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Abstract

The modeling of just noticeable difference (JND)
in supervised learning for visual signals has made
significant progress. However, existing JND mod-
els often suffer from limited generalization due to
the need for large-scale training data and their con-
straints to certain image types. Moreover, these
models primarily focus on a single RGB modality,
ignoring the potential complementary impacts of
multiple modalities. To address these challenges,
we propose a new meta-learning approach for the
JND modeling, called MetaJND. We introduce two
key visual-sensitive modalities like saliency and
depth, and leverage a self-attention mechanism for
effective interdependence of multi-modal features.
Additionally, we incorporate meta-learning for the
modality alignment, facilitating dynamic weight
generation. Furthermore, we perform hierarchi-
cal fusion through multi-layer channel and spatial
feature rectification. Experimental results on four
benchmark datasets demonstrate the effectiveness
of our MetaJND. Moreover, we have also evaluated
its performance in compression and watermarking
applications, observing higher bit-rate savings and
better watermark hiding capabilities.

1 Introduction
In visual signal analysis, just noticeable difference (JND)
measures the smallest change or difference that the human vi-
sual system (HVS) can perceive. Such measurements effec-
tively quantify the visual redundancy existing in visual sig-
nals [Bai et al., 2022], which can be used to achieve per-
ceptual coding [Cheng et al., 2021], thereby saving more
bit-rate without damaging visual quality [Nami et al., 2022;
Wang et al., 2021]. This is of great importance due to the in-
creasing demand for high visual quality in digital visual ser-
vices like online video streaming, social media sharing, vir-
tual reality, etc. Furthermore, JND can also be widely used
in various perceptual image and video processing tasks, such
as enhancement [Nikzad et al., 2021], compression [Qi et al.,
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Figure 1: Illustration of just noticeable difference (JND) and its ap-
plications. The proposed meta-learning JND framework jointly ex-
plores the RGB, saliency, and depth modalities to predict the visual
redundancy based on a multi-modal meta alignment (MMA) mod-
ule, a multi-layer channel-space feature rectification (MCSFR) mod-
ule, and a multi-scale feature fusion (MSFF) module.

2023], digital watermarks [Qu et al., 2023], and quality as-
sessment [He et al., 2022].

Traditional JND models are typically driven by the HVS
knowledge. Knowledge-driven approaches primarily com-
pute JND by combining various HVS visual effects, such as
brightness adaptation [Yang et al., 2005], edge and texture
sensitivity [Liu et al., 2010], free energy principle [Wu et al.,
2013], pattern complexity diversity [Wu et al., 2017], central
foveal effect [Chen and Wu, 2019], feedforward and feedback
modulation effects [Yin et al., 2023], and blur sensitivity ef-
fect [Wang et al., 2022]. However, how to accurately simulate
multiple visual effects and their interactions remain challeng-
ing for these methods due to the limited knowledge of the
HVS.

Recently, data-driven JND models [Shen et al., 2020] have
emerged as a new trend due to their ability to automatically
learn descriptive features from visual data. The performance
of these approaches heavily relies on the amount and distribu-
tion of datasets. However, there is a limitation in popular JND
datasets such as PWJND [Shen et al., 2020] and KonJND1k
[Lin et al., 2022], as they have very limited data available
due to the high cost of subjective JND labeling. This limita-
tion can greatly impact the accuracy and generalization of the
training models. To address this issue, [Xie et al., 2023] pro-
posed a multi-modal network called hmJND-Net for the JND
estimation, which utilized RGB, depth, saliency, and segmen-
tation modalities to solve the problem of data scarcity.

Motivated by the discussions above, this paper presents a
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Figure 2: Overall framework of our MetaJND. RGB, saliency, and depth modalities are three inputs. The multi-modal meta alignment (MMA)
module is then used to enhance the multi-modal alignment. Multi-layer channel and spatial feature rectification (MCSFR) and multi-Scale
feature fusion (MSFF) modules are used to integrate the latent JND features. Please zoom-in the electronic version for better details.

multi-modal-driven meta-learning JND framework, namely
MetaJND, to improve the accuracy and generalization. There
are two key differences between MetaJND and [Xie et al.,
2023]. First, [Xie et al., 2023] includes the segmentation
modality to provide object category information. However,
this can lead to issues when attempting to match category
information with the JND threshold, potentially misleading
model training. For example, as depicted in Figure 1, differ-
ent buildings are with the same object category, but they have
different JND thresholds. In contrast, MetaJND avoids this
problem by excluding the segmentation modality. Second,
[Xie et al., 2023] combines auxiliary modalities and aligns
them with the RGB modality. This approach faces two po-
tential issues: 1) Only a few top-layer features are fused and
aligned, while a significant number of features from different
layers are ignored. 2) It is difficult to guarantee all auxiliary
modalities are efficiently aligned and utilized. In contrast,
MetaJND first employs the attention mechanism and meta-
learning to separately align the features of the RGB and each
auxiliary modality. Then, we introduce a multi-layer channel
and spatial feature rectification to fuse the aligned features,
which can comprehensively utilize the information of hierar-
chical features.

The main contributions of this paper are threefold: 1) To
improve the limited generalization of deep JND models, we
have proposed a meta-learning JND model at the pixel-level,
namely MetaJND. By using meta-learning, we can make on-
line adjustments to the RGB, saliency, and depth modali-
ties, ensuring a higher generalization. 2) To effectively align
features from different modalities, we have devised a novel
multi-modal meta alignment (MMA) module that combines
attention mechanism and meta-learning. This module com-
bines attention mechanisms and meta-learning techniques to
efficiently align the RGB features with each auxiliary modal-
ity. 3) To fully exploit complementary information from hier-
archical features, we have designed a multi-layer channel and
spatial feature rectification (MCSFR) module and a multi-
scale feature fusion (MSFF) module to merge the aligned
multi-modal features, predicting more accurate JND.

2 Related Work
In this section, we first briefly review some representative
data-driven JND models, including single-image and multi-
image modality JND methods. We then provide a detailed
explanation of the motivation behind our MetaJND.

2.1 Single-Image Modality Methods
The single-image modality JND models are typically trained
on the original RGB data and their distorted versions. This
type of method predicts JND in either picture or block
level with deep networks, like convolutional neural networks
(CNN). Picture-level JND (PJND) prediction distinguishes
the critical lossless image from several distorted images with
different levels of noises. For instance, perceptually loss-
less/lossy binary classifier [Liu et al., 2019], satisfied user
ratio (SUR) prediction [Lin and Ghinea, 2022], and quality
factors prediction [Tian et al., 2020] have been developed for
the PJND estimation. In contrast, block-level JND (BJND)
prediction is conducted on the image blocks instead of the
whole picture. For instance, block-level structural degrada-
tion [Shen et al., 2020] and four-stage block-level framework
[Nami et al., 2022] have been introduced to predict BJND.

2.2 Multiple-Image Modality Methods
The multiple-image modality JND models aim at utilizing not
only the RGB image information but also auxiliary modalities
to predict the JND. For example, [Wu et al., 2020] explored
the JND modeling by introducing visual attention and pattern
complexity. Based on the gradient modality and the class ac-
tivation mapping (CAM) modality, [Jin et al., 2021] designed
signal degradation networks to simulate human perception.
Additionally, [Xie et al., 2023] fused aligned depth, saliency,
and segmentation modalities to estimate the JND threshold.

2.3 Motivation
Due to the lack of sufficient data in existing JND datasets,
both single-image modality and multiple-image modality
JND models have been developed to improve the prediction
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performance. The former simplifies the JND estimation by
predicting at the picture or block level, while the latter in-
creases the amount of data by incorporating auxiliary modal-
ities. Among them, multiple-image modality methods show
more promise in accurately estimating pixel-level JND.

However, the modeling of the JND framework using
multiple-image modality is still in its infancy. The main chal-
lenges lie in the alignment and fusion of multiple modal-
ities that may differ significantly from each other. Tradi-
tional learning strategies struggle to simultaneously align dif-
ferent pairs of modalities, such as RGB-depth and RGB-
saliency, due to their distinct characteristics. To address
these challenges, we employ meta-learning [Hu et al., 2019;
Zhang et al., 2021; Ma et al., 2022; Ye et al., 2021] to
model the JND framework, which enables adaptability to the
features of various modalities. We believe that employing
meta-learning cannot only improve the alignment of different
modalities, but also enhance generalization capabilities.

3 Proposed Method
In this section, we present the details of the proposed Meta-
JND. As shown in Figure 2, our MetaJND mainly consists of
a multi-modal alignment (MMA) module, a multi-layer chan-
nel and spatial feature rectification (MCSFR) module, and a
multi-scale feature fusion (MSFF) module.

3.1 Problem Formulation
The multi-modal data typically originate from different sen-
sors or data sources, providing distinct visual information and
features. However, these modalities also have distinct rep-
resentations, distributions, and feature spaces. For instance,
the RGB modality covers complete but low-level information,
while the depth and saliency modalities contain incomplete
but high-level semantic information. Therefore, it is nec-
essary to align the extracted shallow features from different
modalities using an alignment network Falign. This alignment
is achieved by applying the same loss function, Lalign, to both
the RGB modality and each auxiliary modality. The aligned
features are then fed into a fusion network, Ffuse. The JND
threshold is predicted by upsampling the fused features. The
optimization problem is to minimize the mixed loss of Lalign
and the final pixel distance Lpix between the prediction and
ground truth:

Loverall = Lalign + α× Lpix. (1)

3.2 Multi-modal Meta Alignment
To align multi-modal features for effective information fu-
sion, we propose a multi-modal meta alignment (MMA) mod-
ule, which consists of a dual-modality alignment (DMA)
module and a meta-learning module (MM), as illustrated in
Figure 3. DMA aligns the shallow feature of the RGB and
the auxiliary saliency or depth modality, while MM further
makes adaptive adjustments to the aligned features, which
improve the generalization of MetaJND.

Dual-Modality Alignment
In the dual-modality alignment (DMA) module, we employ
the Swin Transformer (ST) to align each pair of modali-
ties. Considering both its complexity and efficiency, we have
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Figure 3: Illustration of the proposed multi-modal meta alignment
(MMA). The inputs are the RGB modality feature Frgb and the aux-
iliary features Faux that consists of Fdep and Fsal, while the out-
puts are the meta-aligned features F̂i

dep and F̂i
sal, respectively.

adopted the Swin-B version [Liu et al., 2021]. Before the
DMA, we apply a 3×3 convolution network to individually
extract shallow features (i.e., Frgb, Fdep, and Fsal) from
the RGB, depth, and saliency modalities (i.e., Irgb, Idep, and
Isal). The shallow features are then fed into the DMA mod-
ule, which adopts a dual-stream structure to align the RGB
and auxiliary modality features. Additionally, the multi-head
cross-attention (MCA) is incorporated to guide the network
to consider the correlation of different modalities and learn
their interrelations. In practice, the RGB and auxiliary modal-
ity features are separately passed through two consecutive ST
blocks with a windowed multi-head attention (W-MCA) and
a sliding window multi-head attention (SW-MCA). Q, K, and
V are computed by mapping through the weight matrix W ,
and the calculation process is as follows:

{Q,K, V } =
{
FrgbW

Q,Conv(X)WK ,Conv(X)WV
}
, (2)

where X represents Fdep or Fsal, and Conv(·) denotes the
convolution operation.

Subsequently, we add a multi-layer perceptron (MLP) and
a GELU layer to enhance the feature tokens generated by
the MCA. A layer normalization (LN) with the residual con-
nections is added before the MCA and MLP blocks. Conse-
quently, the entire process can be expressed by{

Fi
mca = MCA(LN(K,Q, V )) +Q,

Fi
stb = MLP

(
LN

(
Fi

mca

))
+ Fi

mca.
, (3)

where Fi
mca and Fi

stb represent the output features of the
MCA blocks and the i-th ST block, respectively.

Meta-learning Module
When performing the DMA, shallow features from three
modalities are mapped to a shared feature space. However,
the limited JND-specific dataset hinders training a network
to create a complete feature space that is suitable for unseen
inputs, resulting in low generalization ability. To help the
network learn a more general representation, we introduce a
meta-learning module, which can generate adjusters for dif-
ferent inputs.
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Figure 4: Visualization of unaligned and aligned multi-modal fea-
tures: (a) shows the distribution of unaligned features of three
modalities, and (b) shows the distribution of features aligned by the
MMA module.

MM is mainly comprised of a channel attention block and
a meta-net. The channel attention block explores dependen-
cies between the two channels to generate attention features,
denoted as Fatt = Fatt(F

i
stb). For convenience, we take

SEnet [Hu et al., 2018] as the backbone of Fatt. The meta-
net is constructed with two fully-connected (FC) layers, with
a ReLU layer in between. The adjusters generated by the
meta-net are based on Fatt. During the feed forward process,
the first FC layer extracts features from the inputs, while the
second FC layer reshapes these extracted features into an ad-
juster, Fmeta. The process of generating adjusters can be de-
fined by

Fmeta = Φ(FC(ReLU(FC(Fatt)))), (4)
where FC(·) and ReLU(·) represent the FC and ReLU layer,
respectively. Φ(·) represents the reshape operation.
Fmeta enables the network to adjust to different attention

features dynamically. Specifically, it uses the adjuster to as-
sign weights to the aligned features in the DMA, followed by
a convolution operation. After the MM module, the output
features of the MMA module are represented by

F̂dep/sal = Conv1×1

(
Concat

(
Fi

stb ×Fmeta,F
i
stb

))
, (5)

where F̂dep/sal represents the final aligned RGB-depth or
RGB-saliency feature, and Concat(·) represents a concatena-
tion operation.

To verify the effectiveness of the proposed MMA module,
we have conducted a t-SNE visualization of aligned and un-
aligned features as depicted in Figure 4. In the scatter plot
before alignment, the features of the three modalities form
separate clusters, with each cluster representing a different
modality. This indicates that the distributions of the differ-
ent modalities are relatively independent when not aligned.
However, after performing the MMA, the features of the three
modalities become clustered together and overlap. This find-
ing suggests that the proposed MMA has the ability to map
the initially dispersed modality features into a shared feature
space, resulting in a more concentrated feature distribution.

3.3 Multi-layer Channel and Spatial Feature
Rectification

The fusion process, Ffuse, plays a crucial role in fully utilizing
the multi-modal information to improve the estimation per-
formance. However, existing methods tend to only fuse fea-
tures from the top layer but discard hierarchical features from
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Figure 5: Illustration of the proposed multi-layer channel and spa-
tial feature rectification (MCSFR). The MCSFR module consists of
a multi-layer channel rectification and a spatial feature rectification.

the intermediate layers. As the high-layer has larger recep-
tive fields, it generates coarse-grained features that capture
the overall shape and structure. In contrast, the low-layer ben-
efits from smaller receptive fields and can extract fine-grained
features with more details. Additionally, the aligned features
F̂dep and F̂sal may still contain noises due to the uncorrelated
features extracted from different modalities.

To address these issues, we propose a multi-layer chan-
nel and spatial feature rectification (MCSFR) module. This
module extracts multi-scale features and rectifies them be-
fore performing Ffuse. It contains a feature transformation
(FT) module and a feature rectification (FR) module. The FT
module utilizes ST blocks and patch merging layers to trans-
form features into different scales. The FR module corrects
latent features with a multi-layer channel rectification mod-
ule and a spatial feature rectification module. Our MCSFR is
shown in Figure 5.

Multi-layer Channel Rectification
Multi-layer channel rectification (MCR) aims to filter the
noise in different channels. Specifically, we both apply
the global max-pooling and the average-pooling to both the
aligned saliency feature F̂j

sal and depth feature F̂j
dep, where

j means the j-th transformation. This module retains more in-
formation and better represents different aspects of the input
modalities. Subsequently, the latent features are concatenated
into a single tensor F̂j

mcr. Then, F̂j
mcr is fed into a multi-

layer perceptron (MLP) and a Sigmoid layer, and two sets of
trainable weights (i.e., Wc,j

dep and Wc,j
sal) are obtained for rec-

tifying the original features. This process can be expressed as
follows:

Wc,j
dep,W

c,j
sal = Fsplit(Sigmoid(MLP(F̂j

mcr))), (6)

where Fsplit(·) refers to the process of splitting the output of
MLP into two parts. Then, the multi-layer channel rectifica-
tion process is formulated as:

Dc,j
rec = Wc,j

dep ⊗ F̂j
dep, Sc,j

rec = Wc,j
sal ⊗ F̂j

sal, (7)

where ⊗ denotes an element-wise multiplication, Dc,j
rec rep-

resents the rectified RGB-depth features, and Sc,j
rec represents

the rectified RGB-saliency features after the multi-layer chan-
nel rectification.

Spatial Feature Rectification
In the process of the spatial feature rectification, the input fea-
tures are first concatenated together. Then, the concatenated
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Figure 6: Visual comparison of JND maps obtained by nine different methods. Brighter magnitude indicates higher predicted visual re-
dundancy, where smooth image regions usually contain less visual redundancy. From left to right: Original, Liu2010TCSVT, Wu2013TIP,
Wu2017TIP, Chen2019TCSVT, Shen2020TIP, Wang2022TII, Jiang2022TIP, Xie2023AAAI, and Proposed

spatial feature, Fj
sfr, is obtained along the channel dimension

through an MLP, with the calculation formula as follows:

Fj
sfr = Conv1×1

(
ReLU

(
Conv1×1

(
Concat

(
F̂j

dep, F̂
j
sal

))))
.

(8)
Similarly, Fj

sfr is fed into a Sigmoid layer and divided into
two parts, Ws,j

dep and Ws,j
sal. The detailed process is expressed

as:
Ws,j

dep,W
s,j
sal = Fsplit(Sigmoid(Fj

sfr)). (9)

The spatial rectification is then expressed by

Ds,j
rec = Ws,j

dep ⊗ F̂j
dep,S

s,j
rec = Ws,j

sal ⊗ F̂j
sal, (10)

where Ds,j
rec and Ss,j

rec represent the rectified RGB-depth and
RGB-saliency features after the spatial rectification, respec-
tively.

Finally, the overall rectified features F̃j
sal and F̃j

dep after
the j-th transformation are obtained by{

F̃j
dep = F̂j

dep + λc ×Dc,j
rec + λs ×Ds,j

rec,

F̃j
sal = F̂j

sal + λc × Sc,j
rec + λs × Ss,j

rec,
, (11)

where λc and λs are two hyper-parameters, and they are set
to 0.5. j belongs to {0, 1, 2, 3}.

3.4 Multi-Scale Feature Fusion
After the MCSFR module, the rectified features are further
fused for the final JND estimation. To fully take advantage of
the multi-scale information provided by different layers, we
have designed a multi-scale feature fusion (MSFF) module,
which consists of four dual modality fusion (DMF) modules.
DMF first fuses the multi-scale rectified features F̃j

dep and
F̃j

sal using addition, multiplication, and concatenation opera-
tions:

Fj
cat = Concat

((
F̃j

dep + F̃j
sal

)
,
(
F̃j

dep × F̃j
sal

))
, (12)

where Fj
cat represents the early fused features after the con-

catenation.
Next, we progressively aggregate the early fused features

and upsample them into shallow features for the final JND
estimation, which can be expressed as:

Fj
fuse =

{
Conv3×3

(
Upsampling

(
Fj

cat

))
, j = 0,

Conv3×3

(
Upsampling

(
Fj

cat + Fj−1
fuse

))
, j = 1, 2, 3.

(13)

where Upsampling(·) denotes a 2× upsampling, which em-
ploys a bilinear interpolation. The predicted JND map is then
obtained by feeding the fused feature Ffuse into an unsam-
pling network.

4 Experimental Validations
In this section, we present the implementation details of our
MetaJND and report the experimental comparison with eight
representative methods. Moreover, we conduct an ablation
study on the impact of using different modalities and mod-
ules.

4.1 Experimental Protocols
Dataset Description
In the experiments, we have trained the MetaJND using the
benchmark dataset PWJND [Shen et al., 2020]. This dataset
contains 202 source images with a resolution of 1920×1080,
where each original image is labeled with a compressed ver-
sion with Versatile Video Coding (VVC). We randomly split
the whole dataset into training, validation, and test sets with
a ratio of 8:1:1.

To verify the generalization ability of different models, we
further select three additional JND benchmark datasets, in-
cluding MCL-JCI [Wang et al., 2016], KonJND-1k [Lin et
al., 2022], and MDTJND [Liu et al., 2023] for testing. In
addition, we employ BASNet [Qin et al., 2019] and DPT-
Hybrid [Ranftl et al., 2021] to generate the saliency and the
depth modalities, respectively.

Training Details
Our MetaJND-Net is implemented on the PyTorch with all
weights initialized using a truncated normal initializer. We
use the default parameters of the Adam optimizer, such as
β1 = 0.9 and β2 = 0.999. Before the training, we crop the
input images into 224×224 with a random cropping and a
random rotation. We set the batch size to 8 and the initial
learning rate to 1e-5. The model training is then conducted on
NVIDIA GeForce RTX 3090 GPU, which takes approximately
16 hours for 200 epochs.

To guarantee the alignment efficiency, we have developed
a meta-alignment loss Lalign, which is calculated by a pixel-
wise L1 distance between the input RGB feature Frgb and the
aligned feature F̂y . With α setting to 1, the total loss function
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Method
Dataset MCL JCI KonJND 1k MDTJND PWJND

SSIM ↑LPIPS ↓MS-SSIM ↑SSIM ↑LPIPS ↓MS-SSIM ↑SSIM ↑LPIPS ↓MS-SSIM ↑SSIM ↑LPIPS ↓MS-SSIM ↑
Liu2010TCSVT [Liu et al., 2010] 0.8958 0.0927 0.9848 0.8833 0.1099 0.9841 0.9205 0.0637 0.9893 0.9143 0.0575 0.9885

Wu2013TIP [Wu et al., 2013] 0.8988 0.0887 0.9853 0.8839 0.1082 0.9840 0.9221 0.0591 0.9893 0.9197 0.0543 0.9888
Wu2017TIP [Wu et al., 2017] 0.9252 0.0666 0.9890 0.9128 0.0821 0.9880 0.940 0.0452 0.9916 0.9406 0.0331 0.9915

Chen2019TCSVT [Chen and Wu, 2019] 0.9370 0.0620 0.9911 0.9232 0.0834 0.9898 0.9447 0.0485 0.9926 0.9448 0.0349 0.9922
Shen2020TIP [Shen et al., 2020] 0.8878 0.0961 0.9833 0.8786 0.1155 0.9826 0.9072 0.0734 0.9872 0.9085 0.0709 0.9864

Jiang2022TIP [Jiang et al., 2022] 0.9376 0.0466 0.9903 0.9341 0.0527 0.9903 0.9466 0.0295 0.9922 0.9416 0.0348 0.9910
Wang2022TII [Wang et al., 2022] 0.9039 0.0842 0.9859 0.8981 0.0963 0.9861 0.9317 0.0556 0.9907 0.9311 0.0420 0.9908

Xie2023AAAI [Xie et al., 2023] 0.9402 0.0535 0.9915 0.9348 0.0691 0.9911 0.9523 0.0366 0.9934 0.9579 0.0276 0.9938
MetaJND (ours) 0.9526 0.0435 0.9929 0.9526 0.0490 0.9932 0.9642 0.0256 0.9946 0.9632 0.0271 0.9944

Table 1: Performance comparisons of our MetaJND with eight representative methods on four benchmark datasets in terms of SSIM, LPIPS,
and MS-SSIM. “↑” means the higher the better, while “↓” means the lower the better. The best results in each column are highlighted in bold.

in (1) can be expressed as:

Loverall =
∑

y∈dep,sal

∥ Frgb − F̂y ∥1 + α× ∥ Igt − Ijnd ∥22, (14)

where Igt refers to the ground-truth, while Ijnd denotes the
predicted JND map.

Evaluation Settings
We have conducted the commonly-used noise injection ex-
periments [Xie et al., 2023; Jiang et al., 2022] to evaluate
the accuracy of the JND estimation. Specifically, we ran-
domly injected noise into each pixel with the guidance of
Ijnd, which can be formulated as:

Inoised = Iori + µ× β × Ijnd, (15)

where Inoised represents the JND-guided noised image, β
randomly takes ±1, and µ is an adjuster scalar. A better
JND model can tolerate more noise, thereby achieving bet-
ter visual quality under the same noise level. In our ex-
periments, we adjust µ to control the amplitude of the in-
jected noise, aiming for a specific peak signal-to-noise ratio
(PSNR). Specifically, the noise levels of the first JND level
for four datasets are PSNR=35.05dB, 33.18dB, 38.35dB, and
35.12dB, respectively. To achieve consistency, we control the
injected noise level to the mean value (e.g., PSNR=35.42 dB)
of these four datasets.

To facilitate quantitative comparisons, we have used three
additional widely-used perceptual metrics to assess the im-
age quality: the structural similarity index (SSIM), the multi-
scale structural similarity (MS-SSIM), and the learned per-
ceptual image patch similarity (LPIPS) [Zhang et al., 2018].

4.2 Performance Comparisons
To demonstrate the overall performance, we provide the
qualitative and quantitative results of our MetaJND and
eight representative methods, including Liu2010TCSVT [Liu
et al., 2010], Wu2013TIP [Wu et al., 2013], Wu2017TIP
[Wu et al., 2017], Chen2019TCSVT [Chen and Wu, 2019],
Shen2020TIP [Shen et al., 2020], Jiang2022TIP [Jiang et al.,
2022], Wang2022TII [Wang et al., 2022], and Xie2023AAAI
[Xie et al., 2023].

Subjective Qualitative Results
Figures 6 (b)-(j) show the subjective visual comparison re-
sults for JND estimation of nine methods, where brighter pix-
els indicate higher tolerance redundancy. In (b)-(i), higher vi-
sual redundancy is observed in smooth background regions
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Figure 7: Noise tolerance comparisons with various noise injection
levels. The red box represents the first JND point for each dataset.

(highlighted by the red box) and intricate structural regions
(highlighted by the green box). As human vision exhibits
higher perceptual sensitivity to uniformly smooth and struc-
tural regions, lower visual redundancy should be estimated
in these areas. Consequently, our MetaJND, benefiting from
meta-learning and multi-layer fusion, achieves more precise
JND estimation in these sensitive regions.

Objective Quantitative Results
Table 1 presents the SSIM, LPIPS, and MS-SSIM results for
nine JND models. Our MetaJND demonstrates stable per-
formance across all four datasets, demonstrating its superior
capability in noise tolerance and generalization to different
types of data.

In addition, to address concerns of fairness in the use of
the noise injection level at the PSNR=35.42dB, we have ex-
panded our experiments to include a wider range of noise lev-
els for performance comparison. For instance, we have con-
sidered the noise injection level at various PSNRs, including
{32, 33, 34, 35, 36, 37, 38, and 39}. In Figure 7, we have
plotted the performance curve. As seen, our MetaJND con-
sistently outperforms the other methods.

4.3 Ablation Study
In this section, we have conducted the ablation experiments
to verify the effects of two additional modalities and our de-
signed modules on the dataset PWJND [Shen et al., 2020].
The selected (unselected) modality or module is denoted by
“✓” (“×”).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3156



Modalities Indicators
RGB Depth Saliency SSIM LPIPS MS-SSIM
✓ × × 0.9472 0.0371 0.9921
✓ × ✓ 0.9599 0.0281 0.9939
✓ ✓ × 0.9592 0.0280 0.9938
✓ ✓ ✓ 0.9632 0.0271 0.9944

Table 2: Ablation study of two additional modalities.

MetaJND Modules Indicators
MMA MCSFR MSFF SSIM LPIPS MS-SSIM
× × × 0.9384 0.0497 0.9905
✓ × × 0.9476 0.0375 0.9922
✓ ✓ × 0.9597 0.0290 0.9938
✓ ✓ ✓ 0.9632 0.0271 0.9944

Table 3: Ablation study of our MMA, MCSFR, and MSFF modules.

Effects of Auxiliary Modalities
We have conducted four experiments to validate the neces-
sity of the depth and saliency modalities as shown in Table
2. For example, to evaluate the impact of the depth modality,
we replace it with the RGB modality. As seen, selecting all
three modalities simultaneously leads to the greatest perfor-
mance improvement, highlighting the necessity of these two
auxiliary modalities.

Effects of MMA, MCSFR, and MSFF
To demonstrate the importance of the proposed MMA,
MCSFR, and MSFF modules, we have also conducted a se-
ries of ablation experiments. The results are provided in Ta-
ble 3. In the experiments, we disable the unselected module
and replace it with a simple network. For example, the MMA
module is replaced by a network that incorporates a concate-
nation operation, three 3×3 convolution layers, and one 1×1
convolution layer. The MCSFR module is replaced with a
three-layer ST block, while the MSFF module is simply re-
placed with concatenation. As seen, the best performance is
achieved when all three modules are enabled simultaneously.

5 JND Applications
5.1 Compression Application
JND has been widely-applied in image coding to enhance the
perceptual quality. In this section, we have integrated Meta-
JND into three encoding standards, including JPEG, HEVC,
and VVC for compression applications. We have employed
the same compression methods as described in [Xie et al.,
2023]. Figure 8 shows the visual comparisons of JND-guided
compression. As seen, all JND-guided compression methods
provide nearly identical visual quality. However, our Meta-
JND approach achieves the highest bit-per-pixel (BPP) sav-
ings, with an average of 24.11% coding gain on four datasets.

5.2 Watermarking Application
Image watermarking is commonly used to achieve copyright
protection, content verification, and identity authentication.

BPP=7.59 BPP=7.06 BPP=7.06 BPP=7.10 BPP=7.11 BPP=7.08 BPP=7.05 BPP=7.43 BPP=6.68 BPP=6.42

BPP=4.46 BPP=3.77 BPP=3.73 BPP=3.68 BPP=3.67 BPP=3.73 BPP=3.72 BPP=4.06 BPP=3.74 BPP=3.46

BPP=4.01 BPP=3.57 BPP=3.61 BPP=3.54 BPP=3.47 BPP=3.60 BPP=3.53 BPP=3.81 BPP=3.58 BPP=3.30

Figure 8: JND-guided compression performance of nine methods.
From the second column to the ninth column: Liu2010TCSVT,
Wu2013TIP, Wu2017TIP, Chen2019TCSVT, Shen2020TIP,
Wang2022TII, Jiang2022TIP, Xie2023AAAI, and Proposed. From
the first row to the third row: JPEG, HEVC, and VVC.

Original JPEG (QF=50) GF (KS=2) GN (σ2=0.003) SP (density=0.01)
BER=0.171 BER=0.453 BER=0.062 BER=0.062

BER=0.015 BER=0.234 BER=0.000 BER=0.015

BER=0.015 BER=0.453 BER=0.000 BER=0.000

BER=0.093 BER=0.218 BER=0.046 BER=0.031

BER=0.000 BER=0.218 BER=0.015 BER=0.000

BER=0.015 BER=0.028 BER=0.015 BER=0.000

Figure 9: JND-guided watermarking performance of four attacks.
In each attack type, the left is Jia2021MM, while the right is
Jia2021MM+MetaJND.

As suggested in [Fang et al., 2023], the JND map is intro-
duced as a weight matrix in the loss function in the lumi-
nance channel to improve the deep watermarking model. The
robustness of watermarking is measured by the bit error rate
(BER) performance. We evaluate the watermarking perfor-
mance under four types of attacks, including JPEG (quality
factor (QF) =50), Gaussian filter (kernel size (KS)=2), Gaus-
sian noise (σ2=0.003), and Salt & Pepper (density=0.01).
As seen in Figure 9, our MetaJND-guided method archives
lower BER than [Fang et al., 2023] under the same PSNR
level as in Table 1. The average BER value of our MetaJND-
guided method is 0.0913 on four datasets, while that of [Fang
et al., 2023] is 0.0951.

6 Conclusion

In this paper, we propose a new meta-learning framework,
called MetaJND, for estimating just noticeable differences at
the pixel level. MetaJND leverages multiple modalities, in-
cluding RGB, saliency, and depth, to enhance both its accu-
racy and generalization. To achieve this, we have developed a
multi-modal meta alignment module that combines attention
mechanisms and meta-learning to align features from differ-
ent modalities. Additionally, we have explored a multi-layer
channel feature rectification module to correct intermediate
features before conducting the multi-modal fusion. Further-
more, we have designed a multi-scale feature fusion module
to merge the aligned features obtained from different layers.
Experimental results on four benchmark datasets, along with
comparisons to eight representative JND methods, demon-
strate the superior performance and enhanced generalization
capabilities of our MetaJND.
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