framework, we report not only the average but also the mini-
mum and maximum values observed across the repetitions.

Overall, based on the F1 metric, which is provided by
all the competitors, we can observe that GP-bfSTL achieved
results on par with or superior to the considered baselines,
confirming the soundness of our implementation. The GP-

3Matthews Correlation Coefficient, which is more informative
than F1 in several scenarios [Chicco and Jurman, 2020].
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Dataset Approach Prec. Rec. FAR F1 MCC
Min Max Avg Min Max Avg

Backblaze
S1

[Huang, 2017] .51 .54 .00 - - .52 - - -
[Lu et al., 2020] .87 .41 .00 - - .55 - - -
[Brunello et al., 2023] .54 .60 .00 - - .56 - - -
GP-bfSTL (our) .76 .49 .00 .58 .61 .59 .58 .63 .61
GP-G(ppSTL) (our) .85 .47 .00 .55 .62 .60 .59 .64 .62

TEP

[Hajihosseini et al., 2018] 1.0 1.0 - - - 1.0 - - -
[Onel et al., 2019] 1.0 1.0 .00 - - 1.0 - - -
[Brunello et al., 2023] 1.0 1.0 .00 - - 1.0 - - -
GP-bfSTL (our) 1.0 1.0 .00 1.0 1.0 1.0 1.0 1.0 1.0
GP-G(ppSTL) (our) 1.0 1.0 .00 1.0 1.0 1.0 .99 1.0 1.0

C-MAPSS

[Kim and Sohn, 2020] .71 1.0 - - - .83 - - -
[Brunello et al., 2023] .96∗ .77∗ .01∗ - - .86∗ - - -
GP-bfSTL (our) .95 .65 .02 .70 .85 .77 .61 .80 .69
GP-G(ppSTL) (our) .98 .67 .01 .71 .87 .79 .63 .82 .73

Note: Results of [Lu et al., 2020] listed as in [Brunello et al., 2023]; the others are reported as in the original
references. *: the original results in the referenced paper were based on an incorrectly generated test set of 143
traces, rather than the official set of 100 traces. The latter has been correctly considered in the present work.

Table 1: Experimental results

G(ppSTL) version, when run with the same hyper parameters
as the GP-bfSTL one, scored in par or even better (cf. MCC),
confirming the theoretical claims of Section 3. It is plausible
that a dedicated tuning phase, which could not be performed
due to time/resource limits, could enhance results further.

Note that a significant gap can sometimes be observed be-
tween the maximum/minimum performances of our frame-
work. This stems from our chosen experimental workflow:
for statistical soundness, also the framework’s iterative learn-
ing process relies on a random shuffle of traces (Algorithm 1,
Line 4), which in turn affects the formula extraction process.
We speculate that learning on the training set through multi-
ple passes until the pool converges (i.e., when no more prop-
erties are added) would yield more stable results.

Focusing on the GP-G(ppSTL) version of the framework,
being based on the newly isolated fragment and the best per-
forming one, Figure 4 illustrates how the average preemptive-
ness in failure detection on test set instances evolves as more
and more formulas are learned and incorporated into the mon-
itoring pool. In the dataset TEP, a plateau is reached around a
value of 200, meaning that the formulas in the pool are capa-
ble of (perfectly, given Table 1) identifying a failure roughly
10 hours before it happens (recall the 3-minute sampling time
used for the time series in this dataset). An increase in the an-
ticipatory behaviour of the framework is observed also in the
datasets C-MAPSS and Backblaze S1.

Finally, we report an example of formulas extracted during
the framework training phase for the Backblaze S1 dataset.

Formula f1 = G(smart187 < 24.40 ∨ smart1 ≥
169483444), included in P , evaluates to false, thus issuing
a failure detection. It means that the number of reported
uncorrectable errors (sensor smart187) exceeded the 24.40
threshold and, at the same time, the read error rate (sensor
smart1) was lower than 169483444. As a result, another
formula, intended to anticipate the situation modeled by f1,
is extracted by the genetic algorithm and added to P . It is
f2 = G(smart198 < 16.56), which is violated when the un-
correctable sector count exceeds the 16.56 threshold.

Thus, when viewed from the perspective of the domain, an
event marked by the violation of f2 can be regarded as the
direct cause of the scenario projected by the violation of f1.
In other words, hardware errors (indicated by f2’s violation)
are the root cause of subsequent read/write errors (as modeled
by the violation of f1).
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(a) Backblaze S1 dataset (preemptiveness in days).
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(b) TEP dataset (preemptiveness in 3-minute steps).
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(c) C-MAPSS dataset (preemptiveness in seconds).

Figure 4: Average preemptiveness evolution on the test set instances,
as more properties are learned and added to the pool, for 5 different
runs of the framework, GP-G(ppSTL) case.

6 Conclusions and Discussion
In this paper, we propose to exploit machine learning to en-
hance monitoring of STL formulas. Our methodology is
based on the identification of two fragments of STL, namely
G(ppSTL) and F(ppSTL), for which we give formal guar-
antees on monitorability and expressiveness, and on the use
of genetic programming to automatically learn new relevant
formulas of these fragments. The experiments reveal that for-
mulas generated in this way are effective in anticipating the
discovery of failures.

We conclude by discussing future research directions, in
particular about formula extraction and management. The use
of a genetic algorithm facilitated rapid prototyping and of-
fered flexibility. Still, more efficient methodologies should be
explored. For example, the use of generative and/or reinforce-
ment learning techniques [Holt et al., 2023], or a hybrid ap-
proach combining deep learning with evolutionary computa-
tion, could offer substantial advancements [Chen et al., 2018;
Chen et al., 2020; Mundhenk et al., 2021; Qian et al., 2021].
Graph neural networks are promising as well, as they are
proven effective for performing symbolic regression tasks
[Cranmer et al., 2020], and may more effectively exploit for-
mulas, e.g., considering their automaton or directed acyclic
graph encodings. Finally, the framework itself should be ex-
panded to support online continual learning and update of for-
mulas, rather than relying solely on a fixed training dataset.
This is crucial for real-world applications where monitored
systems may change their behaviour over time.
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[Donzé and Maler, 2010] Alexandre Donzé and Oded Maler.
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