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Abstract
Real-time engagement estimation has been an im-
portant research topic in human-computer interac-
tion in recent years. The emergence of the NOvice
eXpert Interaction (NOXI) dataset, enriched with
frame-wise engagement annotations, has catalyzed
a surge in research efforts in this domain. Exist-
ing feature sequence partitioning methods for ultra-
long videos have encountered challenges includ-
ing insufficient information utilization and repet-
itive inference. Moreover, those studies focus
mainly on the target participants’ features with-
out taking into account those of the interlocutor.
To address these issues, we propose the center-
based sliding window method to obtain feature
subsequences. The core of these subsequences
is modeled using our innovative Central Engage-
ment Attention Model (CEAM). Additionally, we
introduce the dialogue cross-enhanced module that
effectively incorporates the interlocutor’s features
via cross-attention. Our proposed method outper-
forms the current best model, achieving a substan-
tial gain of 1.5% in coordination correlation coeffi-
cient (CCC) and establishing a new state-of-the-art
result. Our source codes and model checkpoints are
available at https://github.com/wujiekd/Dialogue-
Cross-Enhanced-CEAM.

1 Introduction
Engagement is the process by which two (or more) partic-
ipants establish, maintain, and end their perceived connec-
tion [Sidner and Dzikovska, 2002]. To understand the chang-
ing process of engagement we are studying human-to-human
engagement interaction. The related studies provide essential
capabilities for human-robot interaction. However, while it is
easy for humans to recognize each other’s engagement, it is
difficult for machines to apply it in real time [Pellet-Rostaing
et al., 2023]. Therefore, automatic real-time engagement es-
timation has become an important problem in the machine
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Figure 1: The dynamic process of engagement during a conver-
sation. Three groups of conversations are randomly sampled from
the NOXI dataset. Engagement scores range between 0 and 1, with
0 representing disengaged and 1 representing highly engaged.

learning field. Recently, researchers have increasingly recog-
nized the importance of this task, mainly due to its wide range
of applications in fields such as education [Nomura et al.,
2019], human-computer interaction [Sidner and Dzikovska,
2002; Yao et al., 2023a], social interaction [Rajagopalan et
al., 2015; Lu and Churchill, 2014], and healthcare [Lo Presti
et al., 2019; Zhang et al., 2022].

Müller et al. [2023] proposed the first dataset suitable for
real-time engagement estimation, named NOXI. Each video
in NOXI contains 10,938 frames or more and frame-wise an-
notations. Many excellent works have been able to extract
corresponding features from participants’ video data, includ-
ing Open Face 2.0 [Baltrusaitis et al., 2018], Open Pose [Cao
et al., 2017], soundnet [Aytar et al., 2016], Geneva Minimum
Acoustic Parameter Set (GeMAPS) [Eyben et al., 2016] and
so on. Previous study [Müller et al., 2023] had shown that
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multi-modal features outperform uni-modal features on this
task. To apply ultra-long video data to real-time engagement
estimation, it is necessary to partition the complete video or
the corresponding feature sequences. The normal data parti-
tioning method shown in Figure 2(a) is to directly partition
the feature sequences into multiple subsequences. After par-
titioning the raw sequences, most methods used the sequence-
to-sequence (Seq2seq) model for modeling, including LSTM,
transformer based on self-attention (SA), and others. In pre-
vious studies, SA-based models did not perform as well as
LSTM-based models for this task [Yu et al., 2023b]. In addi-
tion, the normal data partitioning method encountered a sig-
nificant loss of contextual information. The sliding window
method proposed by Yu et al. [2023b] for acquiring over-
lapping subsequences can utilize fuller contextual informa-
tion. However, it required repetitive inference, leading to a
decrease in real-time inference performance.

Engagement is not only reflected in the target participant
but also influenced by their interlocutors [Rudovic et al.,
2019; Presti et al., 2013]. As shown in Figure 1, the chang-
ing process in engagement during the conversation is highly
correlated between pairs. However, most existing methods
usually ignore information from their interlocutor.

To address the above issues, we explore how to use partic-
ipants’ multi-modal feature sequences for real-time engage-
ment estimation. We study the effectiveness of sliding win-
dows and overcome its drawback of requiring repetitive infer-
ence. We propose the center-based sliding window method,
which uses the target prediction sequence as the central fo-
cus of the window (referred to as the core). This method
extracts subsequences from the participant’s ultra-long video
multi-modal feature sequence by sliding this window. Then,
we propose the Central Engagement Attention Model based
on SA, which emphasizes attention to the core of the sub-
sequence by reducing attention to the edges of the subse-
quence. In addition, we propose the dialog cross-enhanced
module based on cross-attention (CA), which uses the en-
coded feature subsequence of the target participant and their
interlocutor for interaction, further enhancing performance.
This marks the first application of CA to real-time engage-
ment estimation in dialogue interactions. Finally, our pro-
posed model achieves CCC of 0.835 and 0.704 on the val-
idation set and test set for real-time engagement estimation,
respectively, establishing new state-of-the-art (SOTA) results.

Overall, our main contribution lies in the following aspects.

• We propose the center-based sliding window to obtain
subsequences from the multi-modal feature sequences,
which outperforms previous data partitioning methods.

• We propose a novel real-time engagement estimation
model, CEAM, in combination with the center-based
sliding window. The model is mainly implemented us-
ing SA, surpassing the previous best models.

• On the basis of CEAM, we propose the dialogue cross-
enhanced module based on CA, which uses the fea-
ture subsequence of interlocutors to augment the target
participant’s feature subsequence, further improving the
performance and establishing new SOTA results.

2 Related Work
2.1 Engagement Estimation
Dataset of Engagement Estimation. A large number of
datasets existed from previous engagement estimation tasks,
such as RECOLA [Ringeval et al., 2013], MHHRI [Celiktu-
tan et al., 2017], and the dataset [Bednarik et al., 2012] from
annotated by Hradis et al. [2012]. However, these datasets
were mainly used for estimating engagement at the video
level or for simple classification tasks (like categorizing en-
gagement as positive or negative). Using them to estimate
constantly changing human engagement is difficult. It was
not until the emergence of NOXI [Müller et al., 2023] that
the first dataset suitable for real-time estimation of contin-
uous engagement became available. This dataset provides
ultra-long videos of each participant with their interlocutor,
with frame-wise annotated engagement.

Real-Time Engagement Estimation. As shown in Fig-
ure 2, for the engagement estimation task of videos with
frame-wise annotation, previous research initially extracts
uni-modal or multi-modal feature sequences from ultra-long
videos. For these ultra-long feature sequences, recurrent neu-
ral networks (RNNs) [Elman, 1990] or SA-based model
had found it difficult to directly model the complete fea-
ture sequence. Simultaneously considering real-time engage-
ment estimation, these feature sequences must be partitioned
and then subsequently trained. The mainstream partitioning
method is shown in Figure 2(a), cutting into multiple sub-
sequences for training and inference. Yu et al. [2023b] intro-
duced the sliding window to obtain overlapping subsequences
to ensure the correlation between the upper and lower subse-
quences, as shown in Figure 2(b).

Once the data was partitioned, it needed to be modeled by
choosing an appropriate model. Müller et al. [2023] based
on the multilayer perceptual network (MLP), discusses the
effects of head, pose, and voice unimodal as well as multi-
modal features. Tu et al. [2023] addressed the problem by
designing dilated convolution combined with LSTM or trans-
former (DCTM). Yu et al. [2023b] designed Seq2seq mod-
els based on BiLSTM and Self-Attention (SA) to predict en-
gagement, respectively. Furthermore, low engagement may
occur when participants are distracted by their interlocutor
or other unrelated tasks, such as an unexpected phone call
or microphone malfunction. Yang et al. [2023] reduced the
dimensionality of the feature subsequences for participants
and their interlocutors using Principal Component Analysis
(PCA), concatenated them, and then employed an MLP to
predict the target engagement. Those model structures are
also categorized into three types: MLP-based, LSTM-based,
and SA-based (including Transformer). In these previous
works, the BiLSTM-based model combined with the sliding
window method performs the best, while the SA-based and
MLP-based model are slightly less effective.

2.2 Attention Mechanism
Self-Attention. Self-attention (SA) is a mechanism used to
process sequence data, especially widely used in the trans-
former model [Vaswani et al., 2017]. This mechanism also
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Figure 2: Summary and Comparison of feature sequence partitioning methods for ultra-long videos. (a) The existing mainstream
partition method to get non-overlapping subsequences for training and inference. (b) Existing sliding window based partitioning method to
generate overlapping subsequences, which needs repetitive inference. Here, “Mix” refers to average fusion, the fusion of the resultant levels
of multiple inference on overlapping subsequences. (c) Our proposed center-based sliding window method focuses on the center (core) of
the subsequence and uses the core extended window for sliding to get the subsequence (see Section 3.1). In the inference phase, frame-level
scores are only computed once to output the core’s engagement.

plays an important role in multi-modal sentiment analy-
sis, such as multiview task [Zadeh et al., 2018; Yu et al.,
2023a] and emotion recognition [Chudasama et al., 2022;
Le et al., 2023]. When using SA to deal with sequence
data, especially for data like video, audio, or text that has
an obvious sequence structure but no explicit positional in-
formation, to help the model understand the positional rela-
tionships of the elements in the sequence, it is necessary to
introduce the positional embedding [Vaswani et al., 2017;
Devlin et al., 2019; Yao et al., 2023b].

Cross-Attention. Cross-attention (CA) is also an attention
mechanism for modeling relationships between multiple se-
quences or different patterns. This mechanism has a wide
range of applications in tasks such as processing multi-modal
information [Li et al., 2021; Lu et al., 2019], emotion recog-
nition [Zhou et al., 2023; Praveen et al., 2023], disease di-
agnosis [Praveen et al., 2023]. CA is not limited to feature
interactions between different modalities, it can also be ap-
plied to feature interactions within the same modality, e.g.,
CrossViT [Chen et al., 2021]. However, the application of
CA in conversational videos is nearly non-existent, particu-
larly in real-time engagement estimation tasks.

3 Methodology
In this section, we detail our proposed dialogue cross-
enhanced CEAM for real-time engagement estimation, as
shown in Figure 3. We will first summarize previous data
partitioning methods of ultra-long videos, then introduce our
proposed center-based sliding window. Next, we will intro-
duce the CEAM based on SA. Finally, we will introduce the
dialogue cross-enhanced module based on CA.

3.1 Center-based Sliding Window
We summarize two previous data partitioning methods before
presenting our proposed method. The normal data partition-
ing method, as shown in Figure 2(a), is fast in inference but
is ineffective because it cannot fully utilize the contextual in-
formation of long videos. As proposed by Yu et al. [2023b],
the sliding window method is shown in Figure 2(b). Dur-
ing the inference phase, however, it is necessary to compute
predictions repeatedly for each subsequence. Then the re-
sults of these overlapping subsequences are mixed to gen-
erate the corresponding engagement scores. This approach
ensures that the target subsequence obtains semantic informa-
tion from both previous and subsequent features, respectively.
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Figure 3: An illustration of our proposed dialogue cross-
enhanced Central Engagement Attention Model for real-time
engagement estimation. The Linear projection and self-attention
encoder for the target participant and their interlocutor have the same
structure, but the weights are not shared.

However, repetitive inference prolongs the overall inference
time, posing a challenge to real-time processing.

We analyze the partitioned feature subsequence, where
each node in the subsequence is affected differently. Specifi-
cally, edge features can not consider front or back influences,
while the middle features can bridge the past and the future.
When human beings express their thoughts, the changes in
movements are continuous rather than discrete, despite the
momentary changes. Therefore, based on the strong cor-
relation between participants’ video contexts, we propose
the center-based sliding window method, as shown in Fig-
ure 2(c). The method focuses on modeling the middle se-
quences of each subsequence and using the middle sequences
as the core of the sliding window to obtain the subsequences
for training. The training strategy of our proposed data parti-
tioning method is consistent with the previous two methods,
but slightly different in the inference phase. Due to the insuf-
ficient information received at the front and back ends of the
subsequence, we only infer about the middle sequence (core)
of the subsequence. In addition, this method requires only

one inference to obtain the engagement scores of the target
participant, thus outperforming the previous sliding window
in terms of inference efficiency. The training process of this
center-based sliding window approach can be formalized as
follows

ŷt−w, . . . , ŷt−1,

ŷt, . . . , ŷt+l−1,

ŷt+l, . . . , ŷt+l+w−1 = f(xt−w, . . . , xt−1, (1)
xt, . . . , xt+l−1,

xt+l, . . . , xt+l+w−1),

where [xt, . . . , xt+l−1] represents the multi-modal feature
from t to t+l−1 moment, [ŷt, . . . , ŷt+l−1] represents the esti-
mated target engagement subsequence, [xt−w, . . . , xt−1] and
[xt+l, . . . , xt+l+w−1] represent contextual subsequence ex-
tended around estimated subsequence, [ŷt−w, . . . , ŷt−1] and
[ŷt+l, . . . , ŷt+l+w−1] represent extended predicted engage-
ment scores, l represents the length of the target subsequence,
w represents the length of the extended window, and f is the
engagement estimation model.

The inference process of the center-based sliding window
method can be formalized as

ŷt, . . . , ŷt+l−1 =f(xt−w, . . . , xt−1,

xt, . . . , xt+l−1, (2)
xt+l, . . . , xt+l+w−1),

where the representations here are consistent with Equation 1.

3.2 Central Engagement Attention Model
Next, we introduce our proposed Central Engagement Atten-
tion Model based on SA. As shown in Figure 3, this is the
structure of our proposed model. The cross-enhanced module
will be introduced in the next subsection, and we first focus
on the main branch, i.e., when M=0 and K=0. We take the in-
put multi-modal feature subsequences and pass them through
a linear projection, which includes embedding and sinusoidal
positional embedding [Vaswani et al., 2017]. Subsequently,
they are passed through a stacked SA encoder, and finally,
we use the MLP to predict engagement scores at the corre-
sponding moments. The SA encoder and transformer share
similar configurations, consisting of a series of blocks. Each
block contains multi-head self-attention (MSA) along with a
feed-forward network (FFN). The FFN comprises 2 multi-
layer perceptrons, with a GELU activation function applied
after the first linear layer. Layer normalization (LN) is ap-
plied after each subblock, and the residual shortcut is applied
after each subblock. The input of the CEAM, x0, and the
processing of the k-th block can be expressed as

x0 = xemb + xpos
zk = LN(xk−1 +MSA(xk−1))) (3)
xk = LN(zk + FFN(zk)),

where xemb ∈ RN×C is the embedding subsequence after
embedding the original multi-modal feature subsequence and
xpos ∈ RN×C is the positional embedding. N and C are the
length of the input feature subsequence and the dimension of
the embedding, respectively.
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In addition, we need to mitigate the network degradation
problem caused by the deep network hierarchy. Inspired by
the skip connection proposed by He et al. [2016], we design
a weighted block skip connection, which is regulated by the
control factor α and can be expressed as follows

xk = α · xk + (1− α) · xk−1, (4)

where α represents a hyperparameter from 0 to 1 that controls
each block of the skip connection.

Center MSE loss. When the attention mechanism com-
putes the attention score matrix, it treats features from various
time steps in the input subsequence equally. However, the in-
formation obtained from the features at each moment in the
subsequence is unequal, and there is an information gap, as
shown in the upper right corner of Figure 3. To address this
issue, we design an optimized loss function for the output tar-
get engagement scores. This loss function enhances the pre-
dictive power of middle features and reduces the influence of
front and end features. We propose the center mean squared
error (MSE) loss function, combined with the center-based
sliding window method, to improve the engagement attention
model’s capability to focus on the core of subsequences. It
can be formalized explicitly as

Center MSE =
1

l

t+l−1∑
i=t

(yi − ŷi)
2 +

β

2w
[

t−1∑
i=t−w

(yi − ŷi)
2

+
t+l+w−1∑
i=t+l

(yi − ŷi)
2], (5)

where ŷ and y are predicted engagement score and true la-
bel, respectively. β represents a coefficient from 0 to 1 that
controls the level of attention of the extended subsequence.

3.3 Dialogue Cross-enhanced Module
Finally, we propose the dialogue cross-enhanced module
based on CA. As illustrated in Figure 3, this module seam-
lessly integrates with our proposed CEAM. Specifically, the
SA encoder independently encodes the feature subsequences
of the participants and their interlocutors. Then, these en-
coded feature subsequences interact in the dialogue cross-
enhanced module, finally being processed through the MLP
to predict engagement scores at the corresponding moments.

The internal details of the module are shown in Figure 4.
The module performs CA between xt and xp, where xt and
xp are the encoded feature subsequences of the participant
and their interlocutor, respectively. Mathematically, the CA
can be expressed as

q = xpWq, k = xtWk, v = xtWv,

A = softmax(qkT /
√

C/h),CA(xt, xp) = Av, (6)

where Wq , Wk, Wv are learnable parameters, C and h are
the embedding dimension and number of heads. Note that
we use the interlocutor’s features to compute the query to en-
hance the target features. Because the two input feature se-
quences are highly aligned, the output feature sequence shape
is identical to the input. In a conversational video with two

Figure 4: Dialogue Cross-enhanced module Internal Details.

participants, it is possible to use each other’s features to mu-
tually enhance them. Moreover, as in SA, we also use mul-
tiple heads in the CA and represent it as (MCA), which is
realized by the linear mapping function g(·). We also apply
the same FFN as SA after the CA. Specifically, this module
is also composed of multiple blocks stacked together, which
also introduces a weighted block skip connection. The input
of the dialogue cross-enhanced module, x0, and the process-
ing of the k-th block can be expressed as

x0 = xt
zk = LN(xk−1 +MCA(xk−1, xp))

xk = LN(zk + FFN(zk)) (7)
xk = α · xk + (1− α) · xk−1,

where xt ∈ RN×C and xp ∈ RN×C are the encoded feature
subsequences of the target participant and their interlocutor,
respectively. N and C are the length of the input feature se-
quence and the dimension of the embedding, respectively. α
represents the block skip coefficient from 0 to 1.

4 Experiments
In this section, we experimentally demonstrate that our pro-
posed dialogue cross-enhanced CEAM is more effective com-
pared to existing methods. First, we introduce the dataset and
evaluation metrics. Then, we present the experimental setup
and the main results. Finally, we conduct ablation studies to
analyze the necessity of each component in the architecture.
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Model Method (Time Window Size) Interlocutor Val CCC ↑ Test CCC ↑
MLP-based [Müller et al., 2023] Normal (0.1s) 0.710 0.590
DCTM (LSTM) [Tu et al., 2023] Normal (2.5s) 0.750 0.630

DCTM (Transformer) [Tu et al., 2023] Normal (2.5s) 0.750 0.660
PCA+MLP-based [Yang et al., 2023] Normal (10s) ✓ 0.745 0.695

SA-based [Yu et al., 2023b] Normal (2.5s) 0.775 -
BiLSTM-based [Yu et al., 2023b] Normal (2.5s) 0.799 -

SA-based [Yu et al., 2023b] Sliding window (2.5s) 0.796 -
BiLSTM-based [Yu et al., 2023b] Sliding window (2.5s) 0.818 0.689

BiLSTM-based [Yu et al., 2023b] Center-based Sliding window (2.5s) 0.820 -
CEAM (Ours) Center-based Sliding window (2.5s) 0.821 0.691
CEAM (Ours) Center-based Sliding window (10s) 0.834 0.711

Dialogue Cross-Enhanced CEAM (Ours) Center-based Sliding window (2.5s) ✓ 0.835 0.704

Table 1: Comparison of validation and test results for engagement estimation under different methods. The time window size refers to the
maximum duration for utilizing the video subsequence. Specifically, 0.1s, 2.5s, and 10s correspond to 1 frame, 64 frames, and 256 frames of
images, respectively. The above models all use the same multi-modal features, including visual and audio features.

4.1 Dataset and Evaluation Metrics
Benchmark Dataset. The NOXI for Engagement Estima-
tion dataset was obtained by Müller et al. [2023] using the
published NOvice eXpert Interaction database (NOXI) [Ca-
faro et al., 2017] for re-labeling. The NOXI contains interac-
tions recorded in eight languages (English, French, German,
Spanish, Indonesian, Arabic, Dutch, and Italian) at three loca-
tions (France, Germany, and the United Kingdom) on a wide
range of topics. The dataset provides over 25 hours (x2) of
recorded two-person interactions in natural environments, as
well as synchronized audio, video (25fps), and motion cap-
ture data (using Kinect 2.0). Each participant’s video is con-
tinuously annotated, meaning that each video frame has an
engagement score from 0 to 1. The dataset, which is currently
the longest recorded and the only dataset with continuous an-
notated engagement scores, is divided into a training and val-
idation set. Additionally, there is an unpublished labeled test
set available for online testing.
Evaluation Metrics. Human change is continuous, the au-
thors of the benchmark dataset [Müller et al., 2023] suggest
using the concordance correlation coefficient (CCC) [Lin,
1989] to assess the similarity between the complete sequence
of predicted scores, ŷL, and the complete sequence of true la-
bels, yL, for each of the target participants in the validation or
test set, where L represents the length of the sequence. The
CCC is defined as

ρc =
2ρσyLσŷL

σ2
yL + σ2

ŷL + (µyL − µŷL)2
, (8)

where ρ is the pearson correlation coefficient, σyL and σŷL

are the standard deviations of yL and ŷL, and µyL and µŷL

are the means of yL and ŷL.

4.2 Experimental Setup
Similar to previous studies [Müller et al., 2023; Yao et al.,
2024], we extract multi-modal features from each frame of all
ultra-long videos and their corresponding audio clips. Then,
we concatenate these features, as done in Yu et al. [2023b], to

form 1704D multi-modal features at the current moment. Fi-
nally, we obtain multi-modal feature sequences for each video
and use the center-based sliding window to partition them into
subsequences for subsequent training. The core length is set
to 32 with an extended window length of 32, i.e., using the
time window size of approximately 2.5 seconds.

The linear projection layer maps the multi-modal feature
subsequence of length l to xemb, where xemb ∈ Rl×768, and
then adds sinusoidal positional embeddings to obtain the em-
bedded vectors. When the dialogue cross-enhanced module
is not used, we set N = 3, M = 0, and K = 0. The SA block
comprises MSA with 8 heads. The FFN of the SA encoder
consists of 2 linear layers with dimensions of 768×4 and 768,
respectively. When using the dialogue cross-enhanced mod-
ule, we set N = 1, M = 1, K = 2. The dialogue cross-enhanced
module repeatedly stacks K blocks, each block comprises
MSA with 8 heads. The setting of each block is similar to
the block of the SA encoder. In both the SA encoder and the
dialogue cross-enhanced module, the block skip connection
coefficient α is set to 0.5. The MLP output block has one hid-
den layer consisting of 128 neurons (with SELU activation
function) and one output layer.

We train all our models for 100 epochs on 1 Nvidia V100
GPU with a batch size of 32. Other setups include a learn-
ing rate scheduler, specifically utilizing the Reduce Learning
Rate On Plateau algorithm, with a reduction factor of 0.5 and
a patience of 10 epochs. Additionally, we use an Adam op-
timizer with a learning rate of 1e−3 and our proposed center
MSE loss function with the β of 0.5.

4.3 Main Results
Comparisons with SOTA models. As shown in Table 1,
we compare our method with all previous methods. The fea-
ture sequence partitioning methods are classified into normal,
sliding window, and center-based sliding window. Consider-
ing the specific applications of real-time estimation, we tem-
porarily ignore the method proposed by Yang et al. [2023],
which uses feature subsequences of 10 seconds as input. As
shown in Table 1, Our proposed CEAM, in combination with
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Model (Method) Params Speed ↑
(M) (FPS)

SA-based model (SW) 22.67 4,537
BiLSTM-based model (SW) 36.17 1,310

BiLSTM-based model (CSW) 36.17 2,029
CEAM (CSW) 23.98 6,455

Dialogue Cross-Enhanced CEAM (CSW) 31.07 6,185

Table 2: Comparison of the inference speed between our proposed
method and the previous best model in the real-time engagement
estimation task. FPS: Frames Per Second, refers to the number of
frames inferred per second, obtaining the corresponding engagement
score. SW refers to the sliding window, and CSW refers to our pro-
posed center-based sliding window.

N M & K Val CCC ↑ N & M K Val CCC ↑
1 0 0.819 1 1 0.819
2 0 0.820 2 1 0.825
3 0 0.821 1 2 0.835
4 0 0.815 2 2 0.818
5 0 0.814 1 3 0.812

Table 3: Ablation study with the different architecture of Dialogue
Cross-Enhanced CEAM.

our proposed center-based sliding window method, performs
excellently. The CCC on the validation set improves by 2.5%
compared to the previous best SA-based model [Yu et al.,
2023b] and outperforms the previous SOTA BiLSTM-based
model [Yu et al., 2023b] with sliding window.

Efficient use of interlocutor’s information. When incor-
porating informative interactions from the interlocutor, the
previous method, as demonstrated by Yang et al. [2023], is
rudimentary. The long subsequence (10 seconds) brings more
stable results on both validation and test sets but is not suit-
able for real-time engagement estimation. In addition, PCA
resulted in a loss of subsequence feature information, causing
underfitting on the validation set.

As shown in Table 1, we also test the time window size of
10 seconds on CEAM, and the results show that sufficiently
long feature subsequences lead to significant improvement,
and the same applies to our proposed model. Our proposed
dialogue cross-enhanced module, which can be directly ap-
plied to our base model to fully use interlocutor information
and enhance attention capabilities, finally achieves the CCC
of 0.835 on the validation set and 0.704 on the test set, further
enhancing the ability for real-time engagement estimation.

Comparison of inference speed. As shown in Table 2,
the inference speed of our proposed method is significantly
improved by nearly 400% compared to the previous best
BiLSTM-based model. Due to the superiority of parallel
computation in SA, it substantially outperforms the serial
computation of BiLSTM overall. Moreover, the overall speed
of both CSW-based methods is better than SW-based meth-
ods. In addition, our model has an advantage in terms of the
number of parameters, and the smaller number of parameters
is easier to deploy to mobile devices.

Heads 4 6 8 12

Val CCC ↑ 0.790 0.831 0.835 0.796

Table 4: Ablation study on the multi-head attention.

α Val CCC ↑
0.3 0.817
0.5 0.835
0.7 0.821

Table 5: Ablation results of
block skip coefficient α.

β Val CCC ↑
0 0.807

0.5 0.835
1.0 0.810

Table 6: Ablation results of
weighting coefficient β.

4.4 Ablation Study
We perform some ablation studies for the important parame-
ters in our proposed dialogue cross-enhanced CEAM.
Depth of SA encoder and dialogue cross-enhanced mod-
ule. When the dialogue cross-enhanced module is not used,
i.e., M = 0 and K = 0, we conduct ablation studies on the num-
ber of blocks in the SA encoder of CEAM, as illustrated in
the left column of Table 3. As the number of blocks increases
from 3 upwards, performance will start to degrade. To en-
hance the fusion frequency across two branches (SA encoder
of targeted participants and interlocutors), CA modules (K)
can be stacked (by reducing N and M to maintain the same
total model depth). The results are presented in the right col-
umn of Table 3. Fusing branches too often does not improve
performance but introduces more parameters.
Number of heads in multi-head attention. As shown in
Table 4, we test the effect of different numbers of heads in
multi-head attention and find the best performance. In our
models, an excessive number of heads may lead to overfitting,
while too few heads could impede the capture of intricate in-
put relationships, thereby impacting performance.
Effectiveness of weighted block skip connection. Skip
connection is introduced in each block in the SA encoder and
dialogue cross-enhanced module, and the circulation infor-
mation is controlled through α. Table 5 shows the necessity
of using weighted skip connections between blocks, which
are optimized when set to 0.5.
Effectiveness of Center MSE loss. As shown in Table 6,
center MSE loss is better than MSE loss, and the model can-
not miss the attention of the edge of feature subsequences.

5 Conclusions
To summarize, we introduce a novel center-based sliding win-
dow method for partitioning feature sequences in real-time
engagement estimation. Then, we propose the dialogue cross-
enhanced CEAM that effectively incorporates the features of
the interlocutor via cross-attention. Our experimental results
validate the effectiveness of our approach and highlight the
potential of the attention mechanism in real-time engagement
estimation. In the future, we aspire to further enhance the
model performance by fostering closer interaction with both
the target participants and their interlocutors.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3193



Acknowledgments
This work was supported by the Natural Science Foun-
dation of China (62276242), National Aviation Science
Foundation (2022Z071078001), CAAI-Huawei MindSpore
Open Fund (CAAIXSJLJJ-2022-001A), Anhui Province Key
Research and Development Program (202104a05020007),
Dreams Foundation of Jianghuai Advance Technology Cen-
ter (2023-ZM01Z001), Beijing Municipal Science & Tech-
nology Commission, Administrative Commission of Zhong-
guancun Science Park (Z231100005923035).

Contribution Statement
Jun Yu and Keda Lu contributed equally to this work.

References
[Aytar et al., 2016] Yusuf Aytar, Carl Vondrick, and Antonio

Torralba. Soundnet: Learning sound representations from
unlabeled video. Advances in neural information process-
ing systems, 29, 2016.

[Baltrusaitis et al., 2018] Tadas Baltrusaitis, Amir Zadeh,
Yao Chong Lim, and Louis-Philippe Morency. Openface
2.0: Facial behavior analysis toolkit. In 2018 13th IEEE
International Conference on Automatic Face amp; Gesture
Recognition (FG 2018), May 2018.

[Bednarik et al., 2012] Roman Bednarik, Shahram Eivazi,
and Michal Hradis. Gaze and conversational engagement
in multiparty video conversation: an annotation scheme
and classification of high and low levels of engagement.
In Proceedings of the 4th workshop on eye gaze in intelli-
gent human machine interaction, pages 1–6, 2012.

[Cafaro et al., 2017] Angelo Cafaro, Johannes Wagner, To-
bias Baur, Soumia Dermouche, Mercedes Torres Torres,
Catherine Pelachaud, Elisabeth André, and Michel Val-
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François Brémond, Jan Alexandersson, et al. Multime-
diate’23: Engagement estimation and bodily behaviour
recognition in social interactions. In Proceedings of the
31st ACM International Conference on Multimedia, pages
9640–9645, 2023.

[Nomura et al., 2019] Kazuaki Nomura, Motoi Iwata,
Olivier Augereau, and Koichi Kise. Estimation of
student’s engagement based on the posture. In Adjunct
Proceedings of the 2019 ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and
Proceedings of the 2019 ACM International Symposium
on Wearable Computers, pages 164–167, 2019.

[Pellet-Rostaing et al., 2023] Arthur Pellet-Rostaing, Rox-
ane Bertrand, Auriane Boudin, Stéphane Rauzy, and
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