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Abstract

Sensor-based Human Activity Recognition (HAR)
constitutes a key component of many artificial
intelligence applications. Although deep feature
extraction technology is constantly updated and
iterated with excellent results, it is still a difficult
task to find a balance between performance and
computational efficiency. Through an in-depth
exploration of the inherent characteristics of HAR
data, we propose a lightweight feature perception
model, which encompasses an internal feature
extractor and a contextual feature perceiver. The
model mainly consists of two stages. The first
stage is a hierarchical multi-scale feature extraction
module, which is composed of deep separable
convolution and multi-head attention mechanism.
This module serves to extract conventional features
for Human Activity Recognition. After the feature
goes through a fragment recombination operation,
it is passed into the Context-Aware module of
the second stage, which is based on Retentive
Transformer and optimized by Dropkey method
to efficiently extract the relationship between the
feature fragments, so as to mine more valuable
feature information. Importantly, this does not
add too much complexity to the model, thereby
preventing excessive resource consumption. We
conducted extensive experimental validation on
multiple publicly available HAR datasets.

1 Introduction

Human Activity Recognition (HAR) is an emerging research
field that has attracted much attention in recent years. It
aims to recognize activity information from human posture
or action [Ismail et al., 2023]. HAR’s applications span
intelligent living environments, such as motion tracking,
healthcare, and human-computer interaction[Islam et al.,
2022].

Internal feature extraction

Context aware

General feature extraction

Activity
recognition

Figure 1: Comparison of our proposed method with traditional
methods

Numerous studies have explored HAR, initially employing
classical machine learning methods like decision trees (DT),
support vector machines (SVM), random forests (RF),
and naive Bayes (NB) due to their low computational
complexity and suitability for smaller datasets[Wang et
al., 2016]. However, these methods extracted limited
representative features, which constrained the classification
performance. With the development of deep learning, it
has become possible to automatically extract finer-grained
features. Various mainstream deep neural networks such
as convolutional neural networks [Zeng et al., 2014] , and
long short-term memory networks [Dang et al., 2020a] have
become important research topics in the widespread HAR
scenarios, demonstrating sustained superiority. Compared to
traditional machine learning methods, deep learning methods
can automatically extract deep-level feature representations
from sensor signals, thereby improving the accuracy of
HAR[Xia et al., 2020; Dua et al., 2021]. Nonetheless, deep
feature extraction in sensor-based HAR continues to pose
several challenges:

Balancing performance and efficiency: CNNs
show a strong performance in the sensor HAR
advantage, small differences can effectively capture the
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Figure 2: Flowchart of the proposed method, including the fragment association method, the internal feature extraction module MSC and the
Context-Aware

activity[Gholamiangonabadi and Grolinger, 2023]. However,
CNNs lack the ability to explicitly model time series data
when dealing with temporal information, limiting their
ability to deal with complex tasks. In contrast, time series
models such as Rerrent Neural Network are better at
handling time-dependent and dynamic features [Abdelrazik
et al., 2023]. These models are not only sensitive to
temporal aspects but also have the ability to retain previous
information. However, such time series models converge
slowly and are prone to overfitting during training. On
wearable devices, it is critical to achieve a balance between
performance and efficiency in HAR systems and there is no
optimal solution yet.

Distribution discrepancy: Dang et al. [Dang et al.,
2020b] emphasized that due to distribution differences, it
is incorrect to assume that training data and test data
are independent and have the same distribution in activity
recognition. In sensor-based HAR, these differences mainly
include distribution changes among users and changes over
time [Chang et al., 2020]. The difference in distribution
between users is due to biological and environmental factors.
For example, people walk at different speeds and stride sizes,
resulting in differences between different users. Although
convolutional networks are good at capturing local detail
features, they are difficult to solve the above problems. In
contrast, the temporal model considers the time dependence
and has advantages in dealing with distribution differences in
behavior recognition [Ruiz et al., 2021]. However, it is still
a challenge to deploy high-performance complex models on

resource-constrained wearable devices.

In this paper, we have made the following contributions:

1. We propose an efficient feature extraction module,
which includes an internal feature extraction module
to extract intra-segment features, and a context feature
awareness module to extract inter-segment relationship
features.

2. We propose to use the Retentive Transformer model
to capture the temporal dependence of HAR data
for efficient training through a parallel representation
method. And the optimization for HAR system in terms
of Drop technique of self-attention.

3. Different from the previous time-dependent models,
we do the correlation processing between segments of
the data, so that the Context-Aware module can pay
attention to the relationship between adjacent segments,
so as to extract richer deep features.

The remainder of this paper is organized as follows:
Section 2 reviews some relevant approaches in the field
that are relevant to our work. Section 3 Outlines the
current workflow and discusses the implementation details of
the approach. Section 4 presents the experimental details.
Finally, Section 5 shows the performance of the model in
experiments, discussing the current findings.
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2 Related Work

2.1 Deep Feature Extraction

In recent years, the rapid development of advanced
computing resources has promoted the training of
high-performance neural network models, enabling new
deep learning methods to mine deeper effective features
for more accurate recognition[Pramanik et al., 2023;
Yang et al., 2020]. Qian et al. [Qian et al., 2019]introduced
the Distribution-Embedded Deep Neural Network, which
integrates statistical features with spatial and temporal
information in an end-to-end deep learning framework
by incorporating an additional loss function based on
Maximum Mean Discrepancy distance. Patino-Saucedo et
al. [Patiño-Saucedo et al., 2022] developed the Artificial
and Raw Sensor fusion approach, which leverages data
from multiple sensors to perform deep feature fusion
encompassing counting features, averaging features,
aggregated features, and raw features. Deep feature
extraction often incurs substantial computational costs, and
the combination of artificial and deep features emerges as
a potential solution to reducing computational complexity.
Ravi et al.[Ravi et al., 2016] combined spectrogram features
with a single CNN layer and two fully connected layers for
HAR, demonstrating the feasibility of real-time applications
through evaluations on four benchmark datasets.

2.2 Distribution Discrepancy

Two types of sample distribution discrepancy exist in HAR:
individual user variance and temporal distribution variation.
Variance among users is due to diverse movement patterns
during activities, while temporal distribution changes over
time with possible new activities emerging in dynamic
streaming environments. The Multi-Source Unsupervised
Cooperative Transfer Network (MUCT) model, proposed
by Jia et al. [Jia et al., 2023], addresses this distribution
discrepancy through automatic feature extraction, domain
adaptive alignment, and iterative use of consensus filters for
improved robustness. Chen et al.[Chen et al., 2019] further
investigated individual differences and task consistency in
human-centric sensing applications. Reducing individual
differences while maintaining task consistency provides
potential for accurate recognition. Furthermore, Rokne
et al. [Rokni et al., 2018] utilized transfer learning
in personalization models, acknowledging user distribution
discrepancy by fine-tuning a CNN only in the testing phase
for the target user. [Liu et al., 2023] proposed a fusion loss
function method to optimize inter- and intra-feature problems
through the idea of metric learning.

3 Methods

This paper aims to exchange less resource consumption
for higher performance in sensor-based HAR systems by
proposing new methods in data processing and model
construction. In a standard HAR task, we first need to

process raw signal data, which can be inertial sensor signals
(such as three-axis acceleration and angular velocity), or
ECG or EMG signals. In the data preprocessing stage,
we proposed a segment association method to associate the
originally scattered segment features to form a time segment
feature. This can alleviate the common problem of uneven
sample distribution in HAR. We denote the action segment
τn as xτ ∈ RT , where T is the number of time points in a
segment. Then, the feature extractor function representation
comes from the input a fragment fτ ∈ RF , where F denotes
the dimension of the output feature. Then, fτ is updated
to f̂τ to improve the modeling context attributes. Finally,
from the perspective of time series modeling, the context
relationship between adjacent features is extracted by the
Context-Aware module for feature extraction. Context-Aware
module access to a series of characteristics [̂fτ ]

N
τ=0, and

extract the relationship features between segments. In
addition, we propose further optimizations for HAR data
during training the model. Fig 2. shows the flow chart.

3.1 Feature Extraction within Segments
Inside the segment, we build a multi-scale hierarchical
convolution module for extracting local detail features, and
a multi-head attention module for extracting long-distance
time-dependent features. In order to understand the
relationship between time and features, we use convolution
kernels of different sizes for convolution. Specifically, we
use convolutional filters of size (fs × 2), (fs) and (fs/2) to
capture features at three scales, using one simple convolution
and three separable convolutions per path. Perform three
separable convolutions one after the other to get the features
x1, x2, x3, and then concatenate them in a hierarchical
way. After global pooling, the features of different scales
are captured through the multi-head attention mechanism
to capture the long-distance time-dependent features in the
segment. Finally, the features of different scales are concated.

3.2 Context-Aware Module
Human activities exhibit significant coherence and often
revolve around a single behavior for a brief duration.
Consequently, it is vital to establish interrelationships
between action segments. In this study, we employ a
context encoder to capture these cross-segment features.
Currently, similar methods have been adopted in the field
of sleep monitoring. Phyo et al. [Phyo et al., 2023]
proposed the utilization of BiLSTM for encoding operations
to capture inter-segment features and apply them to confusion
classification and sleep stage representation, leading to
promising outcomes. For our context module, we integrate
the Retention mechanism from Retentive Network [Sun et
al., 2023] to handle the time correlation among fragments and
enhance its structure using the DropKey method.

After obtaining the multi-scale feature representation, we
introduce a Context feature awareness module called CA,
incorporating the concepts from DropKey [Li et al., 2023]
and RetNet. The CA module employs adaptive average
pooling to capture the features from the preceding multi-scale
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paths. Subsequently, the DK-Ret method is employed to
extract temporal segment features.

3.3 Retentive Transformer with Layer-Order
Key-Value Drop

We first remodel the characteristics of the context fragments
through convolution processing, as MSC is introduced into
the shape of (B,S, F, L) , where the characteristics of
[fτ ]

N
τ=0 = {f(−N/2), f(−N/2+1), ..., f(N/2−1), f(N/2)} ,each fτ

updated to f̂τ , access to a series of characteristics [f̂τ ]
N
τ=0,

so that it can maximize the perception of the relationship
between the segments, ... The retention layer is defined as
follows:

Q = (XWQ)⊙Θ, K = (XWK)⊙ Θ̄, V = XWV

Θn = einθ, Dnm =

{
γn−m, n ≥ m

0, n < m
(1)

Here, Θ represents the complex conjugate of Θ, while
D ∈ R|x|×|x| combines causal masking and exponential
decay along relative distance into a single matrix . We use
h = dmodel/d retention heads in each layer, where d is the
head dimension.To prevent excessive feature extraction, we
perform a residual join on the features before and after the
DropKey-Ret operation and add dropout:

[yτ ]
N
τ=0 ← DK −Ret([f̂τ ]

N
τ=0) + [f̂τ ]

N
τ=0 (2)

The existing multi-head attention mechanism commonly
incorporates the Dropout algorithm, which is often used as
a regularizer in CNNs. However, using the structured drop
method from CNNs is not appropriate for the multi-head
self-attention model. This is because a large drop probability
in the deep layer can result in the loss of high-level feature
information, while a small drop probability in the shallow
layer can lead to overfitting of detailed features [Li et al.,
2023]. To address this issue, we introduce DropKey into the
time series model. For the problem of deep versus shallow
features, DropKey does not perform random drops at each
layer with a fixed probability. Instead, it gradually decreases
the probability of drop as the number of layers deepens. The
pseudo-algorithm for DropKey is presented below:

Algorithm 1: DK-Net pseudo-algorithm
Input: Θn, Q,K, V,Dnm :Variables mentioned in

Equation 2; mask ratio: ratio to mask;
Output: Features x.
def Attention(Q,K, V,mask ratio)

Attn← (Scaling(Q)@KT ) ∗D
m r ←OnesLike(Attn) ∗mask ratio
Attn←Softmax(Attn+Mask(m r) ∗ −1e12)
x← Attn@V

return x

Algorithm 2: The total flow pseudo algorithm

Input: Training dataset D =
(
[xτ ]

N
τ=0, [yτ ]

N
τ=0

)
;

network modules: MSC and CA;
Output: Optimized parameters Θ

while network parameters not converged do
Draw a sequence ([xτ ]

N
τ=0, [yτ ]

N
τ=0) ∼ D

for τ ← 1 to N do
foreach i in multi-scale do

f(i,τ) ← AAP (MSC(i,τ)(xτ ))

fτ ←Multi-head(Cat(
∑

i f(i,τ)))

[f̂τ ]
N
τ=0 ←Update([fτ ]Nτ=0)

[yτ ]
N
τ=0 ←DK-Ret(i,τ)([f̂τ ]Nτ=0) + [f̂τ ]

N
τ=0

L ← 1
N

∑
WCE(yτ , ŷτ ) + λ·WCS(yτ , ŷτ )

Θ←Adam(L )

3.4 Optimization

To optimize the tunable parameters of MSC and DK-Ret, we
develop a classification learning task. Considering that HAR
data basically have class imbalance problem, we also use
WCE function and class weighted cosine similarity (WCS)
objective function [Phyo et al., 2023]:

WCS (yτ , ŷτ ) = −wc

N∑
τ=0

(1− cos (yτ , ŷτ )) (3)

where cos(v,w) = v ·w/∥v∥ · ∥w∥ is the cosine similarity
operation and λ denotes a scaling hyperparameter. Pseudo
algorithms for training all networks in the framework are
given in Algorithm 2.

4 Experiment

The experiments are carried out on the Kaggle platform, and
we choose NVIDIA P100 and the default configuration. The
experimental design consists of two main parts: ablation
experiments and a comparison of related work.

4.1 Datasets

This section offers a comprehensive elucidation of the
conducted experiments and specificities associated with
them. The pivotal component of these investigations
were four distinct datasets, each characterized by a unique
method of data acquisition. Data were accumulated either
through multiple sensor nodes or via smartphones, carried
by participants as they engaged in various activities across
different contexts. The datasets encompassed within our
research include OPPORTUNITY, PAMAP2, and UCI-HAR,
effectively forming a composite of multimodal HAR data.
In addition, we incorporated the WISDM dataset that was
compiled using a tri-axial accelerometer. In order to ensure
an objective evaluation of our methodology, several pertinent
aspects of these employed datasets have been outlined below.
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Datasets PAMAP2 WISDM OPPO. UCI-HAR

Sensor 40 3 72 9
Subject 9 29 12 30
Class 12 6 18 6

Window Size 171 90 113 128
Sequence 4 8 32 8
Batch Size 512 512 256 512

Lr 0.001 0.001 0.001 0.001
Epoch 50 50 40 50

Table 1: Dataset Details

PAMAP2 [Reiss and Stricker, 2012]: The PAMAP2
Physical Activity Monitoring dataset is public available
at UCI repository, which contains 18 different physical
activities The dataset was collected from 9 subjects who wore
3 wireless Inertial Measurement Units.

WISDM [Kwapisz et al., 2011]: A public dataset provided
by the Wireless Sensor Data Mining Laboratory, containing 6
data attributes: user, activity, timestamp, x, y, z. Twenty-nine
volunteers were recruited to perform a specific set of
activities.

OPPORTUNITY[Chavarriaga et al., 2013]: Realistic daily
life activities of 12 subjects in a sensor-enriched environment
were recorded. In total, 15 networked sensor systems,
including 72 sensors in 10 modalities, are integrated on the
environment and the body.

UCI-HAR [Ignatov, 2018]: It contains sensor recordings
from 30 subjects who were asked to wear a waist-mounted
smartphone to perform six activities of daily living (ADLs).
The triaxial acceleration and triaxial angular velocity signals
were collected at a sampling rate of 50Hz during data
acquisition.

4.2 Evaluation Metrics

To evaluate the performance of the proposed model for HAR,
the following metrics were used for evaluation generally.

Accuracy =
TP+ TN

TP+ FN+ FP + TN

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1-macro =
2× (Precision× Recall)

Precision + Recall

F1-weighted =
∑
i

2× ωi × (Precisioni × Recalli)
Precisioni + Recalli

(4)

where TP and TN are the number of true and false positives,
respectively, and FN and FP are the number of false
negatives and false positives. ωi is the proportion of samples
of class i.

Network Accuracy F1-macro F1-weight Time

MSC
96.85% 95.44% 96.89% 3m49s
90.12% 90.56% 91.43% 1m57s

MSC-CA
97.93% 96.78% 97.95% 5m 1s
96.89% 96.43% 97.02% 2m28s

Table 2: Ablation Experiment

5 Results & Discussion

5.1 Ablation Experiment

We conduct experiments to evaluate the performance and
effectiveness of different combinations of modules. Second,
the performance and efficiency of the MSC-CA model
when using only MSC modules or both MSC and CA
modules are verified in stages to ensure its plausibility. Two
datasets, WISDM and PAMAP2, were selected for ablation
experiments, and the specific information is in Table 2.

The MSC model solely captures internal segment
information, but demonstrates effective performance and
rapid convergence. In comparison, the MSC-CA model,
which incorporates relationship features between segments,
exhibits superior performance, surpassing the MSC model
across all three evaluation indicators. On the WISDM
dataset, we achieve an average performance lead of 1%.
This advantage becomes more pronounced on PAMAP2,
where we observe a lead of 6%. This disparity can be
attributed to the increased complexity and a multitude of
actions in PAMAP2, making it more challenging to identify
confusing categories. Moreover, in terms of performance
and efficiency, the addition of the Context-Aware module
in MSC-CA incurs minimal overhead in time when
compared to MSC. By simultaneously extracting internal
segment features and inter-segment relationship features,
our approach outperforms the method of solely extracting
internal segment features, thus achieving a better tradeoff
between effectiveness and efficiency. Furthermore, regarding
the distribution differences, depicted in Fig 3 and 4, we
present the confusion matrices of MSC-CA for WISDM and
PAMAP2. The left figure reveals some confusion between
the ”Downstairs” and ”Upstairs” classes, while the right
figure indicates confusion primarily caused by the scarcity of
samples. Categories with smaller motion amplitudes, such
as ”Sitting” and ”Standing,” do not appear, which stems
from distribution disparities. Notably, MSC-CA exhibits
approximately 5% higher accuracy for ”downstairs” and
”upstairs” compared to MSC, highlighting the significant
enhancement brought by the Context-Aware module.

5.2 Comparison with Existing Work

We further investigate the performance and efficiency of our
model. We use all four datasets mentioned in the article for
detailed testing, and the test metrics include accuracy and
time. Fig 6 and Table 3 visually compares the performance
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Model PAMAP2 WISDM OPPORTUNITY UCI-HAR

CNN [Zeng et al., 2014] 90.86% 0m24s 93.31% 0m37s 82.15% 0m39s 92.39% 0m14s
LSTM[Dang et al., 2020a] 89.71% 0m43s 96.71% 1m41s 81.65% 0m68s 95.52% 0m12s

LSTM-CNN [Xia et al., 2020] 90.48% 0m48s 95.90% 2m28s 77.64% 1m36s 97.01% 0m32s
CNN-GRU [Dua et al., 2021] 90.10% 0m25s 94.95% 1m18s 79.85% 0m44s 95.11% 0m17s
SE-Res2Net [Gao et al., 2019] 90.91% 1m32s 95.52% 8m47s 82.15% 2m58s 96.60% 1m23s

ResNeXt[Mekruksavanich et al., 2022] 90.52% 18m24s 96.67% 22m44s 79.15% 9m21s 96.38% 3m48s
Gated-Res2Net [Yang et al., 2020] 91.81% 2m46s 97.02% 8m36s 81.51% 3m22s 96.31% 2m51s

Rev-Attention [Pramanik et al., 2023] 89.90% 2m26s 97.46% 6m14s 83.77% 2m18s 95.53% 2m28s
MSC-CA 96.89% 2m28s 97.93% 4m 52s 84.63% 1m23s 96.52% 2m44s

Table 3: Comparison with Existing Work

Figure 3: Confusion matrix of the model on PAMAP2

Figure 4: Confusion matrix of the model on WISDM

Figure 5: Scatter plot of model performance versus efficiency

and efficiency between MSAP-DM and advanced models.
In terms of performance, both the UCI-HAR and WISDM

datasets demonstrate high accuracy across all models.
MSC-CA exhibits a notable advantage over the most
advanced HAR model, achieving accuracies of 96.52%
and 97.93%, respectively, representing a significant 1%
improvement. This indicates the effectiveness of the
Context-Aware module even for simpler datasets. However,
on more complex classification datasets like PAMAP2 and
OPPORTUNITY, MSC-CA outperforms the others with
even greater margins, attaining accuracies of 96.89% and
84.63%, respectively. These results are approximately
5% and 2% better than the next best models for their
respective datasets. Notably, all models achieve remarkably
high accuracy (≥98%) in general categories. Therefore,
MSC-CA demonstrates superior classification performance,
particularly for challenging and confusing categories.

In terms of efficiency, Fig 5 shows the relationship between
the average accuracy and the total time of the model on
the four datasets, and it can be seen that even without
the time series network module, the most advanced model
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Figure 6: Model performance and efficiency analysis

consumes more time than the classical model, but the
performance is significantly better than the classical models
such as CNN, LSTM, CNN-GRU. Although there is a big
gap in time consumption, in most cases, the performance
improvement brought by advanced models is worth it. After
adding the time series module (CA), our MSC-CA model
maintains comparable time consumption with the state-of-art
performance models, and especially obtains very excellent
performance on PAMAP2 and OPPORTUNITY, whose
increased time consumption brings much higher benefits than
other state-of-art models.

In general, we believe that the MSC-CA model has reached
a new height in the trade-off between performance and
efficiency. We have a good control of model size and
performance. Compared with other model, the performance
improvement value we get is much higher than the cost. In
addition, our model shows strong performance for complex
datasets, which helps the field of wearable HAR to continue
to develop towards high-performance complex tasks in the
future.

6 Conclusion

In this paper, we deeply study the temporal correlation
of HAR data and propose a lightweight network model
with Powerful feature extraction ability. MSC-CA
consists of an internal feature extraction module and a
Context-Aware module. The model effectively captures the
correlation information between segments while maintaining
lightweight, so as to alleviate the problems of efficiency and
distribution difference in HAR. Our additional processing
of the data also allows the model to better capture the

connections between segments. We experimentally verify
the effectiveness and frontier of the proposed method, which
provides a new idea for the application of sensor-based HAR.
We will explore more realistic methods in the future and plan
to conduct real-machine deployment on embedded devices to
prove the practical usability of the method.
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