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Abstract

Visual Sentiment Recognition (VSR) is an evolv-
ing field that aims to detect emotional tendencies
within visual content. Despite its growing signif-
icance, detecting emotions depicted in visual con-
tent, such as images, faces challenges, notably the
emergence of misleading or spurious correlations
of the contextual information. In response to these
challenges, we propose a causality inspired VSR
approach, called CausVSR. CausVSR is rooted in
the fundamental principles of Emotional Causality
theory, mimicking the human process from receiv-
ing emotional stimuli to deriving emotional states.
CausVSR takes a deliberate stride toward conquer-
ing the VSR challenges. It harnesses the power of a
structural causal model, intricately designed to en-
capsulate the dynamic causal interplay between vi-
sual content and their corresponding pseudo senti-
ment regions. This strategic approach allows for a
deep exploration of contextual information, elevat-
ing the accuracy of emotional inference. Addition-
ally, CausVSR utilizes a global category elicitation
module, strategically employed to execute front-
door adjustment techniques, effectively detecting
and handling spurious correlations. Experiments,
conducted on four widely-used datasets, demon-
strate CausVSR’s superiority in enhancing emotion
perception within VSR, surpassing existing meth-
ods.

1 Introduction

With the exponential growth of visual social media content,
Visual Sentiment Recognition (VSR) has become a criti-
cal task in human perception intelligence [You et al., 2016;
Yang et al., 2017a; Xu et al., 2020]. VSR analyzes visual
content to recognize sentiments and emotions such as joy,
sadness, anger, etc., providing personalized support by as-
sessing human emotional states through the analysis of indi-
vidual visual features [Zhao et al., 2016]. The evolution of
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VSR has transformed it into an interdisciplinary field aimed
at optimizing interactions between Artificial Intelligence (AI)
and humans. Its applications span diverse areas, including but
not limited to education support [Tongug¢ and Ozkara, 2020],
assessment of mental health [Fei er al., 2020], and protection
of the young generation [Tan et al., 2023].

Despite progress in existing methods, challenges in VSR
persist. Prevailing VSR frameworks, predominantly rely on
weakly supervised strategies [Zhou er al., 2016; Durand et
al., 2017]. These frameworks entail an initial classification,
succeeded by the generation of pseudo sentiment maps em-
ploying various methods [She et al., 2019; Zhang and Xu,
2020]. Pseudo sentiment maps play a pivotal role in emotion
perception. However, while pseudo sentiment maps provide
valuable weak supervision and enhance feature representation
during training, thus contributing to final predictions, their
generation process can be inconsistent in yielding robust fea-
tures [Zhang er al., 2023]. Factors like hidden contextual in-
formation and spurious correlation often act as confounders,
leading to misinterpretations and inaccurate predictions.

Grounded in the foundations of causal theory [Yang et
al., 2021b; Wang et al., 2021] to tackle challenges, we
build a novel VSR method named Causality inspired Visual
Sentiment Recognition (CausVSR). CausVSR is designed to
accurately predict emotions within visual content by empha-
sizing the causal relationships between emotional stimuli and
the most emotionally evocative regions, effectively counter-
ing the challenges stemming from confounders. Our pro-
posed method seeks to replicate the psychological concept
of “Emotional Causality” [Coégnarts and Kravanja, 2016;
Mittal et al., 2021]. This involves intricately embedding
the sequence of human emotions evoked when perceiving
visual content, such as images, into an emotional chain en-
compassing “External Events”, “Emotional Perception”, and
“Emotional State”, illustrated in Figure 1(a). A detailed
description of the proposed CausVSR (see Figure 1(b)) is
provided in Section 3. To excavate the implicit contex-
tual information [Goh et al., 2019] while eliminating the
effects of the confounders in the weakly-supervised VSR,
we utilize a structural causal model [Yang et al., 2021a;
Wang, 2022] to establish the pseudo sentiment recognition
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process, simulating the complete human emotional response
from stimulus to perception. Furthermore, we propose a
global category elicitation module, adopting the concept of
causal front-door intervention, to block the confounding fac-
tors’ influence on pseudo sentiment maps, thereby steering
the final results towards the desired outcome. The proposed
CausVSR method leverages the causality inspired framework
to decode the intricate interplay of emotions, leading to a
more comprehensive understanding of visual sentiments.
Our contributions are summarized as follows:

* We propose CausVSR, a novel VSR approach inspired
by Emotional Causality theory. It effectively simulates
the human transition from perceiving emotional stimuli
to identifying emotional states in visual content.

We develop a causal model for CausVSR, analyzing the
interaction between visual content and pseudo sentiment
regions to enhance contextual exploration and improve
emotional inference accuracy.

We utilize a global category elicitation module in the
proposed CausVSR to facilitate front-door adjustment
techniques, effectively handling spurious correlations in
sentiment recognition.

Extensive experiments conducted across four widely-
used datasets demonstrate the effectiveness and supe-
riority of the proposed CausVSR compared to existing
methods.

2 Related Work

Emotion Causality. Emotion Causality, as illustrated in Fig-
ure 1(a), delves into the traditional understanding of emo-
tions, suggesting that our emotional experiences are part of
a broader causal chain [Coégnarts and Kravanja, 2016]. This
chain typically comprises three distinct stages: (i) an external
event, (ii) an emotional perception process, and (iii) a result-
ing emotional state [Young and Suri, 2019; He et al., 2019].
Emotion Causality underscores the dynamic and multifaceted
nature of emotional responses, emphasizing that these are
shaped not solely by the immediate visual stimuli but also
by the individual’s cognitive and emotional framework. Hu-
man emotions are intricately intertwined with our perception
of the surrounding environment, be it immediate, imagined,
or rooted in memories [Brown, 2023]. The domain of affec-
tive science has been actively exploring diverse methodolo-
gies to quantify these complex emotional states. In previous
research, the various approaches in this field have been cat-
egorized into two distinct methodologies: some examine the
emotional journey as a holistic process, while others adopt
a more segmented perspective, dissecting emotions into a
series of steps from the initial trigger to the final orienta-
tion [Herzberg, 2009]. A prominent example of the latter
approach is the theory of Emotion Causality.

Visual Sentiment Recognition (VSR). VSR has gained
prominence for interpreting emotions from visual con-
tent [You et al., 2016]. Initially, VSR methods predicted
sentiments from entire images [Zhao et al., 2014; Rao et
al., 2020], but later research highlighted the benefits of
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focusing on local emotional regions for improved accu-
racy [Yang er al., 2018]. Current VSR approaches in VSR
mainly involve attention-based methods, enhancing relevant
regions [Xu et al., 2020; Zhang et al., 2023], and multi-
dimensional aggregation-based methods [Zhang er al., 2022;
Yang et al., 2018], identifying emotional areas through math-
ematical combinations of different dimensions. Although ex-
isting VSR methods have successfully directed the macro-
level identification of emotional regions, they encounter diffi-
culties in accurately detecting emotions [Saxena et al., 2020].
This is primarily due to the emergence of misleading or spu-
rious correlations within contextual information [Yang er al.,
2023a]. Consequently, there is a pressing need to confront
and resolve these challenges.

3 CausVSR: Our Approach

Our proposed CausVSR, depicted in Figure 1(b), addresses
the challenges, presents an innovative approach by integrat-
ing Emotion Causality as its fundamental framework. It in-
corporates human experiences of visual emotion within a
causal model, enabling a more profound exploration of senti-
ment analysis in visual content. The essence of the proposed
CausVSR can be conceptualized into the following core com-
ponents: Emotion-Stimuli Feature Representation, Causality-
based Emotional Perception, and Discrete Emotion State Pre-
diction.

3.1 Emotion-Stimuli Feature Representation

This component corresponds to the External Events in Emo-
tion Causality. Human emotions are triggered by environ-
mental stimuli. Images, as vital emotional stimuli, contain
elements ranging from low-level cues like color and contrast
to higher-level context. Recognizing these stimuli’s nature
is vital for understanding emotions. CausVSR introduces a
stimulus generation source that elicits emotional perceptions
and aids in the development of emotional states.

We utilize a deep feature extractor to construct a multi-
scale feature representation. Given an emotional image
dataset (xl,y7)fil where x; represents the i-th image, N
denotes the number of samples, and y; represents the cor-
responding emotional label, among M emotion labels. The
architecture of the feature extractor includes convolutional
blocks {Bj, B, ..., By}, here n represents the number of
convolutional blocks. Specifically, we utilize the Res2Net-
101 network pretrained on ImageNet as the backbone of the
feature extractor [Gao et al., 2019], calculating multiple-
scale feature maps through forward propagation, therefore n
is set to 4. Considering that high-level semantics in com-
puter vision are typically human-understandable and express-
ible descriptors used to represent the content of images [Dou
et al., 2023], we select the feature map generated by the last
convolutional block, denoted as Pp, € Rwxhxe where w
and h represent the spatial dimensions (width and height) of
the feature map, and c represents the number of channels.

3.2 Causality-based Emotional Perception

This component aligns with the Emotional Perception in
Emotion Causality. The eyes transform light into neural im-
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Figure 1: The pipeline of the proposed causality inspired VSR. Inspired by (a) Emotion Causality, (b) CausVSR uniquely extracts emotion-
stimuli features from images, acting as external events. CausVSR bridges the visual sentiment recognition process using a structural causal

model with front-door adjustment.

pulses processed by the brain’s visual cortex, playing a cru-
cial role in bridging external events and emotional states.
CausVSR introduces a structural causal graph to model this
emotional perception process, identifying causal links be-
tween visual stimuli and sentiment regions. Also, it imple-
ments a deep-learning front-door adjustment model for causal
intervention.

Build the Structural Causal Graph

Our objective in capturing emotion-related regions is to im-
prove VSR models by investigating the process of generating
sentiment regions. Taking the advantages of causal theory
specialties, we utilize a structural causal graph in this sec-
tion to model human emotion perception. Considering the
diverse attributes of emotional objects across different cate-
gories, the confounders may contribute to a range of spuri-
ous correlations that impact the initial sentiment categories.
For instance, when context acts as a general confounder, it
introduces non-causal features into initial classifier. This is
evident when “joy” is frequently associated with flowers, po-
tentially misleading the classifier to focus on floral features.
Moreover, subtle differences between images of different cat-
egories present additional challenges for the model, particu-
larly when common features are shared. For example, “fear”
and “sadness” are both negative emotions, and their visual
representations often include dark tones and overlapping ele-
ments, like dilapidated windows, complicating the distinction
between them.

Figure 2(a) depicts the proposed structural causal model
for human-like emotion perception (I — A — S). Here,
I represents feature representations (external events), A rep-
resents the initial classification results obtained by the first
classifier in the weakly-supervised framework, S represents
causal sentiment maps. There exists a causal relationship
I — A, since the initial classification A is generated from
features I. The initial A guides the arousal of the emo-
tional region, thereby obtaining the causal sentiment map S
(A — S). F is referred to as the confounder, and F repre-
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Figure 2: Details of Causality-based Emotional Perception in
CausVSR. (a) Structural causal diagram mapping visual feature rep-
resentation to pseudo causal sentiment maps. (b) Front-door adjust-
ment intervention. (c) Deep learning architecture based on the causal
model in (a) and interventions in (b).

sents the confounder set related to external events I. It can be
observed that F'is acommon causeof [ and £ (F' — E — S,
F — I — A — S). Fleads to the contamination of P(S|I),
and failing to reflect the true causal relationship between [
and S. In conclusion, we initially establish the causal rela-
tionship from I — S, which can be formulated as follows.

P(S[I)=)Y_P(A=a|I)P(S|A = a) (1)

acA

Front-door Adjustment

In the presence of the confounder F', it is challenging to fully
uncover the causal relationship from I to S. We observe that
the causal diagram / — A — S can be formulated in a front-
door model [Pearl, 2000]. The causal effect of I — A can
be ascertained from the data, as all other paths are isolated
by the collider structure I — E < F!, free from confound-
ing and backdoor paths [Yang er al., 2021b]. The causal ef-
fect of A on S has confounding due to a common cause F'.
Even though we lack the specific data of F, we have infor-
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mation on features /. By cutting off F' — I in the causal
graph (scissors in Figure 2(b)), we eliminate the paths that
previously caused confounding, which helps to learn the de-
sired causal relationship. Hence, we perform an intervention
operation do(-) as P(S|do(I)), and analyze the causal ef-
fect of I — S through front-door adjustment [Pearl, 2000;
Wang et al., 2021]:

P(S|do(I)) =y P(ali) Y P(SI,a)P(i') (o

acA el

where P(i’) represents the probability of features ¢ € I be-
longs to class a occurring. Assuming the training samples
P(I = 1) follow a uniform distribution [Amrani ez al., 2022;
Wang, 2022], that the probability of an input i of class a
occurs is approximately 1/N, where N represents the total
number of training samples. The variable ), ., P(S|I =
i', A)P(I = ') represents the expectation of the predicted
causal sentiment maps S for class a across the entire training
set. Inspired by [Cheng et al., 2023], we build a Global Cate-
gory Elicitation Module (GCEM) to compute the expectation
> wer P(Sli',a)P(i"). As shown in the light orange region
of Figure 2(c), suppose D € RE*M>N g a global dictionary
for the entire training set, where C' represents the number of
channels, M represents the categories of emotions, and N
represents the number of atoms in each category in D. Ac-
cording to the previous analysis on )., P(S|i’,a)P(i'),
we aim to express the feature map I through a sparse lin-
ear combination of atoms associated with the class dictio-
nary D, with the intention of invoking a global category map.
Through Equation (3), we obtain the category map G, for
classm € M .

G = am @1 3)

where I' € RY™H*W s obtained through the channel-wise
global average pooling operation, reducing the channel di-
mension to alleviate computational complexity. ® represents
the entrywise product. o, € RM*H*W represents the coef-
ficients of D, which reflects the response for each atom vector
on the input, and can be calculated as follows:

exp(—(di) "pi)
MxN
Soioi exp(—(dy) Tpi)
where exp(+) is used to calculated the similarity of pixel vec-
tor p; € I and the k-th atom vector di, € D. According to

maps G, for each category, we obtain the global category
map G through Equation (5):

“

Qg =

G = concat(Gy, G2, .G,y ..., Grp) (5)

where concat(-) denotes the concatenation operation.

Our goal is the localization of affective-rich sentiment re-
gions, which are specific areas in the image directly rele-
vant to emotional experiences. To train the initial classi-
fier, we introduce the pooling strategy [She et al., 2019] fol-
lowed by a network g(+), which approximates the distribution
P(S|do(I)) in Equation (2), to obtain the causal pseudo sen-
timent maps S:
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S = fu(g(I, A)) (6)
The pooling strategy f,; evokes the probability of different

emotions in each receptive field, thereby sketching emotion-
specific regions as Equation (7):

M j
1
for = E wm(g E Zmi),m € {1,2,..., M} @)
m=1 =1

where f,; treats pseudo sentiment maps S as the prediction
score, training a classifier that has been adjusted using the
causal front-door adjustment. w,. represents a single fea-
ture map-level score for each emotional class m € M, ob-
tained through a cross-spatial pooling strategy regardless of
the input size. The specific calculation formula is w,, =

%2221 feap(zm,;). Here, faap represents the global av-
erage pooling operation. z,, ; refers to the i-th feature map
of the m-th emotional label. j represents j emotional class-
related detectors.

3.3 Discrete Emotion State Prediction

CausVSR mimics Emotion State through a weakly supervised
framework, predicting discrete emotional labels by combin-
ing prior knowledge from an initial classifier with causal sen-
timent regions. This process emulates how human predictions
of emotional states in visual content rely on past experiences
and interpretations, distinguishing them from non-emotional
material perception.

As shown in Figure 1, in the component of Discrete
Emotion State Prediction, we derive the ultimate prediction
Prinq with causal pseudo sentiment map S through the clas-
sifier:

Prina = Softmax(feap(concat(S, Pg,))) )

where the concatenate operation combining the .S with the
rich-semantic features B,,.

CausVSR generates two outputs: a causal sentiment map
and sentiment classification predictions, supervised by two
loss functions in an end-to-end manner. L po oversees senti-
ment map perception, while L¢ g focuses on sentiment clas-
sification, utilizing Cross Entropy Loss to measure the sim-
ilarity between predicted pseudo maps and ground truth for
Lpcr, and the discrepancy in predicted classification and la-
bels for Lo ps. Additionally, a surface normal loss Lsy, [Hu
et al., 2019] is integrated into Lpcr to refine the accuracy
of pseudo sentiment regions by assessing the divergence be-
tween the surface normals of the pseudo sentiment region
map and the ground truth, thereby enhancing the map’s de-
tail and structure as shown in Equation (9).

N N P o,
1 (miy, mi;)
Lsnr = E E (1- L ) 9
N2 i=1 j=1 \/<’I’7’ij7 mfj>\/<mfj, mZgj>

where (4,j) denotes the specific spatial location, the sur-
face normal of the pseudo sentiment map is mfj =
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[— Ve (pij), — Vy (0ij), 1]7, and the surface normal of the

. T
ground truth is m{; = [~ V4 (9:5), — Vy (9i5),1] , and
(+,-) is the inner product that multiply vectors mj}; and m,
together. Ultimately, we train the proposed deep model

CausVSR using the following loss function in Equation (10):

Lr =MLpcr +XeLsni + AsLcrs (10)
where A1, A2, A3 are the alternatively balanced parameters,
which are experientially set on Res2Net-101 to 1, 0.5, and
1. And we employ stochastic gradient descent (SGD) to opti-
mize the loss function Lg.

4 Experiments

4.1 Experiments Setup

The implementation of CausVSR is carried out using the
widely adopted PyTorch framework [Paszke et al., 2019].
The training input images are standardized to a size of 448 x
448. To diversify the training data, we employ random re-
sized cropping initially, followed by random horizontal flips.
These techniques are designed to address overfitting issues in
scenarios with limited data and enhance overall model gen-
eralization. For model training, we utilize Stochastic Gradi-
ent Descent (SGD) as the optimization algorithm, with mo-
mentum decay and weight decay set to 0.9 and 5E — 4, re-
spectively, for improved computational efficiency. The initial
learning rate is set at 1 £ — 4 and is reduced by a factor of 100
every 10 iterations. All experiments are conducted on Nvidia
Tesla P100-PCIE with a total memory capacity of 16 GB.

4.2 Comparison with State-of-the-art Methods

We conducted experiments on four widely used VSR
datasets, which include a large-scale dataset, Flickr and Insta-
gram (FI-8) [You et al., 2016], and three small-scale datasets:
EmotionROI (6 classes) [Panda et al., 2018], IAPS-Subset (2
classes) [Machajdik and Hanbury, 2010], and Twitter IT (2
classes) [Borth et al., 2013]. Given the balanced class distri-
bution in the datasets, we employ accuracy as the evaluation
metric, consistent with previous research work.

Results on Large-scale FI-8

To validate the efficacy of CausVSR in visual sentiment
recognition, we conduct a comparative analysis with state-
of-the-art methods on widely recognized image sentiment
datasets. Table 1 presents the experimental results for the
FI-8 dataset, and our proposed model achieves an accuracy
of 72.57%, surpassing other VSR methods.

We conducted a comprehensive performance analysis,
comparing CausVSR with well-established models such as
Class Activation Mapping (CAM) [Zhou et al., 2016], WSC-
Net [She et al., 2019], Yang’s [Yang et al, 2023b], and
DCNet [Zhang et al., 2023]. CAM, a leader in visual in-
terpretability, utilizes features from the final convolutional
layer for information visualization. WSCNet resolves emo-
tional label ambiguities by weighing all class activation maps,
identifying emotion-inducing regions. Yang’s leverages psy-
chology’s gradual emotion cognition mechanism, organizing
the relationship between images and emotions in a knowl-
edge graph to identify image emotions visually. DCNet uses
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Methods FI-8
Self-Attention [Vaswani et al., 2017] 24.01
Zhao’s [Zhao et al., 2014] 46.13
Sentibank [Borth et al., 2013] 49.23
DeepSentibank [Chen et al., 2014] 51.54
ImageNet-AlexNet [Krizhevsky ef al., 2017]  38.26
ImageNet-VGG16 41.22
ImageNet-ResNet101 [He et al., 2016] 50.01
Yang’s [Yang et al., 2017a] 66.79
SPN [Zhu et al., 2017] 66.57
WILDCAT [Durand et al., 2017] 67.03
MAP [He et al., 2019] 68.13
CAM [Zhou et al., 2016] 68.54
WSCNet [She er al., 2019] 70.07
Yamamoto’s [Yamamoto et al., 2021] 70.46
Yang’s [Yang et al., 2023b] 71.13
DCNet [Zhang et al., 2023] 71.65
CausVSR 72.57
Table 1: Comparison on FI-8 dataset
a saliency prior for sentiment region generation. Despite

their good performance, CausVSR outperforms these models
in sentiment region perception, showing significant improve-
ments of 4.03%, 2.5%, 1.44% and 0.92%.
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Figure 3: Confusion matrix on FI-8 dataset.

In the classification aspect of VSR tasks, CausVSR’s per-
formance was assessed against the FI-8 dataset using a con-
fusion matrix (Figure 3). CausVSR performs well in express-
ing the majority of sentiment categories. However, it exhibits
suboptimal performance in conveying the emotions of “Con-
tentment” and “Disgust”. We speculate that this might be at-
tributed to the overlapping feature distributions of “Content-
ment” and “Disgust” compared to other categories, making
it more challenging for the model to predict these emotions
accurately.
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Methods EmotionROI  Methods TAPS-Subset Methods Twitter 11
[Yang et al., 2017b] 45.40 [Borth et al., 2013] 81.79 [Chen et al., 2014] 70.23
[Yang er al., 2017a] 52.40 [Chen et al., 2014] 85.63 [Simonyan et al., 2014] 71.79
[Zhu et al., 2017] 52.70 [You et al., 2015] 88.84 [Durand et al., 2017] 78.81
[Durand et al., 2017] 55.05 [Simonyan et al., 2014] 89.37 [Zhou et al., 2016] 79.13
[Zhou et al., 2016] 55.72 [Yang et al., 2018] 92.39 [Sun et al., 2016] 80.91
[She et al., 2019] 58.25 [Zhang and Xu, 2020] 95.83 [She et al., 2019] 81.35
[Zhang ef al., 2023] 59.60 [Zhang et al., 2023] 95.90 [Zhang et al., 2023] 82.50
CausVSR 59.82 CausVSR 95.97 CausVSR 82.86

Table 2: Classification accuracy comparison on three small-scale datasets

Results on Other Three Datasets

We conducted experiments on the other three datasets as
well, with results in Table 2 showing CausVSR outperform-
ing other methods across all datasets. WSCNet [She er al.,
2019] introduced a weakly-supervised framework for senti-
ment analysis, while DCNet [Zhang et al., 2023] leveraged
visual saliency for sentiment classification. CausVSR ad-
vances this by using causal modeling to enhance sentiment
region expression, leading to a 1.57% and 0.22% perfor-
mance increase over WSCNet and DCNet on the EmotionROI
dataset, and 0.07% and 0.36% on the IAPS-Subset dataset
and Twitter II dataset compared with DCNet, respectively, as
shown in Table 2.

angerﬁ0.03 0.06 0.05 0.22 0.19 0.7

disgust 0.02 0.10 0.03 0.04 0.02 0.6

fear 0.17 0.09/0.38 0.00 0.28 0.07 0.5

0.4
joy 0.02 0.01 0.030.10 0.23 0.3

True label

sadness 0.08 0.02 0.14 0.03 (X3 0.07 = 0.2
. 0.1
surprise 0.08 0.09 0.06 0.14 0.05 [ehf]
S 0.0
(e]

—
©
o =

anger

disgust
sadness
surprise

Predicted label

Figure 4: Confusion matrix on EmotionROI dataset.

Confusion matrices for three datasets are presented in Fig-
ures 4 to Figure 5. Figures 4 display the results obtained by
the proposed Caus VSR for the 6-class EmotionROI dataset. It
is observed that CausVSR generally performs well in recog-
nizing most emotions in the EmotionROI datasets, yet it tends
to confuse “anger” and “fear” with “sadness”. We analyze
that beyond the subjective nature of dataset annotations, the
dynamic nature of real-world emotional experiences, where
individuals frequently transition between feelings of fear,
anger, and sadness, could contribute to the model’s difficulty
in distinguishing between these emotions.

Figures 5(a) and 5(b) show the results obtained on two
binary classification datasets. Visual sentiment recognition
performance on two binary datasets is notably better than on
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Figure 5: Confusion matrices on binary classification dataset.

the other two larger datasets. We analyze that the smaller
datasets simplify the recognition task, making it easier for the
model to distinguish between two distinct categories. More-
over, their focus on clear and consistent features of positive
and negative sentiments allows for improved recognition out-
comes.

4.3 Ablation Studies

Causality Importance Analysis. To assess the impact of
causality in VSR, we use DCNet as the baseline, and inte-
grate the Causality-based Emotional Perception (CEP) pro-
cess with DCNet. Table 3 demonstrates that the generated
causal pseudo sentiment maps improve DCNet’s performance
on the FI-8 and EmotionROI datasets. Additionally, as shown
in Table 3, CEP enhances CausVSR’s capability on the same
datasets.

CEP T8  EmotionROI
wo 7165 59.60
DCNet "7 7218 59.79
wo 158  59.63
CausVSR "7 7557 59.82

Table 3: Impact of causality

Ablation Study on Integration for Emotion State Pre-
diction. As CausVSR adopts a weakly supervised strat-
egy to mimic human emotion state prediction, we investi-
gated integrating causal sentiment maps S with various stages
of Emotion-Stimuli Feature Representation. The feature
maps generated by different convolutional blocks in Emotion-
Stimuli Feature Representation are denoted as Pp, . Table
4 presents results indicating the impacts of integration with
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each convolutional block individually. The results in Table
4 demonstrate that the integration of causal sentiment maps
S with the convolutional block Pp, yields the best accuracy.
This observation aligns with our initial hypothesis in Section
3.1, suggesting that higher-level semantic features closely
correspond to human-understandable descriptors.

]DB1 P32 ‘PB3 PB4 FI-8 EmotionROI
v 6596 35.1
Vv 67.62 36.05
V 69.75 3291
J 7257 5982

Table 4: Impact of integration of S with different Pg,,

4.4 Qualitative Results

Figure 6 displays the original image (column 1), saliency
maps [Chen et al., 2020] (column 2), pseudo sentiment maps
generated through CAM [Zhou er al., 2016] (column 3), DC-
Net [Zhang e al., 2023] (column 4), and CausVSR (column
5) on the EmotionROI dataset.

CausVSR exhibits advantages over other methods. Firstly,
CausVSR generates pseudo sentiment maps that distinctively
differ from saliency maps. While saliency maps primarily
delineate foreground and background boundaries, methods
like CAM reveals that human emotional perception in senti-
ment classification concentrates near specific regions, which
may not always align with the outlined shapes. In contrast,
CausVSR accurately identifies and emphasizes emotionally
significant areas, as demonstrated by its focus on the red spots
near the bird’s tail in the third row as shown in Figure 6. Sec-
ondly, CausVSR’s superiority becomes evident in its ability
to prioritize emotionally relevant regions rather than focus-
ing solely on prominent objects highlighted by saliency maps.
For example, in the fifth row, while saliency maps highlight
the stamens, CausVSR captures not only the stamens but also
surrounding areas linked to emotion, like the yellow petals.
Furthermore, CausVSR captures the details overlooked by
other methods, such as CAM and DCNet. For instance, in the
fourth row, while other methods struggle to extract certain
relevant areas, CausVSR’s emotion regions intelligently in-
clude both the left railing and the right wall. Lastly, a notable
strength of CausVSR is its reduced generation of false acti-
vations corresponding to unrelated backgrounds, as observed
in the first and second rows. This reinforces its superiority
in discerning emotionally relevant regions while minimizing
erroneous activations.

5 Conclusion

The pioneering approach presented in this research,
CausVSR, rooted in Emotional Causality theory, adeptly ad-
dresses the challenges prevalent in VSR tasks. By employing
an intricate structural causal model and strategically utilizing
a global category elicitation module, CausVSR adeptly nav-
igates the complexities within visual content, resulting in a
significant enhancement of emotional inference accuracy.
The comprehensive experiments conducted on four
widely-used datasets showcase CausVSR’s effectiveness and
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Saliency Ma
-

Figure 6: The visualization of pseudo sentiment maps from different
methods for EmotionROI dataset. The pseudo sentiment maps from
DCNet and CausVSR, generated through random horizontal flipping
and random patch extraction for data augmentation, represent only
a section of the original image. To enable effective comparison, all
the figures are cropped to the same dimensions.

superiority for VSR tasks, surpassing existing methods. The
proposed CausVSR, mimicking human emotional stimulus
processing and integrating front-door adjustment techniques,
not only demonstrates CausVSR’s potential but also signifies
a promising advancement in the VSR domain.

Looking forward, our future pursuits will involve explor-
ing CausVSR’s application in real-world scenarios, partic-
ularly within educational settings. Additionally, we aim to
delve into its potential as a metric for measuring psychologi-
cal states. As an innovative contribution, CausVSR presents a
significant leap in overcoming the challenges inherent in de-
tecting emotions within visual content, thereby opening av-
enues for further research and practical applications in the
domain of visual sentiment recognition. These endeavors
are geared toward amplifying CausVSR’s practical utility and
making substantive contributions to the evolving landscape of
visual sentiment recognition.
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