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Abstract

Spiking transformers have recently emerged as a
robust alternative in deep learning. One focus of
this field is the reduction of energy consumption,
given that spiking transformers require lengthy
simulation timesteps and complex floating-point at-
tention mechanisms. In this paper, we propose a
one-step approach that requires only one timestep
and is of linear complexity. The proposed One-step
Spiking Transformer (OST) incorporates a Time
Domain Compression and Compensation (TDCC)
component, which can significantly mitigate the
spatio-temporal overhead of spiking transformers.
Another novel component in OST is the Spiking
Linear Transformation (SLT), designed to greatly
reduce the number of floating-point multiply-and-
accumulate operations. Experiments on both static
and neuromorphic images show that OST can per-
form as well as or better than SOTA methods with
just one timestep, even for more difficult tasks. For
instance, comparing with Spikeformer, OST gains
1.59% in accuracy on ImageNet, yet 40.27% more
efficient, and gains 0.7% on DVS128 Gesture. The
supplementary materials and source code are avail-
able at https://github.com/songxt3/OST.

1 Introduction
Spiking Neural Network (SNN) is the third generation neu-
ral network inspired by the behavior of biological neu-
rons [Maass, 1997]. While Artificial Neural Network (ANN)
utilizes computationally intensive floating-point Multiply-
and-Accumulate (MAC) operations, SNN significantly re-
duces energy consumption by employing event-driven binary
spike singles [Roy et al., 2019]. In practice, SNN is widely
acknowledged as an energy-efficient alternative to ANN and
has been extensively used in tasks such as image classifica-
tion [Wu et al., 2019] and object detection [Kim et al., 2020].
On the other hand, Transformer [Vaswani et al., 2017], ini-
tially designed for natural language processing, has become
a prominent technique owing to its excellent performance.

∗Corresponding author.

However, transformer’s energy consumption is often substan-
tial due to the high computational cost required for training
and inference. For example, Switch Transformer [Fedus et
al., 2022] consumes 179,000 kWh of power, while the en-
ergy consumption for training GPT-3 [Brown et al., 2020]
is estimated to be 1,278,000 kWh [Patterson et al., 2021].
To leverage the high performance of transformer and low en-
ergy use of SNN, great effort has been dedicated to incorpo-
rating energy-efficient spiking calculations into transformer
models, known as spiking transformers [Mueller et al., 2021;
Yao et al., 2021; Zhou et al., 2023; Yao et al., 2023b;
Wang et al., 2023; Yao et al., 2023a].

Although spiking transformers have demonstrated great
performance across various tasks, there is still room for im-
provement in both performance and energy consumption.
Most spiking transformers still require a level of energy con-
sumption too high to be suitable for deployment on main-
stream neuromorphic hardware. The two contributing factors
that often lead to a dramatic increase in energy consumption
are (1) lengthy timesteps and (2) complex MAC operations.
Firstly, spiking transformers require additional T timesteps of
temporal information (T > 3) [Meng et al., 2022]. Separate
training is needed for every individual timestep, hence natu-
rally resulting in T× spatio-temporal overhead compared to
vanilla transformer. More importantly, deployment on neu-
romorphic hardware favors spiking transformers with fewer
timesteps for simplicity and efficiency. Secondly, complex
MAC operation [Zhou et al., 2023] is an integral part of
the self-attention mechanism in existing spiking transformers.
That leads to a relatively high complexity of O(L2d), where
L and d denote the sequence length and feature dimension of
input, respectively. Hereby a load of floating-point matrix dot
product operations are involved, defeating the original pur-
pose of SNN design, i.e., minimizing computations.

Aiming to address the above issues, in this study, we
present a one-step binarized spiking transformer, reducing
the timesteps from multiple to only one. More specifi-
cally, we introduce Time Domain Compression and Com-
pensation (TDCC) to mitigate the spatio-temporal overhead.
The “Compression” here is to compress T timesteps of in-
formation into a single one, thus substantially reducing the
computational cost. The subsequent “Compensation” is to
compensate for the information loss in the time domain,
caused by “Compression”, which is not lossless. Combin-
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ing both, TDCC can fully leverage the spatio-temporal infor-
mation and achieve pre-compression performance, but with
a much lower cost. Furthermore, we introduce the Spik-
ing Linear Transformation (SLT) to avoid the use of O(L2d)
self-attention mechanism. Several variants of transformers,
including Sparse Transformer [Child et al., 2019], Linear
Transformers [Katharopoulos et al., 2020], and FLASH [Hua
et al., 2022], endeavor to achieve the same purpose. They
however still rely on floating-point dot product, not ideal for
SNNs. The proposed SLT, however, has two parts well suited
for binary spike signals. The first is SAF, Spiking Attention-
Free, which eliminates floating-point dot product computa-
tion for self-attention. The second is SGFF, Spiking Gate
Feed-Forward, which can convert the floating-point element-
wise product to a binary logical AND (&) operation.

The contributions of this study can be summarized as:

1. One-step Spiking Transformer (OST) is proposed that
can achieve SOTA performance with low energy use.

2. Time Domain Compression and Compensation (TDCC)
is introduced, which reduces timestep to only 1, signifi-
cantly lowering transformer’s spatio-temporal overhead.

3. Spiking Linear Transformation (SLT) is introduced,
greatly reducing floating-point MAC operations.

2 Related Works
2.1 Vision Transformers (ViTs)
ViTs achieved remarkable performance in various computer
vision tasks, such as image classification [Dosovitskiy et al.,
2020] and object detection [Carion et al., 2020]. Despite their
success, one of the main challenges faced by ViTs is the high
computational complexity caused by the self-attention mech-
anism [Khan et al., 2022]. The self-attention mechanism en-
ables ViTs to selectively focus on different parts of the input
image, effectively capturing global information. However,
the calculation of dot products between each pair of input
features becomes inevitable, resulting in a quadratic compu-
tational complexity, relative to the input sequence length.

Several recent methods have been proposed to address the
above challenge. Sparse Transformer [Child et al., 2019]
used sparse attention mechanisms as a remedy, while the Syn-
thesizer [Tay et al., 2021] introduced approximate attention.
AFT [Zhai et al., 2021] utilized attention-free models for the
same purpose. These methods still involve plenty of floating-
point operations, not ideal for SNNs. Besides, they all need
costly MAC operations, not helpful for energy saving.

2.2 Spiking Neural Networks (SNNs)
Training SNNs poses a significant challenge because their
spike signals are non-differentiable, rendering stochastic gra-
dient descent (SGD) ineffective. Two typical strategies are
often used in practice for the training: (1) converting ANN to
SNN (ANN-to-SNN) [Rueckauer et al., 2017] and (2) direct
training [Neftci et al., 2019]. More specifically, the ANN-
to-SNN strategy converts an ANN pre-trained with SGD to
an SNN for a given task and often achieves competitive ac-
curacy. For example, the works in [Mueller et al., 2021]

and [Wang et al., 2023] can obtain a nearly equivalent accu-
racy compared to the vanilla ANN transformer models. How-
ever, ANN-to-SNN requires hundreds of timesteps to con-
verge, causing significant inference latency and energy con-
sumption. On the other hand, the direct training strategy
uses surrogate gradients to replace discrete spikes with con-
tinuous functions, thereby bridging ANN transformers into
spiking transformers across various tasks. Nevertheless, they
still rely on multiple timesteps, which lead to higher energy
consumption. Zhou et al. [Zhou et al., 2023] proposed a
spiking self-attention transformer using four timesteps, incur-
ring nearly four times higher energy consumption compared
to one timestep. In addition, Yao et al. [Yao et al., 2023b]
proposed attention spiking neural networks which do utilize
one timestep. Despite significantly reduced energy consump-
tion, the accuracy of their models suffers greatly with one
timestep, unless the data are augmented. In comparison, this
paper focuses on designing a spiking transformer with only
one timestep while still maintaining high accuracy.

2.3 Leaky Integrate and Fire (LIF)
Spiking neurons transmit information in SNNs. They gener-
ate binary spike signals for transmission and are the funda-
mental part of SNNs. A key signal generation mechanism
is LIF [Gerstner et al., 2014], which is also used in this
study. We follow the conventions in [Zheng et al., 2021;
Zhou et al., 2023], using SpikingJelly [Fang et al., 2023] to
imply LIF. Their fire process is represented as Equation (1):

ut
i = (1− 1

τ
)ut−1

i +
1

τ

n∑︂
j=1

wijo
t−1
j , (1)

where ut
i is the membrane potential of the i-th neuron at the

t-th timestep; τ is the decay constant; wij is the connection
weight between the i-th and the j-th neurons; and ot−1

j is the
spike signal generated by the j-th neuron at the (t − 1)-th
timestep. When ut

i reaches the activation threshold, the spik-
ing neuron fires. After the activation, the membrane potential
is reset for the next cycle of accumulation.

3 Methodology
The proposed OST, the associated TDCC and SLT, and their
sub-components are detailed in this section.

3.1 Overall Architecture
The overall architecture of OST is illustrated in Figure 1(a),
where the proposed TDCC and SLT components are high-
lighted in different colors. The input of OST is a 2D im-
age sequence I ∈ RT×C×H×W , where T , C, H , W denote
timestep, channel, height, and width, respectively. Then the
input is embedded. I is transformed into x ∈ RT×H×W×D.
D represents the embedding dimension of OST. Note that
OST uses Input Embedding (IE) and Position Embedding
(PE) for embedding, following Spikformer. Subsequently, x
is passed through the Compression module of TDCC, and is
compressed from T timesteps to X0, meaning one timestep.
After that, X0 is passed to the block of K encoders. Each
encoder consists of three parts: Spiking Attention-free (SAF)
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Figure 1: The overview of One-step Spiking Transformer (OST), which contains a Time Domain Compression and Compensation (TDCC)
component and a Spiking Linear Transformation (SLT) component. Spiking matrices with Spike flags are represented in a white background.
Other matrices are floating-point, represented in gray.

of SLT, Compensation of TDCC, and Spiking Gate Feed-
forward (SGFF) of SLT. The SAF is a linear transformer mod-
ule that does not require a self-attention mechanism, while the
Compensation module is to compensate for the information
loss due to the compression. Moreover, the SGFF is a feed-
forward module, more suitable for processing spike signals.
The input of each encoder is passed into SAF, Compensation,
and SGFF in turn to obtain the output XK . We use skip con-
nections before SAF and SGFF to avoid the vanishing gradi-
ent problem. Finally, XK is fed into a fully connected layer,
Classification Head (CH), to produce the prediction Y . The
transformation process of the sequence I is shown below:

x = IE(I) + PE(I) I, x ∈R1, R2 (2)
X0 = Compression(x) X0 ∈R3 (3)
XF = SAF (Xk−1) XF ∈R3 (4)

X
′

k = Compensation(XF ) +Xk−1 XS ∈R3 (5)

Xk = SGFF (X
′

k) +X
′

k Xk ∈R3 (6)
Y = CH(XK), (7)

where R1, R2, and R3 are RT×C×H×W , RT×N×D, and
R1×N×D, respectively, and k = 1 · · ·K.

3.2 Time Domain Compression and Compensation
(TDCC)

As shown in Figure 1(b), TDCC consists of two parts: Com-
pression and Compensation.
Compression. It is to compress x in T timesteps to X0, e.g.
one timestep, as indicated by Equation (8):

X0 =
T∑︂

t=1

xt, (8)

where xt is the image sequence at the t-th timestep. The ratio-
nale behind Compression is that x contains T timesteps after
embedding. If x is directly passed to the encoder, the trans-
formation information needs to be computed at each timestep,
resulting in significant spatio-temporal overhead.

In fact, the human brain also involves multiple timesteps
while processing dynamic visual information [Rao and Bal-
lard, 1999]. However, because of its remarkable capacity for
information integration, it efficiently extracts crucial visual
features with low latency and energy consumption. In partic-
ular, temporal integration employed by visual neurons plays
a vital role in the processing of visual information [Wolff et
al., 2022]. Visual neurons receive inputs from the retina, as
well as other regions of the visual cortex, and subsequently
integrate and respond to these inputs. In this paper, we em-
ploy additive operations to create an analogy for such tem-
poral integration, aiming to compress time-domain informa-
tion. With the integration, each point in the matrix represents
the intensity of the spike signals throughout all timesteps.
However, compression naturally leads to information loss and
subsequently performance deterioration (See Ablation Study,
Section 4.3). Therefore, Compensation is introduced to re-
gain more time-domain information.
Compensation. To accumulate time-domain information,
we employ two LIF spiking neurons with different thresholds
as illustrated in Equation (9):

XS = LIF1(XF ) + LIF2(XF ), (9)

where LIF1 and LIF2 are two LIF spiking neurons with ini-
tial threshold values of 0.5 and 1, respectively. Furthermore,
inspired by dynamic thresholds in SNNs [Hao et al., 2020],
the thresholds of LIF1 and LIF2 are set as learnable param-
eters. They update dynamically during training.
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Neurons in the human brain are able to dynamically ad-
just their activation thresholds in response to changes in in-
put information [Zhang and Linden, 2003]. We accumulate
the spike signals at two different thresholds, to improve the
diversity of time-domain information. To be more specifi-
cally, Compensation is to deal with possible information loss
caused by compression. Its foundation is the rate coding of
SNNs, converting information into spikes, making the num-
ber of spikes proportional to the information intensity [Kim
et al., 2022]. In this way, the information loss due to com-
pression can be compensated, thus performance improved.

3.3 Spiking Linear Transformation (SLT)
As shown in Figure 1(b), OST also has two parts: SAF, Spik-
ing Attention Free, and SGFF, Spiking Gate FeedForward.
SAF. It is of linear complexity and is a variant of the
Attention-Free (AF) mechanism [Zhai et al., 2021]. SAF’s
spiking operations has the benefit of low energy consump-
tion. More specifically, the vanilla AF linearly transforms the
input X0 ∈ R1×N×D into Q = X0W

Q, K = X0W
K , and

V = X0W
V , where WQ, WK and WV ∈ RD×D

′

. D
′

is
the hidden dimension of SAF. Subsequently, it performs the
operations through Equations (10) and (11):

QF = σq(Q),KF = softmax(K), VF = V, (10)

AF(QF ,KF , VF ) = QF ⊙
D∑︂

d=1

(KF ⊙ VF )d, (11)

where σq and softmax are activation function Sigmoid and
Softmax respectively; ⊙ is the element-wise product.

AF uses element-wise operations, which completely gets
rid of the need for dot product operations. Its complexity is
O(Ld) instead of O(L2d). The dot product operation violates
the original design of SNN as it involves complex floating-
point MAC operations. AF has the potential to replace the
existing spiking dot attention. However, the vanilla AF could
not be directly applied to SNN, since the fire value of the acti-
vation functions (σq and softmax) are floating-point, yet the
process involves numerous floating-point exponent multipli-
cation and division operations.

In comparison, our proposed SAF has much fewer floating-
point operations, as shown in Figure 1(b). Following the same
procedure as AF, we first obtain Q, K, and V by linear trans-
formation from an input sequence X0. After that, we con-
vert Q and K into spiking sequences QS and KS by spiking
neurons. Finally, we employ the spiking sequences QS , KS
along with the floating-point sequence VF to execute the SAF,
as in Equations (12) and (13):

QS = LIF (Q),KS = LIF (K), VF = V, (12)

SAF (QS ,KS , VF ) = QS ⊙
D∑︂

d=1

(KS ⊙ VF )d, (13)

where QS ,KS ∈ R1×N×D, and LIF is the spiking neu-
ron. Since VF is a floating-point matrix, the outcome of the
element-wise product constructed in SAF is also a floating-
point matrix. Subsequently, we feed this matrix into the Com-
pensation module to obtain the spiking sequences output.

SGFF. It contains three linear transformations and two LIF
spiking neurons, as in Equations (14) and (15):

GS = LIF (XSW
G), PF = XSW

P , (14)

SGFF (GS , PF ) = LIF ((GS ⊙ PF )W
O), (15)

where WG,WP ∈ RD×D
′′

, and WO ∈ RD
′′
×D. D

′′
is the

hidden dimension of SGFF. For example, if the embedding
dimension D is 128 and D

′′
= 4D, for an input sequence

XF , the hidden dimension of GS and PF are expanded four-
fold to 512 by linear transformations WG and WP . After
computing the element-wise product between GS and PF ,
the embedding dimension of the sequence is reversed back to
128 by the linear transformation WO, allowing the sequence
to pass to the next encoder.

The reason that we propose SGFF instead of using MLP
in spiking transformers is to improve the performance. SGFF
is a variant of gMLP [Liu et al., 2021], with the additional
incorporation of a gating mechanism. The gating mechanism
enables the network to selectively learn and control the de-
livery of information. By controlling the open and closed
states of the gate, gMLP can more effectively capture sig-
nificant features and correlations in the input data, thus en-
hancing the representational ability of the model. However,
the gate state in gMLP relies on an activation function like
GELU, which involves a substantial number of floating-point
computations. Furthermore, the element-wise product ⊙ in
gMLP is also calculated using floating-point multiplication,
which is contrary to the intention of SNN. Consequently, we
replace the GELU with the spiking neuron LIF to avoid ex-
cessive floating-point computations. Additionally, the SGFF
mechanism downgrades the element-wise product ⊙ to a bi-
nary logical AND (&) operation, which is certainly a more
energy-efficient alternative to floating-point multiplication.

3.4 Theoretical Energy Consumption Analysis
This section analyzes the energy consumption of OST from
a theoritical perspective. For the vanilla transformer, energy
consumption is calculated as the product of the energy per
floating-point operation (e.g., EMAC , EM ) and the number
of operations. In contrast, OST’s energy consumption is de-
termined by multiplying the energy per binary spike operation
by the timestep, fire rate, and total number of operations. As
shown in the first block (top two rows) of Table 2, all convo-
lution (Conv) operations in the vanilla transformer are MAC
operations. In comparison, only the first Conv in OST used
to generate binary spikes is a MAC operation. The second
block of Table 2 compares the self-attention of the vanilla
transformer and AFT component of OST. The complexity of
f(Q,K, V ) is linear, which is achieved by the element-wise
product. Given that the elements in element-wise product
are binary spikes (either 0 or 1), the operation can be ex-
ecuted as a mask operation, which requires no energy con-
sumption [Yao et al., 2023a]. Lastly, the third block (bottom
three rows) of Table 2 addresses the MLP of the vanilla trans-
former and the SGFF component of OST. Unlike the vanilla
transformer, OST incorporates an additional linear layer (Lin-
ear3) to implement a binary gating mechanism. A more de-
tailed analysis can be found in Supplementary S1.
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Methods Architecture Parameters (M) OPs (G) Power (mJ) Timesteps Accuracy (%)

Hybrid training [Rathi et al., 2020] ResNet-34 21.79 - - 250 61.48

TET [Deng et al., 2022] Spiking-ResNet-34 21.79 - - 6 64.79
SEW-ResNet-34 21.79 - - 4 68.00

Spiking ResNet [Hu et al., 2021] ResNet-34 21.79 65.28 59.30 350 71.61
ResNet-50 25.56 78.29 70.93 350 72.75

STBP-tdBN [Zheng et al., 2021] Spiking-ResNet-34 21.79 6.50 6.39 6 63.72

SEW ResNet [Fang et al., 2021a]

SEW-ResNet-34 21.79 3.88 4.01 4 67.0
SEW-ResNet-50 25.56 4.83 4.89 4 67.78
SEW-ResNet-101 44.55 9.30 8.91 4 68.76
SEW-ResNet-152 60.19 13.72 12.89 4 69.26

Att MS ResNet [Yao et al., 2023b] Att-MS-ResNet-18 11.87 - 0.48 1 63.97
Att-MS-ResNet-34 22.12 - 0.57 1 69.15

Vanilla Transformer Transformer-8-512 29.68 8.33 38.34 N/A 80.80

SDT [Yao et al., 2023a] SDT-8-384 16.81 - 3.90 4 72.28
SDT-8-512 29.68 - 4.50 4 74.57

Spikformer [Zhou et al., 2023] Spikformer-8-384 16.81 6.82 7.73 4 70.24
Spikformer-8-512 20.31 11.09 11.58 4 73.38

OST (Ours) OST-8-384 19.36 4.12 4.63 1∗ 72.42
OST-8-512 33.87 6.15 6.92 1∗ 74.97

Table 1: Compare with SOTA SNNs on ImageNet. ‘OPs (G)’ denotes the synaptic operations [Merolla et al., 2014] in SNN and floating-point
operations in Vanilla Transformer. ‘Power (mJ)’ is the average theoretical energy for predicting one test image from ImageNet. ∗ denotes the
same initial timesteps as Spikformer. Transformer ‘XXX-N -D’ means an architecture with N encoder blocks and D embedding dimensions.

Vanilla Trans. OST (Ours)
Fisrt Conv EMAC · FLC EMAC · T ·RC · FLC

Other Conv EMAC · FLC EAC · T ·RC · FLC

Q,K, V EMAC · 3ND2 EAC ·R1 · 3ND2

f(Q,K, V ) EMAC · 2N2D EAC ·R2 ·ND
Scale EM ·N2 -

Softmax EMAC · 2N2 -
Linear EMAC · FLL0 EAC ·RL0 · FLL0

Linear1 EMAC · FLL1 EAC ·RL1 · FLL1

Linear2 EMAC · FLL2 EAC ·RL2 · FLL2

Linear3 - EAC ·RL3 · FLL3

Table 2: Energy evaluation of vanilla Transformer [Dosovitskiy et
al., 2020] and OST. FLC and FLL represent the FLOPs of the Conv
and Linear models in the ANNs, respectively. RC , R1, R2, RL

denote the spike firing rates in various spike matrices.

4 Experiments
OST is validated on both static image classification, involv-
ing ImageNet, CIFAR10, and CIFAR100, and neuromorphic
image classification, using CIFAR10-DVS [Li et al., 2017]
and DVS128 Gesture [Amir et al., 2017]. These experiments
are detailed in Section 4.1 and Section 4.2 respectively, while
the ablation study is presented in Section 4.3.

Component Matrix Average spike firing rate

SAF
QS 0.59181
KS 0.10228

Output (XS1) 0.05317

SGFF GS 0.06896
Output (XS2) 0.06966

Table 3: Average spike firing rate of spiking tensors in OST-8-512.

4.1 Static Image Classification
ImageNet. Following Spikformer, OST training utilizes
224 × 224 images from ImageNet and Adam [Kingma and
Ba, 2014]. The learning rate is initially set to 6e−5 and pro-
gressively reduced using a cosine decay. The batch size and
the epochs are 16 and 310 respectively. Table 1 presents the
results, where the methods for comparison are all the SOTA
convolutional SNNs (top block), vanilla Transformer (middle
row), and spiking Transformers (bottom block, where OST
is). OST achieved a SOTA accuracy of 74.97%. In partic-
ular, OST narrows the accuracy gap compared to the vanilla
Transformer while achieving a 5.5× reduction in energy con-
sumption. OST reduces energy consumption by 46.35%
and improves accuracy by 5.91% compared to SEW-ResNet-
152. Furthermore, OST outperforms Spikformer by 1.56% in
terms of accuracy despite having a comparable size. It also
requires 4.94G fewer operations and consumes 4.66mJ less
power when predicting a single image. Furthermore, we ana-
lyzed the average sparsity of different matrices of OST-8-512,
as shown in Table 3, the output of SGFF exhibits high spar-
sity, indicating that the spike gating mechanism effectively
selects critical information (Details in Supplementary S2).

CIFAR 10 & CIFAR 100. Also following Spikformer, the
input image size here is 32×32 with a batch size of 128. The
results are presented in Table 4. OST achieved the best perfor-
mance on both CIFAR10 and CIFAR100 using one timestep.
In particular, OST-4-256 and OST-2-384 achieved accuracy
improvements of 1.19% and 0.67%, respectively, compared
to Spikformer-4-256 and Spikeformer-2-384. In addition,
OST-4-384 achieves the accuracy of 95.64% on CIFAR10,
which is 1.1% and 0.35% higher than TET and Spikformer-
4-384, respectively. On CIFAR100, OST-4-256 and OST-2-
384 gain 1.09% and 0.52% compared to Spikformer-4-256
and Spikeformer-2-384, respectively, while OST-4-384 out-
performs TET and Spikformer-4-384 by 4.31% and 0.95%,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3146



Methods Architecture Params (M) Power (mJ) Timesteps CIFAR10 Acc.(%) CIFAR100 Acc.(%)

Hybrid training [Rathi et al., 2020] VGG-11 9.27 - 125 92.22 67.87
Diet-SNN [Rathi and Roy, 2021] ResNet-20 10.91 - 10/5 92.54 64.07

ANN-to-SNN [Deng and Gu, 2021] ResNet-20 10.91 - 32 93.30 68.40
TET [Deng et al., 2022] ResNet-19 12.63 - 4 94.44 74.47

STBP-tdBN [Zheng et al., 2021] ResNet-19 12.63 - 4 92.92 70.86

Vanilla Transformer Transformer-4-384 9.32 4.25 N/A 96.73 81.02

SDT [Yao et al., 2023a] SDT-4-384 9.36 0.31 4 95.45 78.34
SDT-2-512 9.76 0.42 4 95.6 78.4

Spikformer [Zhou et al., 2023]
Spikformer-4-256 4.15 0.35 4 93.94 75.96
Spikformer-2-384 5.76 0.59 4 94.80 76.95
Spikformer-4-384 9.32 0.79 4 95.19 77.86

OST (Ours)

OST-4-256 5.15 0.22 1∗ 95.13/95.12 ± 0.02 77.05/77.02 ± 0.03
OST-2-384 7.62 0.42 1∗ 95.47/95.44 ± 0.04 77.47/77.42 ± 0.06
OST-4-384 11.37 0.46 1∗ 95.64/95.63 ± 0.03 78.76/78.62 ± 0.14
OST-2-512 10.29 0.72 1∗ 95.68/95.66 ± 0.02 78.47/78.39 ± 0.07

Table 4: Compare with SOTA SNN methods on ‘CIFAR10’ and ‘CIFAR100’. OST provides statistical results for five runs, separated by ”/”.

Original 
Input Image

Spikformer

OST (Ours)

SDT

Figure 2: Visualization results of SDT-4-384, Spikformer-4-384,
and OST-4-384 at the last block on CIFAR100.

respectively. Compared to the vanilla Transformer, OST fur-
ther narrows the accuracy gap to 1.19% and 2.26% on CI-
FAR10 and CIFAR100, respectively. Such a gap is suppos-
edly due to the information loss during the binarization of
spike communication in OST, while Vanilla Transformer uses
floating point communication, and its energy consumption is
4.25mJ, which is more than 9× higher than that of OST. We
visualize the output of three SNNs, as in Figure 2. OST can
provide more consistent coverage of the target object in com-
parison with Spikformer and SDT. Our results are statistically
better as the P-values are all way below 0.05, reject the null
hypothesis. More detailed experiments on different model
scales with different parameters are in Supplementary S3.

4.2 Neuromorphic Image Classification
CIFAR10-DVS. This is an event-stream neuromorphic
dataset containing 10,000 images, each of which was con-
verted from CIFAR10 using a Dynamic Vision Sensor (DVS).
The input image size is 128 × 128, with batch size 16. The
learning rate is 1e−3 initially and reduces using a cosine de-
cay. The initial timesteps here is not 4 as in Section 4.1, but
16 due to the increased task difficulty in classifying neuro-
morphic images. The training epoch is set to 106. The num-
ber of transformer encoder blocks N is set to 2, while the
embedding dimension D is 256. We also use neuromorphic
data augmentation, which is consistent as that in the literature.
The results are presented in Table 5, which shows that OST,
still with ONLY one timestep, outperforms others, including

Methods Spikes Timesteps Acc. (%)

LIAF-Net [Wu et al., 2021] % 10 70.4
TA-SNN [Yao et al., 2021] % 10 72.0

Rollout [Kugele et al., 2020] ! 48 66.8
tdBN [Zheng et al., 2021] ! 10 67.8
PLIF [Fang et al., 2021b] ! 20 74.8

SEW-ResNet [Fang et al., 2021a] ! 16 74.4
Dspike [Li et al., 2021] ! 10 75.4+

SALT [Kim and Panda, 2021] ! 20 67.1
DSR [Meng et al., 2022] ! 10 77.3+

SDT [Yao et al., 2023a] ! 16 80.0+

Spikformer [Zhou et al., 2023] ! 16 80.9+

OST (Ours) ! 1∗ 81.2+/80.5 ± 0.9

Table 5: Compare with SOTA SNN methods on CIFAR10-DVS. +

denotes using neuromorphic data augmentation [Li et al., 2022].

two SOTA SNNs, SDT (80.0%) and Spikeformer (80.9%).

DVS128 Gesture. This dataset contains 11 hand gesture
categories from 29 individuals under 3 illumination condi-
tions. The input size here is 128×128 and batch size 16. The
initial learning rate is 1e−3 with a training epoch of 200. To
minimize overfitting, we use two transformer encoder blocks
with 256 embedding dimensions in the experiments. The re-
sults are presented in Table 6, where we achieved an accu-
racy of 99.0%. Compared to the TA-SNN (60 timesteps),
we achieved the same accuracy but again, with ONLY one
timestep. Moreover, to achieve a similar performance as OST,
SDT and Spikformer need 16 timesteps instead of OST’s 1
timestep. The cases of successful classification of three meth-
ods are analyzed in Figure 3. The analysis shows that OST
places greater emphasis on the target, whereas SDT and Sp-
kiformer exhibit a more dispersed pattern of spiking activa-
tions. More detailed experiments and analysis on this part of
the study are presented in Supplementary S4.

4.3 Ablation Study
This ablation study of OST uses CIFAR100 to verify the ef-
fectiveness of TDCC and SLT. Note that all experiments fol-
low the same setup as the above sections, if not specified. In
addition, the impact of timesteps on spiking transformers, in-
cluding SDT, Spikformer and our OST, are studied as well.
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Methods Spikes Timesteps Acc. (%)

LIAF-Net [Wu et al., 2021] % 60 97.6
TA-SNN [Yao et al., 2021] % 60 98.6

Rollout [Kugele et al., 2020] ! 240 97.2
DECOLLE [Kaiser et al., 2020] ! 500 95.5

tdBN [Zheng et al., 2021] ! 40 96.9
PLIF [Fang et al., 2021b] ! 20 97.6

SEW-ResNet [Fang et al., 2021a] ! 16 97.9
Att MS ResNet [Yao et al., 2023b] ! 20 98.2

SDT [Yao et al., 2023a] ! 16 99.3
Spikformer [Zhou et al., 2023] ! 16 98.3

OST (Ours) ! 1* 99.0/98.4 ± 0.4

Table 6: Compare with SOTA SNN methods on DVS128 Gesture.

Spikformer
Embedding MLPSSA

OST (Ours)
Embedding SGFFSAF

SDT
Embedding MLPSDSA

Input Event

···

Figure 3: The heat map of SDT (with Spike-Driven Self-Attention
(SDSA) and MLP), Spikformer (with Spiking Self Attention (SSA)
and MLP), and OST (with SAF and SGFF) on DVS128 Gesture.

TDCC. To evaluate the impact of Compression and Com-
pensation, we apply them on SDT (with SDT’s SDSA and
MLP), Spikformer (with Spikformer’s SSA and MLP) and
OST (with SAF and SGFF). The results are in Table 7, where
‘!’ means the presence of the method, yet ‘%’ is the ab-
sence. Looking at the first two rows of each method, Com-
pression clearly reduces accuracies but lowers energy con-
sumption as well. When Compensation is introduced (the
third row of each method), accuracy bounces back with a
slight increase in energy use, showing TDCC can achieve a
good balance between accuracy and energy consumption.

SLT. The effectiveness study of SLT’s two parts, SAF and
SGFF, is presented in Table 8. Compared with the first row,
where both SAF and SGFF are absent, the second row shows
SAF improves in both accuracy and energy consumption. The
third row shows SGFF brings even more improvement in ac-
curacy but results in much higher energy as well. The re-
sults suggest that SAF can reduce power consumption, while
SGFF can improve accuracy.

Initial Timesteps. The impact of the initial timesteps T is
investigated on various tasks. In general, fewer timesteps
would affect other spiking transformers quite negatively, es-
pecially on more difficult tasks like neuromorphic image clas-
sification. See details in Supplementary S5, S6.

Summary of Experiments. The experiments in the main
paper and Supplementary have demonstrated that: (1) OST

Methods TDCC Acc. Power
Compression Compensation (%) (mJ)

SDT

% % 78.34 0.31
! % 77.26 0.19
! ! 77.83 0.25

Spikformer

% % 77.37 0.79
! % 76.73 0.44
! ! 77.62 0.55

OST (Ours)

% % 78.85 0.85
! % 77.68 0.42
! ! 78.76 0.46

Table 7: Ablation studies of TDCC’s Compression and Compensa-
tion on CIFAR-100. Compensation aims to enhance performance
after Compression, hence no separate use of Compensation.

SLT Acc. Power
SAF SGFF (%) (mJ)

% % 77.37 0.79
! % 78.48 0.66
% ! 79.01 1.12
! ! 78.85 0.85

Table 8: Ablation studies of SAF and SGFF on CIFAR-100.

performs as well as or better than SOTA methods across static
and neuromorphic datasets. (2) OST runs faster, especially
noticeable when timesteps T ≥ 4. The speed of OST is 2×
more than SOTA method with 8 timesteps. This is partic-
ularly important for tasks that may require more timesteps
when using other methods. (3) OST performs better, par-
ticularly with small timesteps (T < 4). When T = 2, we
achieved 5.6% higher accuracy compared to the SOTA meth-
ods. OST exhibits a very short inference time yet has high
performance. (4) OST is less sensitive to the reduction of
timesteps (even with only one timestep). It is crucial for de-
ployment on mainstream neuromorphic hardware in practice.

5 Conclusion
This paper proposes One-step Spiking Transformer (OST),
which only needs one timestep in the transformer block, and
is of a linear complexity. To achieve this goal, two key
components, Time Domain Compression and Compensation
(TDCC) and Spiking Linear Tranfomration (SLT) are intro-
duced. The former can compress information from multi-
ple timesteps into one, reducing the spatio-temporal overhead
while maintaining performance. The latter further reduces the
floating-point MAC operations of the model. Its complexity
is as low as linear. The efficacy of OST is verified on both
static and neuromorphic image sets. OST can achieve SOTA
performance without increasing timesteps even for more diffi-
cult tasks. The ablation studies show that TDCC and SLT are
indeed effective in reducing energy consumption while im-
proving accuracy. Hence, OST is a strong candidate in SNN.
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