
AMO-aware Aggregates in Answer Set Programming

Mario Alviano , Carmine Dodaro , Salvatore Fiorentino and Marco Maratea
Department of Mathematics and Computer Science, University of Calabria, Italy

{mario.alviano, carmine.dodaro, marco.maratea}@unical.it, fiorentinosalvatore65@gmail.com

Abstract

Aggregates such as sum and count are among
the most frequently used linguistic extensions
of Answer Set Programming (ASP). At-most-one
(AMO) constraints are a specific form of aggre-
gates that excludes the simultaneous truth of mul-
tiple elements in a set. This article unleashes a
powerful propagation strategy in case groups of el-
ements in an aggregate are also involved in AMO
constraints. In fact, the combined knowledge given
by aggregates and AMO constraints significantly
increases the effectiveness of search space pruning,
resulting in sensible performance gains.

1 Introduction
Answer Set Programming (ASP) is a widely adopted formal-
ism for knowledge representation and automated reasoning
[Marek and Truszczyński, 1999; Niemelä, 1999]. In ASP,
combinatorial problems are expressed in terms of logic rules
comprising several linguistic constructs designed to ease the
representation of complex knowledge. Solutions of the rep-
resented problem are provided in the form of stable models
[Gelfond and Lifschitz, 1990], that is, classical models satis-
fying an additional stability condition: once the interpretation
of the negative literals is fixed according to the model, all the
knowledge encoded in the model is required to satisfy the re-
duced program.

In their simplest form, ASP programs comprise normal
rules, each normal rule having a head atom and a body being
a conjunction of literals. Intuitively, a head atom is required
to be true whenever the associated body is true, so that sta-
ble models are classical models of the propositional knowl-
edge base obtained by mapping normal rules to implications
(body implies head). The stability condition also enforces
other properties of stable models, such as being supported
models (every true atom is the head of some rule with true
body) [Fages, 1994] and unfounded-free models (the sup-
port is acyclic) [Dung, 1992]. All such properties are used to
achieve efficient computation by combining a conflict-driven
clause learning (CDCL) algorithm [Gebser et al., 2012] with
propagators. CDCL is a modern form of non-chronological
backtracking based on the pattern choose-propagate-learn

[Marques-Silva et al., 2021]: a branching literal is heuris-
tically chosen and propagated to infer deterministic conse-
quences, where possible, and each inferred literal is associ-
ated with a reason being a clause (i.e., a set of literals, one of
which is required to be true) among those associated with a
propagator. Reasons are used to learn new clauses in case of
conflict, so to effectively prune the search space.

Frequently, normal programs are extended by allowing
the use of aggregates [Bartholomew et al., 2011; Faber
et al., 2011b; Ferraris, 2011; Gelfond and Zhang, 2014;
Liu et al., 2010; Simons et al., 2002], in particular SUMs,
in rule bodies. In a SUM, Boolean literals are associated with
weights, and the sum of the weights of true literals is required
to satisfy a given (in)equality. For example, the inequality

1 · x+ 2 · y + 2 · z ≥ 3 (1)

(which is satisfied if z = 1 and either x = 1 or y = 1,
or x = y = 1 hold) can be enforced by a SUM constraint.
There is no general agreement on the stable model semantics
of programs extended with arbitrary SUMs [Alviano et al.,
2023], but anyhow the results presented in this work apply
to the computation of models rather than stable models, and
are therefore applicable to any definition of stable model that
selects among the classical models of a given program. To
simplify the presentation, here we restrict SUMs to be con-
straints (with nonnegative weights and enforcing the sum of
weights to reach a given bound). SUM constraints include
at-most-one (AMO) constraints [Surynek, 2020] as special
cases, where an AMO essentially inhibits truth of pairs of lit-
erals in a given set.

In ASP solvers, SUM (and possibly AMO) constraints
are handled by specific propagators [Gebser et al., 2009;
Faber et al., 2011a], aiming at delaying the materialization of
clauses associated with such constraints. Roughly, the prop-
agator associated with a SUM constraint identifies a literal
as necessarily true whenever its weight is required to satisfy
the associated inequality. In (1), once z is fixed to 0 (i.e.,
atom z is assigned false), x = y = 1 is inferred (i.e., atoms
x, y are necessarily true). In case of conflict, and only in that
case, the clauses {x, z} and {y, z} (i.e., z implies x and y)
are possibly materialized if involved in the learning process.
A conflict would arise if, for example, x and y are also in-
volved in an AMO constraint, and therefore cannot be both
true. In this case, the AMO constraint provides the clause

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3215

{x, y}, which is resolved with {y, z} to obtain {x, z} and in
turn with {x, z} to obtain the learned clause {z} (i.e., z must
be true). It is important to understand that in this example
the truth of z is actually logically entailed by the SUM and
AMO constraints together (as the learned clause contains z
alone). On the other hand, the propagation provided by SUM
and AMO independently is insufficient to identify such a de-
terministic consequence, leading to a more expensive compu-
tation to learn such an implicit knowledge in the theory.

This work aims at defining a propagator capable of iden-
tifying deterministic consequences of combinations of SUM
and AMO constraints. The underlying idea is that literals sub-
ject to AMO constraints occurring in a SUM can contribute
to the sum of weights up to the largest of their weights rather
than the sum of their weights. In the example, x and y can
contribute up to 2 (rather than 1 + 2 = 3) to the sum of
weights, and therefore truth of z is required to satisfy the
inequality. The main research questions addressed by this
article are the following:

Q1. What kind of combinations of SUM and AMO con-
straints are suitable to be jointly processed by a propagator?
We identify a promising combination of one SUM constraint
and several AMO constraints. Each literal involved in the
SUM is also involved in one AMO constraint (possibly being
a trivially satisfied singleton), so to reduce the overestimate
on the sum of weights and unleash the inference potential of
the combined knowledge.

Q2. Is it possible to extend the language with a construct
to express such combinations? We provide a new linguistic
construct whose syntax extends that of SUM by allowing for
specifying a partition of the literals in the SUM, so that each
part imposes an AMO constraint.

Q3. How much performance gain can the new propagator
provide to an ASP solver? We implemented the proposed
propagator and assessed it empirically, reporting performance
gain of several orders of magnitude.

2 Preliminaries
This section reports syntax and semantics of normal programs
extended with SUM constraints (Section 2.1). Clauses and
AMO constraints are given as special cases of SUM (Sec-
tion 2.2). After that, the stable model search procedure im-
plemented by modern ASP solvers is illustrated with a focus
on the concept of propagator (Section 2.3).

2.1 Syntax and Semantics
LetA be a set of atoms. A literal is an atom possibly preceded
by the default negation symbol ∼. Given a literal ℓ, ℓ denotes
the complement of ℓ, i.e., p = ∼p and ∼p = p for all p ∈ A;
for a set L of literals, L is {ℓ | ℓ ∈ L}.

A (normal) rule has the form

p← ℓ1, . . . , ℓn (2)

where n ≥ 0, p is an atom, and ℓ1, . . . , ℓn are literals. A SUM
constraint (or simply constraint) has the form

SUM{w1 : ℓ1; · · · ; wn : ℓn} ≥ b (3)

where n ≥ 0, ℓ1, . . . , ℓn are distinct literals such
that ℓi ̸= ℓj (for all 1 ≤ i < j ≤ n),
and b, w0, . . . , wn are nonnegative integers. (We re-
mark here that in ASP-Core-2 standard [Calimeri et al.,
2020] the above constraint is written as the headless rule
:- #sum{w1, ℓ1 : ℓ1; ...; wn, ℓn : ℓn} < b.) A pro-
gram is a set of rules and constraints.
Example 1 (Running example). Let Πrun be the following:

rα : α ← ∼α′ α ∈ {x, y, z}
rα′ : α′ ← ∼α α ∈ {x, y, z}
σ1 : SUM{1 : x; 1 : y } ≥ 1
σ2 : SUM{1 : x; 2 : y; 2 : z} ≥ 3

Note that there are six atoms (x, y, z, x′, y′, z′), six rules and
two constraints.

We adopt the following notation. Atoms, rules, and con-
straints occurring in a program Π are respectively denoted
as atoms(Π), rules(Π), and constraints(Π). For a rule r
of the form (2), H(r) := p (the head atom of r), B(r) :=
{ℓ1, . . . , ℓn} (the body literals of r), B+(r) := B(r) ∩ A
(the atoms occurring in the positive body of r), and B−(r) :=

B(r) \ A (the atoms occurring in the negative body of r). For
a constraint σ of the form (3), let bndσ := b (the bound of σ
is b), whσ(ℓi) := wi (the weight of ℓi in σ is wi; for all
i ∈ [1..n]), and litsσ := {ℓ1, . . . , ℓn} (the literals occurring
in σ are ℓ1, . . . , ℓn). (If σ is clear from the context, it is pos-
sibly omitted from the above notation.) Finally, let us define
relation ∈ as (wi : ℓi) ∈ σ for i ∈ [1..n], to be read as
(wi : ℓi) is an element in (the aggregation set of) σ.
Example 2 (Continuing Example 1). Rule rx is such that
H(rx) = x, B+(rx) = ∅ and B−(rx) = {x′}. Regarding
σ2, bndσ2

= 3, wh(y) = 2, y ∈ lits , and (2 : y) ∈ σ2.
An assignment I is a set (or list) of literals such that

I ∩ I = ∅; literals in I are true, literals in I are false, and all
other literals are undefined. Abusing of notation, let I(ℓ) := 1
if ℓ ∈ I and 0 otherwise (true literals assigned to 1); let
I↑(ℓ) := 1 if ℓ /∈ I and 0 otherwise (true and undefined liter-
als assigned to 1). Moreover, in the subsequent sections, we
will iteratively construct an assignment by using a list and oc-
casionally consider its prefixes (i.e., assignments obtained in
previous iterations). I is a (total) interpretation of a program
Π if I ∪ I = atoms(Π) ∪ atoms(Π). For total interpreta-
tions, relation |= (is model of) is inductively defined as fol-
lows: for a literal ℓ, I |= ℓ if ℓ ∈ I; for a rule r of the form (2),
I |= B(r) if I |= ℓ for all ℓ ∈ B(r), and I |= r if I |= H(r)
whenever I |= B(r); for a constraint σ of the form (3), I |= σ
if
∑n

i=1 wi · I(ℓi) ≥ bndσ; for a program Π, I |= Π if I |= r
for all r ∈ rules(Π) and I |= σ for all σ ∈ constraints(Π).
The reduct ΠI of a program Π with respect to an interpreta-
tion I is {H(r) ← B+(r) | r ∈ rules(Π), I |= r}. (Note
that constraints(ΠI) = ∅.) An interpretation I is a stable
model of a program Π if I |= Π and there is no J ⊂ I such
that J |= ΠI . Let SM (Π) denote the set of stable models of
Π.
Example 3 (Continuing Example 1). We first observe that,
in all stable models of Πrun , α′ is true whenever α is false,
and vice versa (∀α ∈ {x, y, z}). SM (Πrun) contains {x, y},

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3216

{z}, and their supersets (negative literals and prime atoms
are omitted for simplicity).

2.2 Clauses and AMO as a Special Cases
Given a set {ℓ1, . . . , ℓn} of n ≥ 0 literals, an at-least-one
(ALO) constraint enforces truth of at least one literal in the
set. It is also commonly referred to as clause, and can be
expressed as the following SUM constraint:

SUM{1 : ℓ1; · · · ; 1 : ℓn} ≥ 1 (4)

Clause (4) is also written as {ℓ1, . . . , ℓn} (if not ambiguous).
Given a set {ℓ1, . . . , ℓn} of n ≥ 1 literals, an AMO con-

straint inhibits truth of pairs of literals in the set. It can be
expressed as the following SUM constraint:

SUM{1 : ℓ1; · · · ; 1 : ℓn} ≥ n− 1 (5)

Essentially, it equivalently asks for falsifying all but possibly
one literal in the set. In fact, given an interpretation I , I |= (5)
if
∑n

i=1 I(ℓi) ≥ n− 1, or equivalently
∑n

i=1 I(ℓi) ≤ 1. The
AMO constraint (5) is compactly written AMO{ℓ1, . . . , ℓn}.
Example 4 (Continuing Example 1). Note that σ1 is the
clause {x, y}, or also the AMO constraint AMO{x, y}.

2.3 Stable Model Search and Propagators
Stable model search is implemented in modern ASP solvers
using a conflict-driven clause learning (CDCL) algorithm
[Gebser et al., 2012]. This algorithm relies on the pattern
choose-propagate-learn. In a nutshell, the approach involves
incrementally constructing a stable model, starting with an
empty list I (representing the empty assignment). During
each computational step, a branching literal is heuristically
chosen for addition to I . Subsequently, it is propagated to
introduce new deterministic consequences to I , where possi-
ble. Each deterministic consequence ℓ incorporated into I is
associated with a reason being the clause comprising ℓ and
the false literals leading to the inclusion of ℓ in I . A con-
flict arises if the complement of a deterministic consequence
is already in I , and its analysis leads to learn new clauses via
(backward) resolution starting from the reasons of the con-
flicting literals. (Recall that resolution combines two clauses
{p}∪L and {p}∪L′ to obtain a new clause L∪L′, where p is
an atom, and L,L′ are sets of literals.) During backward reso-
lution, previously added literals are removed from I until the
learned clause results in the inclusion of a new deterministic
consequence, driving the search into a different branch. This
iterative process continues until either I represents a stable
model or the empty clause is learned. The latter means that
the input program does not admit stable models.

A propagator is a module designed to compute determin-
istic consequences of a given assignment. The most basic
among these modules is unit propagation: a literal ℓ is added
to I if there is a clause {ℓ} ∪ L such that L ⊆ I , that is, if ℓ
belongs to a clause that can be satisfied only by extending I
with ℓ. In this case, reason(ℓ) is defined as {ℓ} ∪ L. Modern
ASP solvers enrich the input program with clauses enforcing
I to be a model of rules of the form (2) (i.e., {p, ℓ1, . . . , ℓn}),
as well as clauses enforcing other required properties of sta-
ble models (which are out of the scope of this article).

Example 5. Let Π have, among others, the rules

x← ∼z y ← ∼z w ← x, y

Hence, a modern ASP solver materializes the clauses

{x, z} {y, z} {w, x, y}

If the current assignment I is the list [w], and z is selected as
the branching literal, I is updated to [w, z], and unit propa-
gation infers x, y from the first two clauses, and then y (a con-
flict) from the third clause. Hence, we have I = [w, z, x, y, y],
reason(x) = {x, z}, reason(y) = {y, z}, and reason(y) =
{w, x, y}. By resolving reason(y) and reason(y), we ob-
tain {w, x, z}, which still contains more than one atom in-
ferred from the branching point (namely, x and z). By re-
solving {w, x, z} and reason(x), we obtain {w, z}, which
contains only one atom inferred from the branching point
(namely, z). CDCL therefore continues with I = [w, z] and
reason(z) = {w, z}.

For a SUM constraint σ of the form (3), solvers typically
employ a specific aggregate propagator [Gebser et al., 2009;
Faber et al., 2011a], which essentially adds to I the literal ℓi
(i ∈ [1..n]) if ℓi is required to (possibly) reach the bound b,
i.e., if ∑

j∈[1..n],j ̸=i

wj · J↑(ℓj) < b (6)

where J is the first prefix of I meeting the above condition.
In this case, reason(ℓi) is {ℓi} ∪ (litsσ ∩ J), that is, the false
literals occurring in σ are enforcing truth of ℓi. In the special
case of (5), that is, if σ is AMO{ℓ1, . . . , ℓn}, the literal ℓi
(i ∈ [1..n]) is added to I if there is ℓj , with j ̸= i, such that
ℓj ∈ I . In this case, reason(ℓi) is {ℓi, ℓj}.
Example 6 (Continuing Example 1). If I is empty, no literal
can be inferred from σ1 and σ2. If I is [z], then the applica-
tion of (6) to the literals of σ2 gives

2 · [z]↑(y) + 2 · [z]↑(z) = 2 · 1 + 2 · 0 = 2 < 3

1 · [z]↑(x) + 2 · [z]↑(z) = 1 · 1 + 2 · 0 = 1 < 3

1 · [z]↑(x) + 2 · [z]↑(y) = 1 · 1 + 2 · 1 = 3 ̸< 3

Hence, x and y are inferred with reason(x) = {x, z} and
reason(y) = {y, z}. Note that, once I = [z, x, y], the appli-
cation of (6) to σ1 gives

1 · [z, x, y]↑(y) = 1 · 0 = 0 < 1

1 · [z, x, y]↑(x) = 1 · 0 = 0 < 1

Therefore, a conflict is raised, say because y (or similarly x)
is added to I with reason(y) = {x, y}.

3 AMOSUM Constraints
In this section, SUM constraints of the form (3) are replaced
by the more general AMOSUM constraints (Section 3.1). An
AMOSUM constraint combines one SUM constraint with a
set of AMO constraints, in a convenient syntax that also re-
sults into a more effective propagator (Section 3.2), as for-
mally proved in Section 3.3.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3217

3.1 Syntax and Semantics
An AMOSUM constraint (or simply constraint from this
point) σ has the form

AMOSUM{w1 : ℓ1 [s1]; · · · ; wn : ℓn [sn]} ≥ b (7)

where n ≥ 0, ℓ1, . . . , ℓn are distinct literals such that ℓi ̸= ℓj
(for all 1 ≤ i < j ≤ n), and b, w0, . . . , wn, s1, . . . , sn are
nonnegative integers. The notation introduced in Section 2.1
is further extended as follows: partsσ := {s1, . . . , sn} (the
literals in σ are partitioned into at most n parts s1, . . . , sn),
partσ(ℓi) := si (the part of ℓi in σ is si, for all i ∈ [1..n]),
and litsσ|s := {ℓ | partσ(ℓ) = s} (the literals in σ belonging
to the part s). Moreover, relation ∈ is now defined as (wi :
ℓi [si]) ∈ σ for all i ∈ [1..n]. Regarding relation is model
of, for σ of the form (7), I |= σ if

∑n
i=1 wi · I(ℓi) ≥ bndσ ,

and
∑

ℓ∈litsσ(s)
I(ℓ) ≤ 1 for all s ∈ partsσ . Essentially, the

definition for (3) is extended by enforcing an AMO constraint
on each part of σ.
Example 7 (Continuing Example 1). Πrun is rewritten by
replacing σ1 and σ2 with

σ3 : AMOSUM{1 : x [1]; 2 : y [1]; 2 : z [2]} ≥ 3

Note that partsσ3
= {1, 2}, partσ3

(x) = partσ3
(y) = 1,

partσ3
(z) = 2, litsσ3 |1 = {x, y}, and litsσ3 |2 = {z}.

3.2 Propagation
A constraint σ of the form (7) is associated with three differ-
ent inference rules. First of all, the AMO inference given
by the parts of σ: the literal ℓ is added to I if there is
ℓ′ ∈ litsσ|partσ(ℓ) such that ℓ′ ∈ I . In this case, reason(ℓ) is
{ℓ, ℓ′}. The second inference rule is the analogous of the one
provided by the aggregate propagator (a literal is inferred true
if it is required to reach the bound): the literal ℓ is added to I
if J is the first prefix of I such that litsσ|partσ(ℓ) \ J = {ℓ}
(ℓ is the last undefined literal in its part), and∑

s∈partsσ\{partσ(ℓ)}

mwhσ(J, s) < bndσ (8)

where mwhσ(J, s) := max{w · J↑(ℓ) | (w : ℓ [s]) ∈ σ} is
the maximum weight that part s can contribute to the overall
sum. In this case, reason(ℓ) is

litsσ|partσ(ℓ) ∪
⋃

s∈partsσ\{partσ(ℓ)}

rsnσ(J, ℓ, s), (9)

where rsnσ(J, ℓ, s) := {ℓ′} if ℓ′ ∈ litsσ|s ∩ J (i.e., a true
literal in the part of ℓ), and {ℓ′ ∈ litsσ|s | whσ(ℓ

′) >
mwhσ(s)} otherwise (i.e., the false literals in the part of ℓ
that could had increased the overall sum). The third inference
rule has no counterpart in AMO or SUM constraints, and en-
forces falsity of literals in a part whose weight is guaranteed
to be insufficient to reach the bound: the literal ℓ is added to
I if J is the first prefix of I such that

whσ(ℓ) +
∑

s∈partsσ\{partσ(ℓ)}

mwhσ(J, s) < bndσ (10)

In this case, reason(ℓ) is

{ℓ} ∪
⋃

s∈partsσ\{partσ(ℓ)}

rsnσ(J, ℓ, s). (11)

Example 8 (Continuing Example 7). Already when I is
empty, σ3 infers z. In fact, z is the last undefined literal in
part 2, and (8) gives

max{1 · []↑(x), 2 · []↑(y)} = max{1 · 1, 2 · 1} = 2 < 3

From (9), reason(z) = {z}.
Example 9. Let us consider the following constraint:

σ4 : AMOSUM{1 : x [1]; 2 : y [1]; 2 : z [2]; 3 : w [2]} ≥ 3

If I = [w], the second inference rule associated with σ4 in-
fers z with reason(z) = {z, w}. The same holds if I =
[x,w], with the addition of y with reason(y) = {y, x, w};
note that w is included in reason(y) because it could in-
crease the overall sum. On the other hand, if I = [y, w],
then x and z are inferred with reason(x) = {x, y, w} and
reason(z) = {z, w, y}; note that y is included in reason(z)
because it could increase the overall sum (in this specific case
y could be ignored, but it is not clear how to efficiently detect
such conditions in general). Finally, if I = [x, y, w], then z
is inferred with reason(z) = {z, w, x}; in this case, x is in-
cluded because it enforces a value for part 1 (again, in this
specific case it could be ignored).

Example 10. Let us consider the following constraint:

σ5 : AMOSUM{1 : x [1]; 2 : y [1]; 2 : z [2]; 2 : w [2]} ≥ 4

For I = [], the third inference rule of σ5 infers x thanks to
the application of (10):

1 + max{2 · []↑(z), 2 · []↑(w)} = 1 + 2 = 3 < 4

In this case, reason(x) = {x}. After that, note that the
second inference rule is applicable, and y is inferred with
reason(y) = {x, y}.

3.3 Properties
Semantically, it is clear that AMOSUM constraints do not
extend the capabilities of the language. In fact, an AMOSUM
σ constraint of the form (7) can be expressed in terms of (no
more than n+ 1) SUM constraints (by design):

SUM{w1 : ℓ1; · · · ; wn : ℓn} ≥ b

AMO{litsσ|si} ∀i ∈ [1..n]

On the other hand, it is also true that AMOSUM constraints
immediately subsume SUM (and AMO) constraints.

Theorem 1. Every SUM constraint can be expressed by an
AMOSUM constraint.

Proof. Let σ be a SUM constraint of the form (3). Construct
the following AMOSUM constraint σ′:

AMOSUM{w1 : ℓ1 [1]; · · · ; wn : ℓn [n]} ≥ b

Note that each part s ∈ partsσ′ is a singleton, and therefore
trivially satisfies

∑
ℓ∈litsσ′ (s) I(ℓ) ≤ 1. Hence, I |= σ if and

only if I |= σ′, for every interpretation I .

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3218

The real advantage gained by extending the language with
AMOSUM constraints is in the associated inference rules, in
particular the second and the third rules (while the first in-
ference rule does not add anything to what can be inferred
by AMO constraints). It can be shown that the second infer-
ence rule alone is sufficient to capture all deterministic con-
sequences that can be identified by SUM constraints, and ac-
tually can result in a larger set of inferred literals.

Theorem 2. Let σ be the AMOSUM constraint of the form
(7), σ′ be the SUM constraint of the form (3), and I be an as-
signment. Let L be the set of literals identified by the second
inference rule associated with σ, and L′ be the set of literals
inferred by σ′. Hence, L ⊇ L′ holds, while L′ ⊇ L is not
guaranteed.

Proof. Let ℓi be inferred by σ′ (for some i ∈ [1..n]), and let
S := partsσ \ {si}. By definition, (6) holds. Hence∑

s∈S

mwhσ(J, s) =
∑
s∈S

max
(w:ℓ [s])∈σ

w · J↑(ℓ)

≤
∑

j∈[1..n],j ̸=i

wj · J↑(ℓj) < b

and (8) holds as well, proving L ⊇ L′. A witness of L′ ̸⊇ L
is given in Example 8.

Moreover, it is relatively easy to observe that the third in-
ference rule identifies deterministic consequences that are not
computed by AMO and SUM constraints. In fact, AMO con-
straints deal with simple binary inferences, and SUM con-
straints only infer true literals in their aggregation set (while
the third inference rule identifies false literals in the AMO-
SUM). A witness is given in Example 10.

4 Implementation and Experiments
The propagator outlined in Section 2.2 has been implemented
in the ASP solver WASP [Alviano et al., 2015] using its
Python interface [Dodaro and Ricca, 2020]. This design
choice is motivated by the intuitive interface and its seamless
integration into the solver through command line options. In
our implementation, AMOSUM constraints are represented
by facts, which are interpreted by the Python propagator.
Specifically, the representation of an AMOSUM constraint
σ of the form (7) is the following:

group(ℓi, wi, si, σ)← for all i ∈ [1..n]
lb(b, σ)←

where group and lb are reserved predicates. Continuing Ex-
ample 9, σ4 is represented as follows:

group(x, 1, 1, σ4)←
group(y, 2, 1, σ4)←
group(z, 2, 2, σ4)←
group(w, 3, 2, σ4)←

lb(3, σ4)←

Moreover, as WASP already supports efficient propagators for
handling AMO constraints, the Python propagator focuses on
the other inference rules described in Section 3.2.

The implemented system, referred to as AMOWASP, was
assessed empirically against the plain version of WASP [Al-
viano et al., 2015] v. f3e4c56 and the state-of-the-art system
CLINGO v. 5.4.0 [Gebser et al., 2016]. All the tested systems
use GRINGO (included in the binary of CLINGO) as grounder.
Experiments were executed on an Intel Xeon 2.4 GHz server
with 16 GB of memory.

4.1 Benchmarks

Synthetic Benchmark (SB). Designed to empirically as-
sess the properties outlined in Section 3.3, the first benchmark
comprises a program with a rule defining the partition and an-
other one incorporating a SUM aggregate. The partition com-
prises 10 parts of uniform size part size ∈ {10, 100, 1000},
with the i-th literal of each part having weight i. The bound
of the SUM is set to α·C1 (achievable) and C1+α·(C2−C1)
(unachievable), where: α ∈ {0.15, 0.45, 0.6, 0.9}; C1 is the
sum of the maximum weight in each part, i.e., 10 · part size;
C2 is the sum of all weights, i.e., 5·part size ·(part size+1).
Hence, the benchmark comprises a total of 24 instances that
are trivial for AMOWASP (they are solved without raising any
conflict). In contrast, CLINGO and WASP cannot perform the
same inferences (see Theorem 2), and we have measured the
number of conflicts found by the two systems within the first
minute of computation.

Graph Coloring (GC). In the Graph Coloring problem, the
input consists of a graph and a set of colors, and the objective
is to assign a color to each node so that connected nodes do
not share the same color. Here, colors are also associated with
weights, and the sum of weights is required to reach a cer-
tain threshold value. Instances are generated from those em-
ployed in the ASP competition [Calimeri et al., 2016], with
the colors red, green, blue, yellow, and cyan associated with
the weights 2, 4, 8, 16, and 64 to, respectively. For each in-
stance of n nodes, the threshold is set to α · 64 · n, where
α ∈ {0.15, 0.45, 0.75}. Time and memory were limited to 20
minutes and 15 GB, respectively.

Knapsack (K). A set of item types is provided, each with
an associated weight and value. Additionally, a knapsack
capacity and a threshold are given. The objective is to de-
termine whether it is possible to select a specific number of
items from each type in such a way that the total weight re-
mains within the knapsack capacity, while ensuring that the
overall value reaches the specified threshold. Instances were
randomly generated as follows. The number n of types varies
from 10 to 55 with an increasing step of 5. The maximum
number of items that can be selected for each type is fixed
to k = 20. The average value of the items is denoted as v
and used to define two critical thresholds: C1 := n · v · k
and C2 := n · v · (k · (k + 1))/2. For each n, 10 instances
are generated, categorized as follows: (T1–T3) 3, 3 and 2 in-
stances with a threshold sampled from a uniform distribution
within the intervals [0, C1], [0, C2], and [0.1 · C1, 1.1 · C1],
respectively; (T4) 2 instances with a threshold sampled from
a normal distribution with a mean of C1 and a variance of
5000. Time and memory were limited to 20 minutes and 15
GB, respectively.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3219

15 45 60 90 16
8

30
2

37
0

50
5

0
101
102
103
104
105
106
107

C
on

fli
ct

s

part size = 10

15
0

45
0

60
0

90
0

16
80

30
20

37
00

50
50

Bound

part size = 100

CLINGO WASP

15
00

45
00

60
00

90
00

16
80

0

30
20

0

37
00

0

50
50

0

part size = 1000

Figure 1: Number of conflicts on synthetic AMOSUM constraints comprising 10 parts of varying size and bound. For each part size there
are four satisfiable instances (the first four bounds) and four unsatisfiable instances (the last four bounds). AMOWASP is not reported in the
plots because it solves all tested instances in this benchmark without raising any conflict.

0 10 20 30 40 50 60 70 80
0

200

400

600

800

1000

1200

Solved instances

E
xe

cu
tio

n
tim

e
(s

)

Graph Coloring

CLINGO
WASP

AMOWASP

0 10 20 30 40 50 60 70 80

Solved instances

Knapsack

CLINGO
WASP

AMOWASP

Figure 2: Number of solved instances (x-axis) within a time limit (y-axis) for Graph Coloring (left) and Knapsack (right).

4.2 Results

The experimental results for SB are summarized in Figure 1.
We can see that when part size is 10 or 100, CLINGO can
handle the first three instances in an efficient way, solving
them with only a few conflicts. However, this is not true
when part size is 1000. This suggests that the way in which
CLINGO makes decisions (branching heuristic) works better
for instances with SUM aggregates of small to medium size.
Moreover, as we expected, the number of conflicts is related
to the bound. Specifically, instances with the smallest and
largest bounds have fewer conflicts. This happens because
these instances are either not constrained enough or overly
constrained.

The results obtained for GC and K are summarized in Fig-
ures 2–3. As a first observation, CLINGO proves to be more
efficient than WASP in both benchmarks. As highlighted
in SB, the branching heuristic of CLINGO is more effective
than the one of WASP. However, the inferences made by
AMOWASP completely fulfil the gap related to the heuristic,
and, in fact, AMOWASP achieves the best performance. Re-

garding GC, AMOWASP successfully solves 72 instances, sur-
passing CLINGO and WASP, which solve 53 and 18 instances,
respectively. We additionally observe that the advantage of
AMOWASP is particularly evident in instances with α = 0.75,
where it outperforms CLINGO and WASP by solving 48 and
60 more instances, respectively. However, for α = 0.15
and α = 0.45, the Python implementation introduces over-
head, leading to comparatively poorer performance. As for
K, AMOWASP successfully solves 76 instances, outperform-
ing both CLINGO and WASP, which solve 48 and 12 instances,
respectively. We additionally observe that AMOWASP consis-
tently outperforms WASP across all instance categories, solv-
ing 17, 25, 13, and 9 more instances of categories T1, T2, T3,
and T4, respectively. In comparison to CLINGO, AMOWASP
exhibits slightly poorer performance on T1 instances, where
CLINGO solves one more instance. However, it demonstrates
better performance on the other instances, solving 16, 4, and
9 more T2, T3 and T4 instances, respectively.

To sum up, AMOWASP outperforms WASP thanks to the
technique presented in this paper, as AMOWASP is powered
by WASP and thus inherits all of its heuristic parameters.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3220

300 600 900 1200

300

600

900

1200

WASP

A
M

O
W

A
S

P
Graph Coloring

α = 0.15
α = 0.45
α = 0.75

300 600 900 1200
CLINGO

Graph Coloring

α = 0.15
α = 0.45
α = 0.75

300 600 900 1200

300

600

900

1200

WASP

A
M

O
W

A
S

P

Knapsack

T1
T2
T3
T4

300 600 900 1200
CLINGO

Knapsack

T1
T2
T3
T4

Figure 3: Instance-by-instance comparison on the execution time (in
seconds) required to solve Graph Coloring and Knapsack. (Timeouts
normalized to 1200 seconds.) Points below the red dashed line are
instances in which AMOWASP is faster than the compared system.

5 Related Work
In this work, AMOSUM constraints have been added to the
(propositional) language of ASP. Nonetheless, AMOSUMs
can be added to any logic-based formalism extending propo-
sitional logic, such as SMT [Nieuwenhuis et al., 2006] and
CSP [Brailsford et al., 1999]. From a computational point of
view, there are two main approaches to extend the capabili-
ties of logic-based languages, namely propagator-based and
translation-based, discussed below.

Solvers adopting the propagator-based approach imple-
ment ad-hoc algorithms for extending assignments with lit-
erals that are required to be true (Section 2.3). The way
AMOSUM constraints are handled in this work (Section 3.2)
belongs to this category. Regarding the literature, the state-
of-the-art system CLINGO [Gebser et al., 2019] implements
a hybrid approach for handling programs with aggregates
[Gebser et al., 2009]: aggregates comprising a limited num-
ber of literals are transformed into regular rules, according
to some translation-based approach, and the threshold for
the number of literals is adjustable through the command-
line interface; other aggregates, including the ones repre-
senting AMO constraints, are instead handled by the prop-
agator described in Section 2.3. A similar approach is im-
plemented also in IDP [Denecker and De Cat, 2010; Bo-
gaerts et al., 2016] and WASP [Alviano et al., 2018]. More-
over, CLINGO and WASP offer external interfaces based on
Python to define custom propagators [Cabalar et al., 2023;
Dodaro and Ricca, 2020]. The propagator defined in Sec-
tion 3.2 is powered by the Python interface of WASP.

Translation-based approaches consist of compilations of

aggregates into alternative constructs. In the context of ASP,
the similarities between aggregates and pseudo-Boolean con-
straints led to the adoption of some compilations of pseudo-
Boolean constraints into clauses [Aavani et al., 2013]. These
approaches include adder circuits and binary decision dia-
grams [Abı́o et al., 2012; Eén and Sörensson, 2006], sort-
ing networks and watchdogs [Bailleux et al., 2009]. Regard-
ing ASP solvers, many of these translations are incorporated
into LP2SAT and LP2NORMAL [Bomanson et al., 2014; Bo-
manson and Janhunen, 2013], where the first solver generates
CNF formulas, while the second produces normal rules. An-
other translation-based approach is implemented in CMOD-
ELS [Lierler and Maratea, 2004; Giunchiglia et al., 2006;
Giunchiglia et al., 2008], which maps aggregates to nested
logic programs [Ferraris and Lifschitz, 2005]. Finally, in
the specific case of AMO constraints, translation-based ap-
proaches offer various encoding options, such as pairwise
(binomial), binary (bitwise), commander, product, sequen-
tial counter, and bimander encodings (the reader is referred
to [Nguyen et al., 2020] for a recent comparison of these en-
codings). We remark here that the AMOSUM propagator in-
troduced in this article can be combined with AMO constraint
compilers, essentially by replacing the first inference rule de-
fined in Section 3.2 with the compiled clauses.

6 Conclusion
AMOSUM constraints extend the language of ASP with a
construct designed to empower search space pruning capabil-
ities of solvers, rather than the expressive power of the lan-
guage. In fact, the construct compactly represents groups of
constraints that are available in ASP with the aim of com-
bining their knowledge to detect more deterministic conse-
quences than those identified individually by the grouped
constraints. The empirical assessment of our implementation
of AMOSUM constraints confirms that their usage can pro-
vide sensible performance gains.

There are several lines of future research. First of all,
AMOSUM constraints replace specific kind of constraints,
precisely one SUM constraint with target bound and several
at-most-one constraints, and therefore it will be interesting to
search for other kinds of constraints suitable for a combined
propagator. Moreover, SUM constraints are usually normal-
ized to have a target bound, for example by flipping polarities
of literals and adjusting numbers in case the constraint im-
poses to not exceed a given bound. Such a normalization is
unnatural for AMOSUM, as flipping polarities of literals es-
sentially breaks the AMO constraints (AMO{ℓ1, . . . , ℓn} does
not imply AMO{ℓ1, . . . , ℓn}); essentially, the normalization
of a constraint of the form AMOSUM{w1 : ℓ1 [s1]; · · · ; wn :
ℓn [sn]} ≤ b would result into a SUM constraint. Another
interesting research line is therefore the generalization of
the construct introduced in this article to accommodate such
transformations. In addition, AMOSUM constraints might
improve the performance of existing encodings, especially in
the context of scheduling [Dodaro and Maratea, 2017].

Finally, we remark here that all the material required to
replicate the experiments are available at https://zenodo.org/
records/11115982 [Alviano et al., 2024].

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3221

https://zenodo.org/records/11115982
https://zenodo.org/records/11115982

Acknowledgments
This work was partially supported by Italian Ministry
of University and Research (MUR) under PRIN project
PRODE “Probabilistic declarative process mining”, CUP
H53D23003420006 under PNRR project FAIR “Future AI
Research”, CUP H23C22000860006, under PNRR project
Tech4You “Technologies for climate change adaptation and
quality of life improvement”, CUP H23C22000370006,
and under PNRR project SERICS “SEcurity and RIghts
in the CyberSpace”, CUP H73C22000880001; by Ital-
ian Ministry of Health (MSAL) under POS projects
CAL.HUB.RIA (CUP H53C22000800006) and RADIOAM-
ICA (CUP H53C22000650006); by Italian Ministry of En-
terprises and Made in Italy under project STROKE 5.0 (CUP
B29J23000430005); and by the LAIA lab (part of the SILA
labs). Mario Alviano and Carmine Dodaro are members of
the Gruppo Nazionale Calcolo Scientifico-Istituto Nazionale
di Alta Matematica (GNCS-INdAM).

References
[Aavani et al., 2013] Amir Aavani, David G. Mitchell, and

Eugenia Ternovska. New encoding for translating pseudo-
boolean constraints into SAT. In SARA. AAAI, 2013.

[Abı́o et al., 2012] Ignasi Abı́o, Robert Nieuwenhuis, Albert
Oliveras, Enric Rodrı́guez-Carbonell, and Valentin Mayer-
Eichberger. A new look at bdds for pseudo-boolean con-
straints. J. Artif. Intell. Res., 45:443–480, 2012.

[Alviano et al., 2015] Mario Alviano, Carmine Dodaro,
Nicola Leone, and Francesco Ricca. Advances in WASP.
In LPNMR, volume 9345 of LNCS, pages 40–54. Springer,
2015.

[Alviano et al., 2018] Mario Alviano, Carmine Dodaro, and
Marco Maratea. Shared aggregate sets in answer set pro-
gramming. Theory Pract. Log. Program., 18(3-4):301–
318, 2018.

[Alviano et al., 2023] Mario Alviano, Wolfgang Faber, and
Martin Gebser. Aggregate semantics for propositional
answer set programs. Theory Pract. Log. Program.,
23(1):157–194, 2023.

[Alviano et al., 2024] Mario Alviano, Carmine Dodaro, Sal-
vatore Fiorentino, and Marco Maratea. Dataset: AMO-
aware Aggregates in Answer Set Programming. DOI:
10.5281/zenodo.11115982, 2024.

[Bailleux et al., 2009] Olivier Bailleux, Yacine Boufkhad,
and Olivier Roussel. New encodings of pseudo-boolean
constraints into CNF. In SAT, volume 5584 of LNCS,
pages 181–194. Springer, 2009.

[Bartholomew et al., 2011] Michael Bartholomew,
Joohyung Lee, and Yunsong Meng. First-order se-
mantics of aggregates in answer set programming via
modified circumscription. In Logical Formalizations
of Commonsense Reasoning, AAAI Spring Symposium.
AAAI, 2011.

[Bogaerts et al., 2016] Bart Bogaerts, Joachim Jansen,
Broes De Cat, Gerda Janssens, Maurice Bruynooghe,

and Marc Denecker. Bootstrapping inference in the
IDP knowledge base system. New Gener. Comput.,
34(3):193–220, 2016.

[Bomanson and Janhunen, 2013] Jori Bomanson and Tomi
Janhunen. Normalizing cardinality rules using merging
and sorting constructions. In LPNMR, volume 8148 of
LNCS, pages 187–199. Springer, 2013.

[Bomanson et al., 2014] Jori Bomanson, Martin Gebser, and
Tomi Janhunen. Improving the normalization of weight
rules in answer set programs. In JELIA, volume 8761 of
LNCS, pages 166–180. Springer, 2014.

[Brailsford et al., 1999] Sally C. Brailsford, Chris N. Potts,
and Barbara M. Smith. Constraint satisfaction prob-
lems: Algorithms and applications. Eur. J. Oper. Res.,
119(3):557–581, 1999.

[Cabalar et al., 2023] Pedro Cabalar, Jorge Fandinno,
Torsten Schaub, and Philipp Wanko. On the semantics
of hybrid ASP systems based on clingo. Algorithms,
16(4):185, 2023.

[Calimeri et al., 2016] Francesco Calimeri, Martin Gebser,
Marco Maratea, and Francesco Ricca. Design and results
of the fifth answer set programming competition. Artif.
Intell., 231:151–181, 2016.

[Calimeri et al., 2020] Francesco Calimeri, Wolfgang Faber,
Martin Gebser, Giovambattista Ianni, Roland Kaminski,
Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. Asp-core-2 in-
put language format. Theory Pract. Log. Program.,
20(2):294–309, 2020.

[Denecker and De Cat, 2010] Marc Denecker and Broes De
Cat. Dpll(agg): An efficient smt module for aggregates. In
Logic and Search, Edinburgh, 15 July 2010, 2010.

[Dodaro and Maratea, 2017] Carmine Dodaro and Marco
Maratea. Nurse scheduling via answer set program-
ming. In LPNMR, volume 10377 of LNCS, pages 301–307.
Springer, 2017.

[Dodaro and Ricca, 2020] Carmine Dodaro and Francesco
Ricca. The external interface for extending WASP. Theory
Pract. Log. Program., 20(2):225–248, 2020.

[Dung, 1992] Phan Minh Dung. On the relations between
stable and well-founded semantics of logic programs.
Theor. Comput. Sci., 105(1):7–25, 1992.

[Eén and Sörensson, 2006] Niklas Eén and Niklas
Sörensson. Translating pseudo-boolean constraints
into SAT. J. Satisf. Boolean Model. Comput., 2(1-4):1–26,
2006.

[Faber et al., 2011a] Wolfgang Faber, Nicola Leone, Marco
Maratea, and Francesco Ricca. Look-back techniques for
ASP programs with aggregates. Fundam. Informaticae,
107(4):379–413, 2011.

[Faber et al., 2011b] Wolfgang Faber, Gerald Pfeifer, and
Nicola Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artif. Intell.,
175(1):278–298, 2011.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3222

[Fages, 1994] François Fages. Consistency of clark’s com-
pletion and existence of stable models. Methods Log.
Comput. Sci., 1(1):51–60, 1994.

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir
Lifschitz. Weight constraints as nested expressions. The-
ory Pract. Log. Program., 5(1-2):45–74, 2005.

[Ferraris, 2011] Paolo Ferraris. Logic programs with propo-
sitional connectives and aggregates. ACM Trans. Comput.
Log., 12(4):25, 2011.

[Gebser et al., 2009] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. On the implemen-
tation of weight constraint rules in conflict-driven ASP
solvers. In ICLP, volume 5649 of LNCS, pages 250–264.
Springer, 2009.

[Gebser et al., 2012] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Conflict-driven answer set solving:
From theory to practice. Artif. Intell., 187:52–89, 2012.

[Gebser et al., 2016] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Philipp Wanko. Theory solving made easy with clingo 5.
In Technical Communications of ICLP, volume 52 of OA-
SIcs, pages 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2016.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. Theory Pract. Log. Program.,
19(1):27–82, 2019.

[Gelfond and Lifschitz, 1990] Michael Gelfond and
Vladimir Lifschitz. Logic programs with classical
negation. In Logic Programming: Proc. of the Seventh
International Conference, pages 579–597, 1990.

[Gelfond and Zhang, 2014] Michael Gelfond and Yuanlin
Zhang. Vicious circle principle and logic programs with
aggregates. Theory and Practice of Logic Programming,
14(4-5):587–601, 2014.

[Giunchiglia et al., 2006] Enrico Giunchiglia, Yuliya Lier-
ler, and Marco Maratea. Answer set programming
based on propositional satisfiability. J. Autom. Reason.,
36(4):345–377, 2006.

[Giunchiglia et al., 2008] Enrico Giunchiglia, Nicola Leone,
and Marco Maratea. On the relation among answer set
solvers. Ann. Math. Artif. Intell., 53(1-4):169–204, 2008.

[Lierler and Maratea, 2004] Yuliya Lierler and Marco
Maratea. Cmodels-2: Sat-based answer set solver en-
hanced to non-tight programs. In LPNMR, volume 2923
of LNCS, pages 346–350. Springer, 2004.

[Liu et al., 2010] Lengning Liu, Enrico Pontelli, Tran Cao
Son, and Miroslaw Truszczynski. Logic programs with
abstract constraint atoms: The role of computations. Artif.
Intell., 174(3-4):295–315, 2010.

[Marek and Truszczyński, 1999] Victor Marek and
Miroslaw Truszczyński. Stable models and an alter-
native logic programming paradigm. In The Logic
Programming Paradigm: a 25-year Perspective, pages
375–398, 1999.

[Marques-Silva et al., 2021] João Marques-Silva, Inês
Lynce, and Sharad Malik. Conflict-driven clause learning
SAT solvers. In Handbook of Satisfiability, volume 336 of
FAIA, pages 133–182. IOS Press, 2021.

[Nguyen et al., 2020] Van-Hau Nguyen, Van-Quyet Nguyen,
Kyungbaek Kim, and Pedro Barahona. Empirical study on
sat-encodings of the at-most-one constraint. In SMA, pages
470–475. ACM, 2020.

[Niemelä, 1999] Ilkka Niemelä. Logic programming with
stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelli-
gence, 25(3,4):241–273, 1999.

[Nieuwenhuis et al., 2006] Robert Nieuwenhuis, Albert
Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract davis–putnam–
logemann–loveland procedure to dpll(T). J. ACM,
53(6):937–977, 2006.

[Simons et al., 2002] Patrik Simons, Ilkka Niemelä, and
Timo Soininen. Extending and implementing the stable
model semantics. Artif. Intell., 138(1-2):181–234, 2002.

[Surynek, 2020] Pavel Surynek. At-most-one constraints in
efficient representations of mutex networks. In ICTAI,
pages 170–177. IEEE, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3223

	Introduction
	Preliminaries
	Syntax and Semantics
	Clauses and AMO as a Special Cases
	Stable Model Search and Propagators

	AMOSUM Constraints
	Syntax and Semantics
	Propagation
	Properties

	Implementation and Experiments
	Benchmarks
	Results

	Related Work
	Conclusion

