
Primal Grammars Driven Automated Induction

Adel Bouhoula1 and Miki Hermann2

1Arabian Gulf University, Bahrain
2LIX, CNRS, École Polytechnique, Institut Polytechnique de Paris, France

a.bouhoula@agu.edu.bh, hermann@lix.polytechnique.fr

Abstract

Automated induction is a powerful method for the
validation of critical systems. However, the induc-
tive proof process faces major challenges: it is un-
decidable and diverges even with small examples.

Previous methods have proposed ad-hoc heuristics
to speculate on additional lemmas that hopefully
stop the divergence. Although these methods have
succeeded in proving interesting theorems, they
have significant limitations: in particular, they of-
ten fail to find appropriate lemmas, and the lemmas
they provide may not be valid.

We present a new method that allows us to per-
form inductive proofs in conditional theories. This
method automatically detects divergence in proof
traces and derives primal grammars as well as new
lemmas that schematize the divergent sequence.
This new construction allows us to break the diver-
gence and complete the proof.

Our method is presented as a set of inference
rules whose soundness and refutational complete-
ness have been formally proved. Unlike previous
methods, our method is fully automated and has
no risk of over-generalization. Moreover, our tech-
nique for capturing and schematizing divergence
represents the most general decidable schematiza-
tion, with respect to description power, among all
known schematizations.

Our method has been implemented in C++ and suc-
cessfully proved over fifty complex examples that
fail with well-known theorem provers (e.g., ACL2,
Isabelle, PVS, SPIKE) and related methods for
handling divergence in proofs by induction.

Our method represents a significant contribution
to the field of automated reasoning as it can be
integrated with existing automated and interactive
inductive proof systems to enhance their perfor-
mance. Moreover, it has the potential to substan-
tially reduce the time needed for the verification of
critical systems.

1 Introduction
Proof by induction is more and more frequently adopted for
certifying critical hardware and software. Its power is ex-
pressed by the successes of the Boyer-Moore theorem prover
Nqthm [Boyer and Moore, 1979], that has been consid-
ered for many years as the only significant automated theo-
rem proving system for induction. Other inductive theorem
provers have also been developed like SPIKE [Bouhoula and
Rusinowitch, 1993], RRL [Kapur and Zhang, 1995], PVS
[Rushby et al., 1998], ACL2 [Kaufmann et al., 2000] (succes-
sor version of Nqthm), LEAN [de Moura and Ullrich, 2021],
and Vampire [Hozzová et al., 2021]. Unfortunately, very
often they present an undesirable phenomenon called diver-
gence, where new subgoals are generated over and over again,
without finally terminating with the required goal, which is
a proof or a disproof of the initial conjectures. This phe-
nomenon is present even in the case of very small examples.

Previous methods have proposed ad-hoc heuristics to spec-
ulate on additional lemmas that hopefully stop the divergence.
Although these methods have succeeded in proving several
interesting conjectures, they have significant limitations: the
provided lemmas may not be valid in the initial model of the
axioms, and they often fail to find appropriate lemmas. In this
case, the user will manually try to find the necessary lemmas.
It is a very tedious process, and results are not guaranteed.

Our approach is new in several aspects. The proof proce-
dure does not require to be stopped but proceeds automati-
cally by detecting the divergence of proof traces and deriving
a primal grammar that schematizes the divergent sequences.
It suggests some new lemmas that subsume all conjectures of
the divergent sequence and allow the proof procedure to au-
tomatically discard them, continuing the proof with the new
lemmas. Our method is presented as a set of inference rules
whose soundness and refutational completeness has been for-
mally proved. Refutational completeness is particularly use-
ful for debugging programs and detecting flaws in security
protocols.

Since divergence is undecidable in general, we do not pre-
tend that our procedure produces a result in every case. How-
ever, if the divergent sequence of clauses, produced during
an inductive proof, follows a primitive recursive pattern, our
approach always produces a correct and complete schemati-
zation by a primal grammar, which allows to stop the diver-
gent process and successfully terminate the proof. Integrating

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3259

primal grammars and the new lemmas into the proof proce-
dure preserves refutational completeness and avoids the risk
of over-generalization. Our method has been implemented
in C++ and successfully proved over fifty complex examples
in a completely automatic way, unlike related provers, which
require user interaction or ad hoc heuristics or fail, since it
is not always possible to speculate on additional lemmas to
complete a proof.

The main advantages of our method compared to related
work are: (i) it is completely automatic, i.e., no interaction
with the user, (ii) it deals with conditional axioms, (iii) it pre-
serves refutational completeness, (iv) there is no risk of over-
generalization,

Our method represents a major development in the field
of automated reasoning as it can be integrated with existing
automated and interactive inductive proof systems to enhance
their performance. Moreover, computer experiments show
that our method has the potential to significantly reduce the
time needed for the verification of critical systems.

The paper is organized as follows. Section 2 presents re-
lated work for both solving the divergent issues of proofs
by induction and schematization of divergence, together with
our motivation. Section 3 introduces the necessary prelim-
inaries and notation. In Section 4 we define our method
of primal grammars for capturing divergence, together with
the algorithm generating them from a divergent sequence
of clauses. Section 5 explains the construction of a pri-
mal grammar from a divergent sequence. Section 6 intro-
duces inductive positions and test sets. Section 7 presents
our inference system to perform inductive proofs with the
help of primal grammars. Section 8 summarizes the re-
sults of our computer experiments and shows the effec-
tiveness of our new method through two illustrative ex-
amples. More examples can be found at the github page
https://github.com/BouhoulaHermann/IJCAI-2024.

2 Related Work
Several methods have been proposed to avoid or stop the
divergence of rewriting-based inductive provers in uncondi-
tional theories. Most of them consist of stopping the prover
in his divergent behavior and either manually or using ad-
hoc heuristics to speculate on additional lemmas or to dis-
cover generalizations, which hopefully stop this unwanted
phenomenon: the primary term heuristic [Aubin, 1976], the
rippling heuristic [Bundy et al., 1993], the difference match-
ing procedure [Basin and Walsh, 1992; Basin and Walsh,
1993], the divergence critic [Walsh, 1996], the use of proof
planning [Ireland and Bundy, 1996], the speculate heuristic
[Kapur and Subramaniam, 1996], the generalization of con-
jectures [Urso and Kounalis, 2004], and the induction with
generalization [Hajdú et al., 2020].

Although these methods have succeeded to prove several
interesting theorems, they have important limitations: First,
they may require high user guidance. Second, there are no
guarantees against over-generalization (except in [Urso and
Kounalis, 2004] under some conditions) and provided lem-
mas may not be valid in the initial model of the axioms.
Third, attempting to prove the lemmas themselves can cause

fresh divergence.
Several researchers in the 1990s noted that the infinite be-

havior during theorem proving, called divergence, follows a
primitive recursive pattern. To cope with this phenomenon,
they proposed different schematizations. Most notable among
them and in their order of increasing schematization power
are those of [Chen et al., 1990], [Salzer, 1992], [Comon,
1995], and [Hermann and Galbavý, 1997].

However, up till now nobody proposed to synthesize pri-
mal grammars from divergent proofs. Subsequently, there is
no previous work on maintaining refutational completeness
in the presence of schematizations.

To guarantee that our method can handle a very large
class of specifications and conjectures, we have developed a
new version of primal grammars based on Presburger arith-
metic. These grammars represent the most general decidable
schematization, with respect to description power, among all
known schematizations.

Certainly, as the divergence of equational proofs is unde-
cidable in general, not all divergent sequences can be schema-
tized by primal grammars. We can only consider those pre-
senting a primitive recursive behavior, which allows us to
cover a large class of problems. It is important to note that
the Ackermann function for example fails to be captured by
primal grammars since it is not compatible with primitive re-
cursion.

In this paper, we propose a new method for proof by in-
duction in conditional theories. Our method automatically
detects the divergence of proof traces and derives a primal
grammar, as well as new lemmas that subsume all conjectures
of the divergent sequence. This allows the proof procedure to
automatically discard them and continue the proof with the
new lemmas.

Our method has been implemented and the numerous com-
puter experiments show that our method is very promising
and can significantly contribute to shortening the time needed
to validate critical systems.

3 Preliminaries
We introduce the main notation used later and refer to [Der-
showitz and Jouannaud, 1991; Bouhoula, 1997; Baader and
Nipkow, 1998; Bouhoula, 2009] for the details and missing
definitions. We always assume that we are working within a
quantifier-free first-order language with equality.

A many-sorted signature Σ is a pair (S, F) where S is a
set of sorts and F is a finite set of function symbols, parti-
tioned into two disjoint subsets: the first one C, contains the
constructor symbols and the second D, is the set of defined
symbols. Let X be a countably infinite set of variables and let
T (F,X) be the set of well-sorted F-terms. A ground term has
no variables. T (F) denotes the set of ground terms. A posi-
tion a of a term t ∈ T (F,X) is a string of natural numbers
which is an index of a subterm in a tree representing t. Pos(t)
denotes the set of all positions of a term t. FPos(t) denotes
the subset of Pos(t) containing only the functional positions
in t. Two positions a and b of a term t are parallel if a is not a
prefix of b, nor b is a prefix of a. A set of positions A is called
parallel if any two positions a, b ∈ A are parallel. A subterm

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3260

https://github.com/BouhoulaHermann/IJCAI-2024

of t at position a ∈ Pos(t) is denoted by t|a.
An equation is a pair of the form t1 = t2, where t1 and t2

are terms of the same sort. A conditional equation is either
an equation or an expression of the form e1 ∧ · · · ∧ en ⇒ e,
where e, e1, . . . , en are equations, with e1, . . . , en being the
conditions and e is the conclusion. A clause is an expression
of the form ¬e1 ∨ · · · ∨¬en ∨ e′1 ∨ · · · ∨ e′m. Axioms are built
from conditional equations. Goals to be proved are clauses.

A term t is an instance of t′ if there is a substitution σ such
that t = t′σ. A variable renaming is an injective substitution
σ : X → X , such that its domain and range are disjoint for a
finite subset of variables X ′ ⊂ X , for which xσ ̸= x holds.
Two terms s and t are equivalent modulo variable renaming
if s is an instance of t and t is an instance of s.

We denote by Vars(t) the variables of a term t. A rewrite
rule l→ r is an oriented equality such that l ∈ T (F,X)∖X
and Vars(r) ⊆ Vars(l), where Vars(t) is the set of variables
of t. In addition, we require the relation l ≻ r to hold where≻
is a well-founded ordering on terms. A term rewriting system
is a set of (conditional) rewrite rules. Given a term rewrit-
ing system R, a reduction relation →R on terms is defined
as s →R t if there is a (conditional) rule c ⇒ l → r and a
substitution σ, such that l ≻ c, lσ is a subterm of s and for
each equation in the condition c of the form a = b, the in-
stances aσ and bσ reduce to the same normal form, Then t is
obtained by replacing the subterm lσ by rσ in s. We denote
by t↓R the normal form of the term t obtained by reduction
using a confluent and terminating rewrite system R.

A term t is R-irreducible if there is no term s such that
t →R s. A substitution σ is R-irreducible if xσ is R-
irreducible for any variable x of its domain. We say that two
terms s and t are joinable if s →⋆

R v and t →⋆
R v hold for

some term v. A formula φ is a deductive theorem of E if it
is valid in any model of E, denoted by E |= φ. The rewrite
relation →R is said to be ground convergent if the terms u
and v are joinable whenever u, v ∈ T (F) and R |= u = v.

Given a set of axioms E and a clause c called a conjecture,
we want to prove that c is an inductive consequence of E, i.e.,
any ground instance of c is a consequence of E. In order to
establish consequence relations, we consider initial models.
We write E |=ind c, if c is valid in the initial model of E.
Any ground instance cσ such that E ̸|= cσ is a counterexam-
ple. A clause c is not valid in the initial model of E if there
is a ground instance of c which is a counterexample. The de-
duction relation |=ind extends to sets of equalities as follows:
E |=ind Φ holds if E |=ind e for every e ∈ Φ.

Let T (C) be the set of ground terms constructed from the
signature C. An operator f ∈ D is sufficiently complete
if for all t1, . . . , tn ∈ T (C), there exists t ∈ T (C) such
that f(t1, . . . , tn) →⋆

R t. If each f ∈ D is sufficiently
complete then we say that R is sufficiently complete. Let
f ∈ D be a sufficiently complete defined function. If for
all rewriting rules ci ⇒ f(t1, . . . , tn) → ri whose left-hand
sides are identical up to a variable renaming σi, we have
c1σ1 ∨ · · · ∨ cnσn valid in the initial model of R, then f is
strongly complete with respect to R. We say that R is strongly
complete if any function symbol in D is strongly complete
with respect to R.

4 Capturing Divergence
Divergence in equational proofs is undecidable in general,
since we can simulate the work of a Turing machine by means
of superposition and reduction during a proof derivation. This
fact implies that we can search only for sufficient conditions
to detect and capture divergence. An appropriate tool for cap-
turing divergence is the formalism of primal grammars [Her-
mann and Galbavý, 1997]. Primal grammars are based on
primitive recursive functions adapted for term rewriting sys-
tems. They represent the most powerful schematization of
divergent systems in terms of inclusion. However, if a proof
derivation presents a fast-growing behavior beyond the class
of primitive recursive functions, like for instance the Ack-
ermann function, there exists no reasonable general purpose
mean to cope with such type of divergence, except the design
of an ad-hoc schematization.

For the needs of primal grammars, the signature F con-
sists of constructors K, defined symbols D, where K and D
are disjoint, and the special symbols + (addition), plus the
constants 0 and 1. The defined symbols are surmounted by a
hat to distinguish them from the constructors. We also need
the set of counter variables C, disjoint from ordinary vari-
ables X . Note that constructors for primal terms are different
from constructors in inductive proofs.

The arguments of the defined symbols are divided into two
parts by a semicolon. Those before the semicolon are called
counters. Each defined symbol f̂ has a counter arity car(f̂).
The manipulation of counters is based on the counter expres-
sions N(C). They are the smallest algebra containing 0, the
counter variables C, and closed under the application of ad-
dition by 1. Since this algebra is isomorphic to linear expres-
sions over natural numbers, we use the arithmetic expressions
c+ 1 and c+ k for the addition by 1 and the addition by k.

The schematization level is represented by the algebra of
primal terms P = (K,D;C,X), which is the smallest set
such that:
(1) X ⊆ P ,
(2) if c1, . . . , ck ∈ N(C), t1, . . . , tn ∈ P , and f̂ ∈

D with car(f̂) = k and ar(f̂) = n, then
f̂(c1, . . . , ck; t1, . . . , tn) ∈ P ,

(3) if t1, . . . , tn ∈ P and f ∈ K with ar(f) = n then
f(t1, . . . , tn) ∈ P .

The approximation of f̂(c; t) with respect to a precedence ≻
on D is the set Apx(f̂(c; t)) = {ĝ(z;u) | f̂ ≻ ĝ}, where z
is a subsequence of c and u is a subsequence of t.

The set of positions occupied by defined symbols in a
term t is denoted by DPos(t). A wrap of a primal term t is
the context Wrp(t) = t[·]DPos(t) where each subterm at every
position DPos(t) of a defined symbol is replaced by a hole, a
special constant absent from any set of symbols F . A depth d
iteration (or d-iteration) of a wrap w = w[·]A, denoted by
w⟨A⟩d for d ∈ N, is defined as w⟨A⟩1 = w and w⟨A⟩i+1 =
w[w⟨A⟩i]A. A d-iteration of a wrap w = w[·]A modulo vari-
able renaming, denoted by w∼d⟨A⟩d, is recursively defined
by w∼1⟨A⟩1 = w and w∼i+1⟨A⟩i+1 = wi+1[w

∼i⟨A⟩i]A,
where all wi[·]A, i ∈ N, are equivalent modulo variable re-
namings with disjoint ranges.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3261

Primal terms are constructed to represent infinite sets of
terms. Their semantics is defined by Presburger systems.
Definition 1. Let ≻ be the precedence on the defined sym-
bols D. With every defined symbol f̂ we associate two primal
terms r1 and r2. The Presburger rewrite systemR contains
for each f̂ ∈ D the following pair of rewrite rules:
• the basic rule f̂(0;x)→ r1 or f̂(0, c;x)→ r1
• and the inductive rule, having one of the following forms:
f̂(n+ 1;x)→ r2[f̂(n;x)]A or
f̂(n+ 1, c;x)→ r2[f̂(n, c;x)]A or
f̂(n+ 1, c;x)→ r2[f̂(n, c+ 1;x)]A.

where
• c is a counter variable, and
• x is a vector of ordinary variables,
• A is a subset of parallel non-root positions in r2,
• both terms r1 and r2 at every position from DPos(r1) and
DPos(r2) belong to Apx(f̂(n, c;x)),

• the root symbol of r2 is a constructor,
• each ordinary variable in x occurs in Wrp(r1) ∪Wrp(r2).
A Presburger system is designed as a primitive recursive func-
tion over the set of terms T (F,X). Each Presburger system
is confluent and terminating [Hermann and Galbavý, 1997].

An enumerator for a primal term t is a ground substitution
ξ : C → N that instantiates all counter variables of t by nat-
ural numbers. The enumeration Ξ(t) is the set of all possible
enumerators of t. A primal term represents the folded form of
all terms in the schematized set S and an enumerator selects
one element from S. A Presburger systemR provides us with
the machinery for computing the elements of a schematized
set from a primal term t by instantiation tξ by a enumerator
ξ ∈ Ξ(t), followed by reduction to normal form tξ↓R.
Definition 2. A primal grammar is a quadruple G =
(K,D,R, t), where K are the constructors, D are the de-
fined symbols, R is a Presburger rewrite system, and t is a
lemma. The language generated by a primal grammar is the
set L(G) = {tξ↓R| ξ ∈ Ξ(t)}. We say that the primal gram-
mar G schematizes the set L(G).
The lemma t in the aforementioned definition can also be an
equation or a clause, as it is the case in the scope of theorem
proving. We put a bar on top of the primal term to distinguish
it as the starting point of the primal grammar.

We need to define the sets of terms to which primal gram-
mars correspond.
Definition 3 (Primitive Recursive Set of Terms). A countably
infinite set of terms T is called 0-level primitive recursive if
it can be arranged in an infinite sequence t0, t1, t2, . . . , tn, . . .
and there exists a set of parallel positions A, such that
• r1 is the first term t0 of the set T ,
• the equality ti = ti+1|a holds for every i ∈ N and each

position a ∈ A,
• there exists a wrap r2[·]A such that ti⟨A⟩i = r∼i

2 ⟨A⟩i.
A countably infinite set of terms T is called ℓ-level primitive
recursive if it can be arranged in an infinite sequence t0, t1,
t2, . . . , tn, . . . and there exists a set of parallel positions A,
such that
• r1 is the first term t0 of the set T ,

• the equality ti = ti+1|a holds for every i ∈ N and each
position a ∈ A,

• there exists a superset of parallel positions B ⊇ A,
• there exists a wrap r2[·]B such that ti⟨B⟩i = r∼i

2 ⟨B⟩i,
• for each position b ∈ B∖A there exists a k-level primitive

recursive set of terms T b, where k < ℓ,
• ti|b = tbi holds for every i ∈ N and each position b ∈
B∖A, where tbi ∈ T b is the ith term in the sequence of T b.

A concatenation of an ℓ-level and a k-level primitive re-
cursive sets T ℓ = {tℓ0, tℓ1, . . .} and T k = {tk0 , tk1 , . . .} with
k < ℓ is a primitive recursive set T ′ = {t′0, t′1, . . .} if
there exists two sets of parallel positions A and B, such that
t′i = tℓi⟨A⟩i[tki]B for each i ∈ N.

A combination of a finite number of primitive recursive
sets T0, T1, . . . , Tn is a primitive recursive set T =
{t0, t1, . . .} if there exists mutually parallel sets of par-
allel positions Ai and a wrap w[·]A such that ti =

w[t0i]A0
· · · [tni]An

where tji is the ith term in the sequence Tj

for j = 0, . . . , n.

A countably infinite set of terms T is primitive recursive if it
is ℓ-level primitive recursive for some ℓ ∈ N, a concatenation,
or a combination of primitive recursive sets.
Remark. Experimental observations show that each divergent
sequence of clauses in an inductive proof is a primitive re-
cursive set. The requirement that consecutive wraps must
be equivalent modulo variable renaming takes care of rolling
variables which may occur by instantiation of induction vari-
ables by the terms from the test sets (see Section 6). In the
concatenation of two primitive recursive sets T ℓ and T k a
term ti ∈ T ℓ is paired with a term t′i ∈ T k at the same index i.

Note also that all (ordinary) variables in each primitive re-
cursive set T are always considered Skolemized, i.e., they
cannot be instantiated.
Example 4. The following finite prefix of a primitive recur-
sive set of terms T has been produced during an inductive
proof of the conjecture len(app(x, x)) = len(x) + len(x)
over a specification of a list with the operations zero 0, suc-
cessor s, addition +, empty list nil, concatenation cons, and
application app. We obtained the following equations:

len(app(y, cons(x1, y))) = s(len(y)) + len(y),
len(app(y, cons(x2, cons(x1, y)))) =

s(s(len(y))) + len(y),
len(app(y, cons(x3, cons(x2, cons(x1, y))))) =

s(s(s(len(y)))) + len(y).

There is first the 0-level primitive recursive set T0 =
{s(len(y)), s(s(len(y))), s(s(s(len(y)))), . . .} with the set
of positions1 A = {0} and the wrap s(·). There is another
0-level primitive recursive set

T1 = {cons(x1, y), cons(x2, cons(x1, y)),

cons(x3, cons(x2, cons(x1, y))), . . .}
with the set of positions A = {1} and the wrap cons(x, ·)
with variable renamings σi = [x ← xi]. They are then com-
bined into the resulting primitive recursive set using the wrap

1All indices begin with 0.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3262

len(app(y, ·)) = s(·) + len(y). The variable x taking the
indices 1, 2, 3, etc, is a so-called rolling variable.

The following finite prefix of a primitive recursive set of
terms T has been produced during an inductive proof of the
associativity conjecture x + (x + x) = (x + x) + x over a
specification of natural numbers with the operations of zero 0,
successor s, and addition +. We obtained the equations

x+ s(x+ s(x)) = (x+ s(x)) + s(x),

x+ s2(x+ s2(x)) = (x+ s2(x)) + s2(x),

x+ s3(x+ s3(x)) = (x+ s3(x)) + s3(x).

There is first the 0-level primitive recursive set T0 =
{s(x), s2(x), s3(x), . . .}, followed by a 0-level primitive re-
cursive set T1 = {s(x + y), s2(x + y), s3(x + y)}, both
with positions A = {0} and wrap s(·). They are concate-
nated into a 1-level primitive recursive set T2 = {s(x +
s(x)), s2(x + s2(x)), s3(x + s3(x)), . . .} using the position
B = {0.1}. Finally the sets T0 and T2 are combined using the
wrap x+ · = (x+ ·)+ · into the resulting primitive recursive
set, where the first hole is replaced by T2 and the following
two holes each by T0.
Proposition 5. For each primitive recursive set of terms T
there exists a primal grammar GT , such that L(GT) = T .

Hint. Induction on levels ℓ ∈ N. Each level is assigned a
different defined symbol f̂ . Descent to lower level is taken
care of in the wrap r2[·]A, concatenation is taken care of in r1,
combination is taken care of in the lemma t.

Proposition 6. For each primal grammar G there exists a
primitive recursive set of terms T such that L(G) = T .

Hint. Direct construction. The levels are determined by the
ordering ≻ on defined symbols D.

5 Constructing a Primal Grammar
Hermann and Galbavý defined primal grammars in [Hermann
and Galbavý, 1997] and developed a unification algorithm
for them, but they did not supply any procedure allowing to
derive a suitable correct and complete primal grammar from
an existing divergent sequence. In this section, we will for-
mally develop the PRIMGRAM procedure performing exactly
this necessary derivation.

The first step in taming divergence is the design of a primal
grammar GT = (KT , DT ,RT , tT) schematizing an infinite
divergent sequence T = {t1, t2, . . .}, such that L(GT) = T .
Let Tp = {t1, t2, . . . , tp} ⊂ T be a finite prefix of p initial
terms of the divergent sequence T . To determine the maximal
common wrap of a finite set of terms, we use the machinery of
difference matching [Basin and Walsh, 1992] resp. difference
unification [Basin and Walsh, 1993].

The PRIMGRAM function for deriving a primal grammar
for a divergent sequence is presented in Algorithm 1. The
details of the PRIMGRAM function are described as follows:

(1) Determine the maximal common wrap w[·]Q of the fi-
nite prefix Tp of the divergent sequence T by means of differ-
ence matching. This wrap consists of the term context com-
mon to all terms from Tp. Note that this wrap can have several
holes on parallel positions Q.

(2) For each parallel position q ∈ Q, determine
the corresponding divergent sequence of subterms T q

p =

{tq1, t
q
2, . . . , t

q
p}. For each i ∈ {1, . . . , p}, tqi is the subterm

of ti at position q. Formally, tqi = ti|q for all ti ∈ Tp.
(3) Using difference matching again, determine the max-

imal wrap r2[·]A of T q
p ∖ {tq1} with holes at parallel posi-

tions A.
(4) For each pair tqi , tqi+1 of consecutive terms from T q

p ,
test if the subterm tqi+1|a at each position a ∈ A is equal
to tqi .

(5) If not, the finite prefix T q
p of subterms T q from T at

position q hides an encapsulated divergence. Recursively call
this procedure on it, solve the encapsulated divergence by
producing a primal grammar G′ = (K ′, D′,R′, t

′
) for T q ,

and replace this encapsulated divergent sequence in all terms
from T q

p by the lemma t
′. If the recursive call returns a fail-

ure, return it.
(6) Check if the subterms tq2|a at all positions a ∈ A are

equal. If not, the maximal wrap r2[·]A is wrong and return
failure. If yes, put r1 ← tq1.

(7) Create the lemma tT for primal grammar GT from the
maximal common wrap w[·]Q by replacing the holes by cor-
responding primal term f̂q(c;x) for each position q ∈ Q.

(8) If there were encapsulated divergences encountered,
which have now been replaced by the lemma te of their corre-
sponding primal grammars Ge, incorporate the counters of te
into actually created lemma tT q . Integrate the dependent pri-
mal grammars Ge into the created primal grammar GT q . Per-
form it for all parallel positions q ∈ Q.

(9) By means of primal term matching of tT against the
prefix Tp, determine dependency of counters.

Definition 7. A primal grammar G = (K,D,R, t) is a com-
plete schematization for a primitive recursive set of terms T
if for each term t ∈ T there exists an enumerator ξ ∈ Ξ(t),
such that t = tξ↓R. A primal grammar G = (K,D,R, t)
is a correct schematization for a primitive recursive set of
terms T if for each enumerator ξ ∈ Ξ(t) there exists a term
t ∈ T , such that t = tξ↓R.

The PRIMGRAM function for deriving a primal grammar
for a divergent sequence is presented in Algorithm 1.

Theorem 8 (Correctness and Completeness). Let T be a
primitive recursive set of terms. For each sufficiently long
finite prefix Tp ⊂ T , PRIMGRAM generates a primal gram-
mar GT which is a correct and complete schematization of T .

Theorem 8 presents the statement that the PRIMGRAM
function produces a primal grammar G which neither over-
generalizes a divergent sequence T , nor omits a term from T ,
i.e., that T = L(G) holds, provided that T is a primitive
recursive set. The parameter p — sufficient length of the pre-
fix Tp — is discussed further in the section on test sets.

The following example illustrates Theorem 8.

Example 9. Suppose that PRIMGRAM receives the diver-
gent sequence of clauses T = {a2(x) = true, a4(x) =
true, a6(x) = true, . . .} which generalizes to a2k+2(x) =
true . We will show that PRIMGRAM neither over-generalizes
the sequence T , nor omits a term from T .

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3263

Algorithm 1 Production of a primal grammar from a finite
prefix of an infinite divergent sequence.

Input: Finite prefix Tp = {t0, t1, . . . , tp−1} of an infinite
divergent sequence T .

Output: Primal grammar GT = (KT , DT ,RT , tT) or fail-
ure.

1: function PRIMGRAM(Tp)
2: w[·]Q ← maximal common wrap(Tp)
3: for all q ∈ Q do
4: T q

p ← ∅
5: for i = 0, . . . , p− 1 do T q

p ← T q
p ∪ {ti|q}

6: r2[·]A ← maximal common wrap(T q
p ∖ {tq0})

7: for i = 0, . . . , p− 2 do
8: for all a ∈ A do
9: if tqi+1|a ̸= tqi then

10: (K ′, D′,R′, t
′
)← PRIMGRAM(T q

p)
11: if PRIMGRAM(T q

p) = failure then
12: return failure
13: for j = 0, . . . , p− 1 do tqj |a ← t

′

14: break
15: for all a1, a2 ∈ A do
16: if tq2|a1

̸= tq2|a2
then return failure

17: r1 ← tq0
18: tT |q ← w[f̂q(c;x)]q
19: lift counters(tT |q)
20: match counters(tT , Tp)
21: return (KT , DT ,RT , tT)

PRIMGRAM produces the Presburger system

f̂0(0;x)→ x, f̂0(n+ 1;x)→ a2(f̂0(n;x))

and the lemma c = (a2(f̂0(n;x)) = true). For every enu-
merator ξ, instantiating the counter variable n in the lemma c,
there exists a corresponding clause in T . This means that the
lemma a2(f̂0(n;x)) = true subsumes the sequence T .

Suppose that PRIMGRAM generated the Presburger system

f̂0(0;x)→ x, f̂0(n+ 1;x)→ a(f̂0(n;x))

and the lemma c = (a(f̂0(n;x)) = true) instead of the cor-
rect one. All clauses in T can be schematized by this pri-
mal grammar, but there exists, for instance, the enumerator
ξ = {n ← 0} for which the instance c{n ← 0} reduces
to the clause a(x) = true , which does not belong to T . A
similar situation will happen with Presburger system whose
inductive rule has the form f̂0(n + 1;x) → a2k+1(f̂0(n;x))
for any k.

Suppose now that PRIMGRAM generated the Presburger
system

f̂0(0;x)→ x, f̂0(n+ 1;x)→ a4(f̂0(n;x))

instead of the correct one. We cannot produce for example the
clause a4(x) = true which belongs to T . A similar situation
will happen with any Presburger system whose inductive rule
has the form

f̂0(n+ 1;x)→ a2k(f̂0(n;x)) for k > 1.

We conclude that PRIMGRAM exactly captures all clauses
in T . In this example, we assumed that T is infinite. However,
in reality, PRIMGRAM takes only a finite prefix of T to gener-
ate the corresponding primal grammar. Since the sequence T
contains a primitive recursive set below a maximal common
wrap of all clauses, in this particular case of level 0, already a
sufficiently long finite prefix Tp determines the required prop-
erties of the whole sequence T . According to Definition 3,
we need to determine the set of parallel positions A, the wrap
r2[·]A which iterates through all positions A, and the term t0.

The maximal common wrap w[·]Q of T is a2(·) = true
and Q contains a single position q = 0.0.0. This wrap
will be used to construct the lemma. The terms T q below
the wrap w[·]Q are {x, a2(x), a4(x), . . .}. We need to show
that Tq constitutes a primitive recursive set. The maximal
common wrap r2[·]A of T q is a2(·) with A = {0.0}. We have
a2(x)|0.0 = x, a4(x)|0.0 = a2(x), etc, and also the equality
a2i(x)⟨0.0⟩i = (a2(x)∼i⟨0.0⟩i for each i. The term r1 is
equal to tq0 which is x. Therefore T q is a 0-level primitive
recursive set. From Definition 3 it follows that the set of par-
allel positions A, the wrap r2[·]A, and the term r1 can be de-
termined from a finite prefix of the primitive recursive set T .

This example shows that PRIMGRAM generates exactly the
equations of the form a2k+2(x) = true from a finite prefix
of T .

The following theorem shows that PRIMGRAM preserves
refutational completeness.
Theorem 10. Let c be a lemma in the primal grammar
G = (K,D,R, c) generated by PRIMGRAM(T) from a prim-
itive recursive set T and let R be a ground convergent rewrite
system. Then R |= c implies R |= T .

Hint. Since c subsumes the sequence T , R |=ind c implies
R |=ind T . This means that a counterexample for a clause
in T is also a counterexample for c, and therefore we con-
clude that PRIMGRAM maintains the refutational complete-
ness property.

6 Inductive Positions, Induction Variables,
and Test Sets

To perform a proof by induction, it is necessary to provide
induction schemes. In our framework, these schemes are de-
fined by a function, which, given a conjecture, selects the po-
sitions of variables where the induction will be applied (in-
duction variables) and by a special set of terms called a test
set which give us a finite description of the initial model of
the rewrite system. Test sets are used to instantiate induction
variables.

6.1 Induction Variables
Induction variables are variables which may trigger a rewrit-
ing step when instantiated. Given a conditional rewrite sys-
tem R, to compute induction variables, we start by the com-
putation of induction positions of function symbols. This
computation is done only once and permits us to determine
whether a variable of a term t is an induction variable or not.
Then, it is not necessary to consult the axioms in order to se-
lect the induction variables of a conjecture. For example, if

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3264

we consider the rewrite system {x + 0 → x, x + s(y) →
s(x + y)}, then y is an induction variable of the term x + y,
since the corresponding rewrite rules’ left-hand sides x + 0
and x + s(y) vary at the second position of +. We say also
that 1 is an induction position2 of +. The inductive positions
allow us to restrict the instantiation of conjectures to a smaller
set of inductive variables that trigger a rewriting step.

A sort S is finitary if the set of R-irreducible ground terms
of sort S is finite. Otherwise, S is infinitary.

Definition 11 (Induction variables). The set IndVarR(c) of
induction variables of a clause c with respect to a rewrite
system R is the smallest subset of Var(c) satisfying the fol-
lowing conditions:

(1) if x is a variable of a finitary sort with respect to R then
x ∈ IndVarR(c);

(2) if x = t|p, where t is a subterm of c of the form
f(t1, . . . , tn), such that each ti is a term built from construc-
tors and variables, and p is an inductive position of f , then
x ∈ IndVarR(c).
If the rewrite system R is clear from the context, we denote
the induction variables only by IndVar(c).

6.2 Test Sets
Let R be a left-linear conditional rewrite system. Let dp(R)
be defined as the maximum depth of the left-hand sides of
rules in R and dpf (R) be defined as the maximum depth of
the left-hand sides of rules in R with the root symbol f . Let R
be a sufficiently complete and ground convergent conditional
rewrite system. Test sets are computed for all defined func-
tions f . The test set TS[f, s] for a defined function f and
a sort s is the set of all constructor terms of depths smaller
or equal to dpf (R) with variables only on the deepest level.
The test set TS is the union of all TS[f, s] for all defined
functions f and all sorts s. A test substitution for a clause
c instanciates induction variables of c by terms taken from a
given test set whose variables are refreshed by renaming.

Example 12. Consider the rewrite system R with the rules

0 + x→ x, s(x) + y → s(x+ y),
even(0)→ true, even(s(0))→ false,
even(s2(x))→ even(x),

even(x) = true ⇒ odd(x)→ false,
even(x) = false ⇒ odd(x)→ true

where 0 and s are constructors of the sort nat, and +, even ,
and odd are defined functions. The final test set is equal to

TS = {(+,nat , {0, s(x)}), (even,nat , {0, s(0), s2(x)}),
(odd ,nat , ∅)}.

7 Inference System for Proofs by Induction
In this section we describe an inference system I (see Fig-
ure 1) for proving or disproving inductive consequences with
respect to a given conditional rewrite system R.

The inference system operates on a tuple
(E,H,G, T, S,B) where E is the set of conjectures,
H is the set of induction hypotheses, G is the set of primal

2All positions start with 0 and proceed from left to right.

grammars, T is the list of new subgoals, S is the set of new
signatures, and B is a Boolean flag.

The SIMPLIFY inference rule allows us to perform the fol-
lowing tasks.

• Use of inductive rewriting to reduce a clause c with ax-
ioms from R, induction hypotheses from H , other conjec-
tures from E that have not yet been proved and are smaller
compared to c (which allows mutual simplification of conjec-
tures), and primal grammars from G. We use a generaliza-
tion of the complexity of equations given in [Bouhoula et al.,
1995] to compare clauses. This complexity allows, in partic-
ular, to handle non-orientable equations.

• Use of case rewriting.
• Application of positive decomposition taking advantage

of the fact that constructors are free to simplify clauses.
• Delete redundant clauses or tautologies and application

of occur check and negative clash if the constructors are free.
• Subsume clauses modulo the equational theory gener-

ated by Presburger rewrite systems.

The INDUCTIVE NARROWING inference rule allows us to de-
rive new subgoals by the instantiation of induction variable of
a conjecture by the elements of test sets and the simplification
of the obtained instances. Notation c :: T denotes pushing
of c to the front of list T .

The definitions of inductive rewriting, case rewriting, pos-
itive decomposition, occur check, and negative clash can be
found in [Bouhoula, 1997].

The PRIMAL GRAMMAR inference rule constructs a pri-
mal grammar from a supposed divergent sequence, and it
generates new lemmas which will subsume all divergent se-
quences. Procedure REMOVELIST(T,E′) removes any sub-
goal in T subsumed by a lemma in E′. Procedure PRIM-
GRAM(T) returns a new primal grammar G′ with a new sig-
nature S′ and new lemmas E′. If PRIMGRAM(T) fails, it re-
turns the tuple (∅, ∅, ∅). The SUCCESS inference rule will be
applied if the set of conjectures is exhausted. The inference
rule DISPROOF applies if no other rule can be applied to c.
The flag B prevents the PRIMAL GRAMMAR inference rule
to be applied in an infinite loop.

The diagram in Figure 2 presents the strategy for applying
the inference rules. SIMPLIFY∗ means that the simplification
rule is used exhaustively until no further simplifications can
take place.

Given a set of conjectures, we start with the saturation of
the application of the SIMPLIFY inference rule; if the result-
ing set of conjectures is exhausted, the SUCCESS inference
rule is applied, confirming the validity of the conjectures in
the initial model of R.

If the SIMPLIFY process does not exhaust the conjectures,
we try to apply the INDUCTIVE NARROWING inference rule.
If the application of INDUCTIVE NARROWING fails, we con-
clude that at least one of the conjectures is not valid in the
initial model. Alternatively, if the INDUCTIVE NARROWING
rule succeeds, we move to the simplification step. If, once
again, the resulting set of conjectures is exhausted, the SUC-
CESS inference rule will be applied. However, if the simplifi-
cation process does not exhaust the conjectures, we apply the
PRIMAL GRAMMAR inference rule.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3265

INIT: ⊢ (E, ∅, ∅, [], ∅, false)
SIMPLIFY: (E ∪ {c}, H,G, T, S,B) ⊢ (E ∪ E′, H,G, T, S,B) if E′ = simplification(c,R,H,E,G)

INDUCTIVE NARROWING: (E ∪ {c}, H,G, T, S,B) ⊢ (E ∪ E′, H ∪ {c}, G, c :: T, S, true)

where E′ =
⋃

σ simplification(cσ,R,H,E,G) and σ is a test substitution of c if c has an induction variable

PRIMAL GRAMMAR: (E,H,G, T, S, true) ⊢ (E ∪ E′, H,G ∪G′, T ′, S ∪ S′, false)

where (G′, S′, E′) = PRIMGRAM(T) and T ′ = REMOVELIST(E′, T)

SUCCESS: (∅, H,G, T, S,B) ⊢ success

DISPROOF: (E ∪ {c}, H,G, T, S,B) ⊢ disproof if no other rule applies to c

Figure 1: Inference system I

If the application of the PRIMAL GRAMMAR rule suc-
ceeds, we generate new lemmas, add them to the set of con-
jectures, and repeat the process. If PRIMAL GRAMMAR fails,
we iterate the process with the current set of conjectures.

Figure 2: Strategy for applying inference rules

Proposition 13. Let E = {c0, c1, c2, . . .} be a primitive re-
cursive set of clauses produced by the inference system I. The
sufficient length p of a prefix Ep = {c0, . . . , cp−1} to produce
a primal grammar GE schematizing E is 3.

Remark. The inference process can generate multiple inde-
pendent divergent sequences. In Proposition 13, the length p
of a prefix Ep is, of course, associated with the length of the
dependent divergent sequence {c0, . . . , cp−1}.

We always consider fair derivations in this paper. Fairness
roughly means that every clause in the set of conjectures E
will be eventually modified by some inference rule. More
formally, a derivation (E0, H0, · · ·) ⊢ (E1, H1, · · ·) ⊢ · · · is
fair if either it ends by the application of DISPROOF or the set
of persisting clauses (

⋃
i

⋂
j≥i Ej) is empty.

Our inference system I is sound and refutationally com-
plete.

Theorem 14 (Soudness). Let R be a ground con-
vergent rewrite system and let (E0, ∅, ∅, [], ∅, false) ⊢
(E1, H1, G1, T1, S1, B1) ⊢ · · · be a fair derivation that does
not end by the application of DISPROOF. Then the conjec-
tures in E are valid in the initial model of R.

Theorem 15 (Refutational Completeness). Let R be a
ground convergent rewrite system which is strongly complete
over free constructors. If R ̸|= E, then all fair derivations
issued from (E, ∅, ∅, [], ∅, false) terminate by the application
of DISPROOF.

8 Computer Experiments
Our method has been implemented in C++ with over 6000 lines
of code and successfully proved automatically over fifty com-
plex examples, including all the examples given in [Walsh,
1996], together with those left unresolved in that paper. These
examples are the cornerstone for measuring the performance
of a system dealing with divergent inductive proofs. These
examples cannot be proved automatically with well-known
theorem provers (e.g., ACL2, Isabelle, PVS, SPIKE, RRL,
LEAN, Vampire) and related methods for handling diver-
gence in proofs by induction. The systems performance of
our prototype is highly dependent on the efficiency of the Pri-
mal Grammar part. In cases where only one divergent se-
quence is encountered for each application of Primal Gram-
mar, the running time is always below 10ms, and usually
around 5ms. If multiple divergent sequences are encountered
simultaneously, the execution time may vary from 0.045s to
18.645s. A fairly complex example proving the correctness of
insert sort, with numerous divergent sequences, requires 207
proof cycles (according to Figure 2), produces 33 lemmas,
and runs in 6.05 seconds. The example taking the longest
time, proving (x ∗ y)z = xz ∗ yz , requires 56 proof cycles
and runs in 18.645s. The mean execution time of all the ex-
amples is 0.62s and the standard deviation is 2.74s. All times
are measured on a Dell Precision 3630 Tower with Intel Core
i7-9700× 8 processor and 16GB memory, running under Fe-
dora Linux 39. These examples can be found at the github
page https://github.com/BouhoulaHermann/IJCAI-2024.

Let us now observe how an inductive proof proceeds when
it needs to construct and use primal grammars.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3266

https://github.com/BouhoulaHermann/IJCAI-2024

Example 16. Consider the rewrite system

x+ 0→ x; x+ s(y)→ s(x+ y);

x ∗ 0→ 0; x ∗ s(y)→ (x ∗ y) + x.

of natural numbers with addition + and multiplication ∗, and
the conjecture s(x)∗y = y+(x∗y). Despite the very simple
specification, this proof triggers considerable complications
with a tripple divergence and cannot be proved by other the-
orem provers.

Only y is an induction variable in the conjecture. Its test set
is composed of the terms 0 and s(x). The instantiation of y
by 0 leads to a tautology. The inference system encounters
first the divergent sequence of equations

s((y + (x ∗ y)) + x) = s(y) + ((x ∗ y) + x),
s((s(y) + ((x ∗ y) + x)) + x) =

s2(y) + (((x ∗ y) + x) + x),
s((s2(y) + (((x ∗ y) + x) + x)) + x) =

s3(y) + ((((x ∗ y) + x) + x) + x)

out of which it constructs a primal grammar with the Pres-
burger system

f̂0(0; y)→ y, f̂0(n0 + 1; y)→ s(f̂0(n0; y)),

f̂1(0;x, y)→ x ∗ y, f̂1(n1 + 1;x, y)→ f̂1(n1;x, y) + x

and the lemma

s((f̂0(n; y) + f̂1(n;x, y)) + x) =

s(f̂0(n; y)) + (f̂1(n;x, y) + x).

This lemma is then used to subsume the clause
s((s3(y) + ((((x ∗ y) + x) + x) + x)) + x) =

s4(y) + (((((x ∗ y) + x) + x) + x) + x).

modulo the Presburger rewrite system using the counter sub-
stitution n ← 3. The inference system encounters then an-
other divergent sequence of equations

s(s2(0 + y) + y) = s2(0) + (s(0 + y) + y)

s(s3(0 + y) + y) = s2(0) + (s2(0 + y) + y)

s(s4(0 + y) + y) = s2(0) + (s3(0 + y) + y)

out of which it constructs a primal grammar with the Pres-
burger system

f̂3(0; y)→ 0 + y, f̂3(n+ 1; y)→ s(f̂3(n; y))

and the lemma

s(s2(f̂3(n; y)) + y) = s2(0) + (s(f̂3(n; y)) + y).

This lemma is then used to subsume the clause

s(s5(0 + y) + y) = s2(0) + (s4(0 + y) + y)

with the counter substitution n ← 3. The inference system
encounters yet another divergent sequence of equations

s(s(s2(0) + (s(0 + y) + y)) + y) =
s3(0) + ((s2(0) + ((0 + y) + y)) + y),

s(s2(s2(0) + (s2(0 + y) + y)) + y) =
s3(0) + (s(s2(0) + (s(0 + y) + y)) + y),

s(s3(s2(0) + (s3(0 + y) + y)) + y) =
s3(0) + (s2(s2(0) + (s2(0 + y) + y)) + y),

out of which it constructs a primal grammar with the Pres-
burger system

f̂4(0, k; y)→ s2(0) + (s(f̂3(k; y)) + y),

f̂4(n+ 1, k; y)→ s(f̂4(n, k + 1; y)),

f̂5(0, k; y)→ s2(0) + (f̂3(k; y) + y),

f̂5(n+ 1, k; y)→ s(f̂5(n, k + 1; y)),

and the lemma

s(s(f̂4(n, 0; y)) + y) = s3(0) + (f̂5(n, 0; y) + y).

This lemma is then used to subsume the clause

s(s4(s2(0) + (s(s3(0 + y)) + y)) + y) =
s3(0) + (s3(s2(0) + (s3(0 + y) + y)) + y)

with the counter substitution n ← 3. After this third sub-
sumption there remain no conjectures in the inference system
and the proof terminates with success.

Similarly, if we try to prove the conjecture s(x) + x =
s(x + x), the proof diverges and our system produces, after
four cycles, a primal grammar with the Presburger system

f̂0(0;x)→ x, f̂0(n0 + 1;x)→ s(f̂0(n0;x)),

f̂1(0;x)→ x+ x, f̂1(n1 + 1;x)→ s(f̂1(n1;x)),

and the lemma s(s(f̂0(n;x))) + x = s(s(f̂1(n;x))) that al-
lows breaking the divergence and finishing the proof.

Note that there is no solution in [Walsh, 1996] for finish-
ing the proof of the first conjecture and two supplementary
lemmas are necessary to prove the second one.

9 Concluding Remarks
We presented a new method that allows to perform induc-
tive proofs in conditional theories which automatically de-
tects divergence of proof traces and derives primal grammars
together with new lemmas that schematize the divergent se-
quences and thus, allow breaking the divergence and finish-
ing the proof. The main advantages of our method compared
to previous methods are: (i) it is completely automatic, i.e.,
no interaction with the user, (ii) it preserves refutational com-
pleteness. Refutational completeness is particularly useful for
detecting flaws in critical systems, and (iii) there is no risk of
over-generalization.

Our method has been implemented in C++ and successfully
proved several dozens of complex examples that fail with
well-known theorem provers and related methods for captur-
ing and schematizing divergence for proof by induction.

This research represents a significant advancement in au-
tomated reasoning as it can be integrated with existing au-
tomated and interactive proof systems to improve their per-
formance. Moreover, computer experiments show that our
method is very promising and can significantly reduce the
time needed to verify critical systems.

We plan to generalize our method to automated theorem
proving in membership equational logic [Bouhoula et al.,
2000; Bouhoula and Jouannaud, 2001], as well as in higher-
order logic [Nipkow et al., 2002].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3267

References
[Aubin, 1976] Raymond Aubin. Mechanizing structural in-

duction. PhD thesis, University of Edinburgh, UK, 1976.
[Baader and Nipkow, 1998] Franz Baader and Tobias Nip-

kow. Term rewriting and all that. Cambridge University
Press, 1998.

[Basin and Walsh, 1992] David A. Basin and Toby Walsh.
Difference matching. In D. Kapur, editor, Proceedings
11th International Conference on Automated Deduction
(CADE 1992), Saratoga Springs (New York, USA), volume
607 of Lecture Notes in Computer Science, pages 295–
309. Springer, June 1992.

[Basin and Walsh, 1993] David A. Basin and Toby Walsh.
Difference unification. In Ružena Bajcsy, editor, Proceed-
ings 13th International Joint Conference on Artificial In-
telligence (IJCAI 1993), Chambéry (France), pages 116–
122. Morgan Kaufmann, 1993.

[Bouhoula and Jouannaud, 1997] Adel Bouhoula and Jean-
Pierre Jouannaud. Automata-driven automated induction.
In Proceedings 12th Annual IEEE Symposium on Logic in
Computer Science (LICS 1997), Warsaw (Poland), pages
14–25. IEEE Computer Society, 1997.

[Bouhoula and Jouannaud, 2001] Adel Bouhoula and Jean-
Pierre Jouannaud. Automata-driven automated induction.
Information and Computation, 169(1):1–22, 2001. A pre-
liminary version was published in [Bouhoula and Jouan-
naud, 1997].

[Bouhoula and Rusinowitch, 1993] Adel Bouhoula and
Michaël Rusinowitch. Automatic case analysis in proof
by induction. In Ružena Bajcsy, editor, Proceedings 13th
International Joint Conference on Artificial Intelligence
(IJCAI 1993), Chambéry (France), pages 88—-94.
Morgan Kaufmann, 1993.

[Bouhoula et al., 1995] Adel Bouhoula, Emmanuel
Kounalis, and Michaël Rusinowitch. Automated math-
ematical induction. Journal of Logic and Computation,
5(5):631–668, 1995.

[Bouhoula et al., 2000] Adel Bouhoula, Jean-Pierre Jouan-
naud, and José Meseguer. Specification and proof in mem-
bership equational logic. Theoretical Computer Science,
236(1-2):35–132, 2000.

[Bouhoula, 1997] Adel Bouhoula. Automated theorem prov-
ing by test set induction. Journal of Symbolic Computa-
tion, 23(1):47–77, 1997.

[Bouhoula, 2000] Adel Bouhoula. Simultaneous checking
of completeness and ground confluence. In Proceedings
15th IEEE International Conference on Automated Soft-
ware Engineering, (ASE 2000), Grenoble (France), pages
143–151. IEEE Computer Society, 2000.

[Bouhoula, 2009] Adel Bouhoula. Simultaneous checking of
completeness and ground confluence for algebraic spec-
ifications. ACM Transactions on Computational Logic,
10(3):20:1–20:33, 2009. A preliminary version was pub-
lished in [Bouhoula, 2000].

[Boyer and Moore, 1979] Robert S. Boyer and J Strother
Moore. A computational logic handbook, volume 23 of
Perspectives in computing. Academic Press, 1979.

[Bundy et al., 1993] Alan Bundy, Andrew Stevens, Frank
van Harmelen, Andrew Ireland, and Alan Smaill. Rip-
pling: A heuristic for guiding inductive proofs. Artificial
Intelligence, 62(2):185–253, 1993.

[Chen et al., 1990] Hong Chen, Jieh Hsiang, and Hwa-
Chung Kong. On finite representations of infinite se-
quences of terms. In Stéphane Kaplan and Mitsuhiro
Okada, editors, Proceedings 2nd International Work-
shop on Conditional and Typed Rewriting Systems (CTRS
1990), Montreal (Canada), volume 516 of Lecture Notes
in Computer Science, pages 100–114. Springer, 1990.

[Comon, 1995] Hubert Comon. On unification of terms
with integer exponents. Mathematical Systems Theory,
28(1):67–88, 1995.

[de Moura and Ullrich, 2021] Leonardo de Moura and Se-
bastian Ullrich. The Lean 4 theorem prover and program-
ming language. In André Platzer and Geoff Sutcliffe, ed-
itors, Proceedings 28th International Conference on Au-
tomated Deduction (CADE 2021), Virtual Event, volume
12699 of Lecture Notes in Computer Science, pages 625–
635. Springer, 2021.

[Dershowitz and Jouannaud, 1991] Nachum Dershowitz and
Jean-Pierre Jouannaud. Notations for rewting. Bulletin of
EATCS, 43:162–174, 1991.

[Hajdú et al., 2020] Márton Hajdú, Petra Hozzová, Laura
Kovács, Johannes Schoisswohl, and Andrei Voronkov. In-
duction with generalization in superposition reasoning.
In Christoph Benzmüller and Bruce R. Miller, editors,
Proceedings 13th International Conference on Intelligent
Computer Mathematics (CICM 2020), Bertinoro (Italy),
volume 12236 of Lecture Notes in Computer Science,
pages 123–137. Springer, 2020.

[Hermann and Galbavý, 1997] Miki Hermann and Roman
Galbavý. Unification of infinite sets of terms schema-
tized by primal grammars. Theoretical Computer Science,
176(1-2):111–158, 1997.

[Hozzová et al., 2021] Petra Hozzová, Laura Kovács, and
Andrei Voronkov. Integer induction in saturation. In André
Platzer and Geoff Sutcliffe, editors, Proceedings 28th In-
ternational Conference on Automated Deduction (CADE
2021), Virtual Event, volume 12699 of Lecture Notes in
Computer Science, pages 361–377. Springer, 2021.

[Ireland and Bundy, 1996] Andrew Ireland and Alan Bundy.
Extensions to a generalization critic for inductive proof.
In Michael A. McRobbie and John K. Slaney, editors, Pro-
ceedings 13th International Conference on Automated De-
duction (CADE-13), New Brunswick (New Jersey, USA),
volume 1104 of Lecture Notes in Computer Science, pages
47–61. Springer, 1996.

[Kapur and Subramaniam, 1996] Deepak Kapur and Ma-
hadevan Subramaniam. Lemma discovery in automated
induction. In Michael A. McRobbie and John K. Slaney,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3268

editors, Proceedings 13th International Conference on Au-
tomated Deduction (CADE-13), New Brunswick (New Jer-
sey, USA), volume 1104 of Lecture Notes in Computer Sci-
ence, pages 538–552. Springer, 1996.

[Kapur and Zhang, 1995] Deepak Kapur and Hantao Zhang.
An overview of rewrite rule laboratory (RRL). Computers
& Mathematics with Applications, 29(2):91–114, 1995.

[Kaufmann et al., 2000] Matt Kaufmann, Panagiotis Mano-
lios, and J. Strother Moore, editors. Computer-Aided Rea-
soning: ACL2 Case Studies. Kluwer Academic Publishers,
June 2000.

[Nipkow et al., 2002] Tobias Nipkow, Lawrence C. Paulson,
and Markus Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer, 2002.

[Rushby et al., 1998] John M. Rushby, Sam Owre, and
Natarajan Shankar. Subtypes for specifications: Predicate
subtyping in PVS. IEEE Transactions on Software Engi-
neering, 24(9):709–720, 1998.

[Salzer, 1992] Gernot Salzer. The unification of infinite sets
of terms and its applications. In Andrei Voronkov, editor,
Proceedings 3rd International Conference on Logic Pro-
gramming and Automated Reasoning (LPAR 1992), St. Pe-
tersburg (Russia), volume 624 of Lecture Notes in Com-
puter Science, pages 409–420. Springer, 1992.

[Urso and Kounalis, 2004] Pascal Urso and Emmanuel
Kounalis. Sound generalizations in mathematical induc-
tion. Theoretical Computer Science, 323(1-3):443–471,
2004.

[Walsh, 1996] Toby Walsh. Divergence critic for inductive
proofs. Journal of Artificial Intelligence Research, 4:209–
235, 1996.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3269

	Introduction
	Related Work
	Preliminaries
	Capturing Divergence
	Constructing a Primal Grammar
	Inductive Positions, Induction Variables, and Test Sets
	Induction Variables
	Test Sets

	Inference System for Proofs by Induction
	Computer Experiments
	Concluding Remarks

