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Abstract
Efficiently estimating the full-body pose with min-
imal wearable devices presents a worthwhile re-
search direction. Despite significant advancements
in this field, most current research neglects to ex-
plore full-body avatar estimation under low-quality
signal conditions, which is prevalent in practical us-
age. To bridge this gap, we summarize three sce-
narios that may be encountered in real-world ap-
plications: standard scenario, instantaneous data-
loss scenario, and prolonged data-loss scenario,
and propose a new evaluation benchmark. The
solution we propose to address data-loss scenar-
ios is integrating the full-body avatar pose esti-
mation problem with motion prediction. Specifi-
cally, we present ReliaAvatar, a real-time, reliable
avatar animator equipped with predictive model-
ing capabilities employing a dual-path architecture.
ReliaAvatar operates effectively, with an impres-
sive performance rate of 109 frames per second
(fps). Extensive comparative evaluations on widely
recognized benchmark datasets demonstrate Relia-
Avatar’s superior performance in both standard and
low data-quality conditions. The code is available
at https://github.com/MIV-XJTU/ReliaAvatar.

1 Introduction
Virtual reality, augmented reality (AR), and mixed reality
(MR) are rapidly evolving fields that offer new dimensions
for human communication and interaction. A critical aspect
of enhancing these immersive experiences lies in the ability
of models to generate seamless and realistic avatar motions,
ideally using user-friendly devices such as head-mounted
displays (HMD) or non-wearable WiFi devices [Yan et al.,
2024]. Despite notable advancements in using sparse obser-
vations to animate full-body avatars, a significant research
gap exists to effectively drive avatars in scenarios plagued by
low-quality signals.

In practical applications, poor-quality signals are a com-
mon challenge, particularly when wearable devices are in-
tended to be as convenient as possible. Various factors,
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Figure 1: Visualization in the context of prolonged data-loss sce-
nario. We mask out the latter half of a sample, which consisted of
80 frames and depicted “crouching”. The first row represents the
ground truth, the second row represents the response of ReliaAvatar,
and the third row represents the response of AvatarPoser. The visu-
alization clearly indicates that ReliaAvatar can operate effectively in
prolonged data loss scenarios with only minor distortions. In con-
trast, AvatarPoser completely fails to perform in this scenario.

Method Standard Instantaneous Prolonged

Other Methods ✓ ✕ ✕
ReliaAvatar ✓ ✓ ✓

Table 1: Ability to handle different scenarios.

including network fluctuations, occlusion in motion cap-
ture systems, and limited visibility of interactive handles in
HMDs, can degrade signal integrity. Previous works such as
AGRoL [Du et al., 2023] and HMD-NeMo [Aliakbarian et
al., 2023] have addressed some aspects of these challenges.
However, systematic exploration and comprehensive solu-
tions for diverse data-loss scenarios remain underdeveloped.

In this work, we delve into potential data-loss scenarios
that could occur in real-world applications. We specifically
identify and focus on two scenarios: instantaneous data-loss
and prolonged data-loss scenarios. Our response to these
challenges is two-fold, encompassing both model architecture
and training methodology innovations. We introduce Relia-
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Avatar, a real-time, robust, autoregressive Avatar Animator,
integrating full-body joint motion prediction with an innova-
tive training approach that simulates data-loss conditions.

We develop two distinct data-loss scenarios: instanta-
neous, resembling tracker signal loss like network packet
loss, and prolonged, simulating long-last loss of specific mo-
tion capture joints, such as a hand-held controller’s prolonged
invisibility. Our model operates through two pathways: a re-
gression pathway for conventional full-body avatar pose es-
timation tasks and a prediction pathway that predicts mo-
tions in the absence of tracker signals, ensuring continuity
in avatar movements. Both pathways leverage GRU-based
models for feature extraction. The combined features are then
transformed into a decoding token sequence representing 22
SMPL joints, which will be used in a Transformer encoder
to model the inter-joint relationships. We also propose an
autoregressive training pipeline encompassing three prepro-
cessing methods aligned with standard, instantaneous, and
prolonged data-loss scenarios. During training, each signal
sequence is processed using one of these preprocessing meth-
ods, enabling the model to adapt to the challenges posed by
different data loss scenarios.

We compare ReliaAvatar with existing methods in all sce-
narios on the AMASS benchmark dataset [Mahmood et al.,
2019]. The results showcase our model’s state-of-the-art per-
formance in both standard and data-loss scenarios. We also
provide a comparison with AvatarPoser [Jiang et al., 2022]
in Figure 1 in the prolonged data-loss scenario. These qual-
itative and quantitative results collectively demonstrate that
we are the first method, as stated in Table 1, that has robust-
ness to data quality. Our model also demonstrates impressive
performance during the online inference stage, achieving a
remarkable 109 fps. This outstanding speed surpasses other
avatar pose estimation methods, highlighting the superiority
of our model in real-time applications.
Our contribution can be summarized as follows:

• We pioneer a comprehensive investigation into practical
data-loss scenarios, identifying and focusing on two key
scenarios: instantaneous and prolonged data loss.

• We propose ReliaAvatar, a real-time, robust avatar ani-
mator with integrated full-body joint motion prediction,
and an autoregressive training pipeline tailored for data-
loss scenarios. This approach significantly enhances the
model’s adaptability and performance.

• Our experimental results demonstrate that ReliaAvatar
not only achieves top-tier performance in the standard
scenario but also represents, to our knowledge, the first
method adept at managing various data-loss scenarios
effectively. Furthermore, ReliaAvatar outperforms other
methods in terms of computational efficiency.

2 Related Work
2.1 Full-body Avatar Pose Estimation
In the past, motion capture systems required users to wear
numerous devices, as seen in early implementations [Xsens,
2013; Vlasic et al., 2007]. However, this requirement of-
ten compromises the immersive experience, highlighting the

need for more compact approaches. Consequently, the fo-
cus shifted to generating a full-body pose using sparse ob-
servations, a topic that has garnered significant attention and
led to numerous advancements [Von Marcard et al., 2017;
Huang et al., 2018; Yi et al., 2021; Yang et al., 2021;
Jiang et al., 2022; Zheng et al., 2023; Du et al., 2023;
Aliakbarian et al., 2023]. These innovative methods allow
users to wear tracking devices on only a limited number of
joints, such as the head, hands, and pelvis, thus improving the
overall user experience. Among these developments, Avatar-
Poser [Jiang et al., 2022] introduced a Transformer-based ar-
chitecture combined with an inverse kinematics (IK) module,
paving the way for more sophisticated avatar control tech-
niques. AGRoL [Du et al., 2023] utilized diffusion models
to drive avatars, showing notable robustness against instanta-
neous data loss. Similarly, HMD-NeMo [Aliakbarian et al.,
2023] made strides in avatar control by focusing on scenarios
where the hands are partially or entirely obscured. Building
on these foundational works, our research delves deeper into
the realm of full-body avatar estimation under the conditions
of low-quality data.

2.2 3D Human Motion Prediction
A key innovation of our model is the motion prediction path-
way in the architecture, which is used to provide additional
cues to avatar pose estimation. There are many motion pre-
diction methods available for reference, ranging from nonlin-
ear Markov models [Lehrmann et al., 2014] and Restricted
Boltzmann Machines [Taylor et al., 2006], to more recent
developments like Graph Convolutional Networks [Ma et
al., 2022; Mao et al., 2020; Mao et al., 2019] and Recur-
rent Neural Networks [Jain et al., 2016; Liu et al., 2019;
Martinez et al., 2017]. In the prediction pathway, we use
a GRU module[Cho et al., 2014] to extract features and a
Transformer [Vaswani et al., 2017] module to model the inter-
joint relationships. The prediction pathway can be aggregated
with the regression pathway at the joint-relation Transformer
to form our reliable avatar animator.

3 Method
3.1 Problem Definition
Task. The core objective of our task is to accurately predict
the 3D full-body human poses yt at any given time-step t, us-
ing sparse joint signals xt and supplementary information et.
This supplementary information, et, may include data derived
from historical movements or other available motion signals
at time-step t. Therefore, our objective is formally defined as
follows.

max
θ

P(yt|xt, et, fθ) (1)

Traditionally, this task is approached as an upsampling chal-
lenge, where the goal is to learn the mapping from sparse
joint signals to a complete full-body joint configuration. In
these conventional methods, inputs are configured as a series
of continuous sparse signals over a time window to facilitate
the extraction of temporal features, leading to the following
model formulation.

ŷt = fθ(x
t, xt−1, ..., xt−T ) (2)
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Here, the supplementary information et is represented as et =
{xi}t−1

i=t−T , with T denoting the window size.
Those approaches neglect the continuity of the predic-

tion process, which has been proven to be crucial in visual
tracking[Wei et al., 2023; Bai et al., 2024]. Unlike them, we
treat the task as an integrative process of both upsampling and
full-body joint motion prediction. To this end, we incorporate
historical trajectory states as an additional input variable. We
utilize a Gated Recurrent Unit (GRU) to extract temporal fea-
tures from both the tracker signals and the historical trajectory
states. This approach allows us to redefine et as a composite
of previous pose predictions and historical hidden states, i.e.,
et = {ŷt−1, ht−1

x , ht−1
y }. Consequently, our model’s formu-

lation is as follows:

ŷt, ht
x, h

t
y = fθ(x

t, ŷt−1, ht−1
x , ht−1

y ) (3)

Here, ht
x, h

t
y represent the hidden states generated by the

GRU, essential for capturing the complex temporal dynam-
ics of human motion.

Representation. ReliaAvatar’s input signals consist of four
parts: the tracker signals xt, hidden tracker states ht−1

x , the
historical trajectory states ŷt−1, and hidden historical states
ht−1
y . Here, ŷt−1 represents the output of the model at time-

step t − 1, and ht−1
x and ht−1

y are the hidden states returned
by the GRU module.

The input tracker signals xt at time-step t are composed of
the orientation1 xr ∈ R|J|×6, rotation velocity ∆xr ∈ R|J|×6,
position xp ∈ R|J|×3, and linear velocity ∆xp ∈ R|J|×3 of the
trackers. J represents the set of all trackers, ∆xp = xt

p−xt−1
p ,

∆xr = f6D(R−1(xt−1
r )R(xt

r)), and R and R−1, respec-
tively, represent converting the 6D representation of rotation
into the corresponding rotation matrix and inverse matrix,
where f6D represents converting the rotation matrix into a
6D representation. Therefore, xt = {xt

r,∆xt
r, x

t
p,∆xt

p} ∈
R|J|×18.

The historical trajectory states ŷt at time t + 1 are also
composed of the four parts: 22 SMPL joints’ local rota-
tion relative to their parent joints ŷtr ∈ R22×6, position
ŷtp ∈ R22×3 and corresponding velocity ∆ŷtr ∈ R22×6 and
∆ŷtp ∈ R22×3. Therefore, the overall output can be repre-
sented as ŷt = {ŷtr,∆ŷtr, ŷ

t
p,∆ŷtp} ∈ R396.

Scenarios. Current models often operate under the assump-
tion that tracker signals are consistently available, promptly
received, and accurate. However, real-world applications
present more complex and varied scenarios in which the qual-
ity and consistency of tracker signals cannot always be guar-
anteed. To address this, we have identified three primary sce-
narios in which our model and similar models may need to
operate:

• Standard scenario: This scenario represents ideal con-
ditions where the model successfully receives all re-
quired tracker signals without any loss or degradation.
This is the standard operational scenario for most exist-
ing methods.

1The orientation is represented by the 6D representation of rota-
tion [Zhou et al., 2019].

• Instantaneous data-loss scenario: Real-world applica-
tions are prone to transient disruptions, such as network
fluctuations, leading to the momentary loss of specific
tracker signals. To simulate these sudden and brief inter-
ruptions in signal transmission in this scenario, we make
each tracker signal at any given time t subject to a prob-
ability p of being lost, as illustrated in Fig 3.A.

• Prolonged data-loss scenario: There are instances
where certain tracker signals may be consistently un-
available over a long-lasting period2. Such situations
can arise from continuous occlusion of infrared markers
or sustained invisibility of hand-held controller signals
in an HMD kit. This scenario is characterized by a con-
tinuous loss of all tracker signals for a specific duration,
as depicted in Fig 3.B. It represents challenges posed by
prolonged data unavailability.

The detailed configurations and implications of these sce-
narios will be further explored in Section 3.4 for the training
stage and Section 4.3 for the testing stage, respectively.

3.2 Overview
ReliaAvatar adopts an autoregressive pipeline during both the
training and testing stages. The process of ReliaAvatar’s han-
dling continuous tracker signal sequences can be represented
by the following equations:

ŷ0, h0
x, h

0
y = fθ(x

0) (4)

ŷ1, h1
x, h

1
y = fθ(x

1, ŷ0, h0
x, h

0
y) (5)

...

ŷt, ht
x, h

t
y = fθ(x

t, ŷt−1, ht−1
x , ht−1

y ) (6)
...

During the training stage, given a tracker signal sequence
{xt}L−1

t=0 as input, the training process is divided into L se-
quential steps with each step building upon the previous one.
L is the length of the sequence.

As depicted in Figure 2, our model features two distinct yet
interconnected pathways: the regression pathway (Regres-
sion Encoder→Joint-relation Transformer→Decoder) and
the prediction pathway (Prediction Encoder→Joint-relation
Transformer→Decoder). The regression pathway operates
similarly to the traditional avatar animator. Its primary func-
tion is to regress full-body poses from sparse joint informa-
tion. This process can be formulated as:

ŷt, ht
x = freg

θ (xt, ht−1
x ) (7)

The prediction pathway, on the other hand, aligns more
closely with motion prediction models. It utilizes known se-
quences of past motion to predict the current full-body mo-
tion. The formulation for this pathway is as follows:

ŷt, ht
y = fpred

θ (ŷt−1, ht−1
y ) (8)

Both pathways converge at the Joint-Relation Transformer.
This convergence results in the complete model represented

2The term “long-lasting period” refers to a period that is signifi-
cantly longer than the frame interval, for example, 1 second.
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Figure 2: Illustration of our dual-pathway, autoregressive framework. ReliaAvatar has two pathways: the regression pathway (Regression
Encoder→Joint-Relation Transformer→Decoder) and the prediction pathway(Prediction Encoder→Joint-Relation Transformer→Decoder).
The output of ReliaAvatar at time-step t forms a part of the input at time-step t+ 1. The blocks with diagonal lines as foreground ( , , )
represent tokens that signify SMPL joints, e.g., pelvis, left wrist, right ankle.

frame

Head
L.Hand
R.Hand

A) Instantaneous data-loss

frame

Head
L.Hand
R.Hand

B) Prolonged data-loss

Figure 3: Illustration of data-loss scenarios. represents that the
signals have been received properly, while represents that the
signals are lost.

by Eq. (3). The Joint-Relation Transformer and the decoder
are shared modules utilized by both pathways, while each
pathway has its unique components – the regression encoder
for the regression pathway and the prediction encoder for the
prediction pathway.

3.3 Model Architecture
Regression Encoder and Prediction Encoder. As shown
in Figure 2, tracker signals are initially processed through a
sparse fully connected layer (SFC) to extract initial features
Et

0 ∈ R|J|×d, where d is the embedding dimension of the
model. The purpose of SFC is to merge multiple linear lay-
ers into a sparse linear layer, thereby reducing the number of
loops in the forward process and improving the runtime effi-
ciency. In the regression encoder, SFC is formed by merging
four linear layers that handle orientation xr, rotation velocity
∆xr, position xp, and linear velocity ∆xp. This module can
be formulated as:

E0 =

 xr

∆xr

xp

∆xp



WT

1 0 0 0
0 WT

2 0 0
0 0 WT

3 0
0 0 0 WT

4

+ b (9)

Then, the GRU module will extract the temporal features, as
described in the following formula:

Et
x, h

t
x = GRU(Et

0, h
t−1
x ) (10)

After the regression encoder, the features of all tracker sig-
nals Et

x ∈ R|J|×d are obtained. Subsequently, an upsampling
module will be used to increase the dimension to 22×d, thus
obtaining the decoding token sequence {tix}21i=0 which will
be input to the Joint-Relation Transformer. Each token repre-
sents a SMPL joint.

The prediction encoder is similar to the regression encoder.
After passing through an SFC and a GRU module, ŷt−1 is
mapped to a token Et

y ∈ Rd. Then a fully connected layer is
applied to expand it to 22 joint tokens {tiy}21i=0.

Joint-Relation Transformer. In human kinematics, the mo-
tions of the entire body are not simply a combination of in-
dependent motions of multiple joints. In contrast, the actions
performed by the human body are strongly correlated with
the relationship between joints. Therefore, it is evident that
equipping the model with the ability to model joint relation-
ships can enhance the driving effectiveness. A Transformer
encoder is used to model joint relationships, which has been
proven to be effective in PETR [Shi et al., 2022].

The input of the Transformer is a token sequence
{ti}21i=0 = Concat (tx, ty) ∈ R22×(2d) representing 22 SMPL
joints, which is fused from the tokens generated by the previ-
ous two encoders.

Decoder. The decoder is responsible for decoding rotation
ŷtrot and position ŷtpos directly from the output of the token
sequence of the Transformer. The decoder is composed of
two layers of MLP. There are three decoder variants:

• Shared Decoder. Since the pelvic joint parameter repre-
sents the global orientation of the entire body, while the
other joint parameters represent local rotations relative
to their parent joints, a dedicated decoder is used for the
pelvic joint, while the remaining joints share a common
decoder.

• Multi-FC Decoder. Each joint has its own dedicated
decoder. During the inference process, the decoding of
each joint is done sequentially.
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• SFC Decoder. Use an MLP composed of SFCs as a
unique decoder. As a result, all joints can be decoded
simultaneously in parallel.

We adopted SFC decoder due to its advantages of high ac-
curacy and high efficiency. The comparison of the three de-
coders will be mentioned in Sec 4.5.

3.4 Simulation Training
We simulate the three scenarios mentioned in Sec during
training ReliaAvatar.

• Standard scenario. In the standard scenario, all tracker
signals can be fully and correctly transmitted to the
model. So in this scenario, there is no need for any
masking of the signals.

• Instantaneous data-loss scenario. In the instantaneous
data-loss scenario, we use a dropout layer to randomly
mask the signals of each tracker in each frame with a
probability of 0.1.

• Prolonged data-loss scenario. In the prolonged data-
loss scenario, we mask out the latter half of each input
sequence {xt}L−1

t=0 . That is to say, {xt}L−1
t=L/2 = 0.

Each sequence has an equal probability (1/3) to undergo the
above three simulation treatments.

3.5 Loss Function
We adopt orientation loss Lori, rotation loss Lrot, SMPL
position loss L SMPL

pos , decoded position loss L dec
pos , and ve-

locity loss Lvec during the optimization process. All losses
are computed using the L1 loss. Taking the rotation loss as an
example, its loss function is as follows:

Lrot =
ΣL−1

t=0 ||ŷtrot − ytrot||
L

(11)

Here, ŷrot, yrot represent the model output and corresponding
ground truth, respectively. Other losses are computed in the
same way. The whole loss function can be formulated as:

L =λoriLori + λrotLrot + λSMPL
pos L SMPL

pos +

λdec
posL

dec
pos + λvecLvec

(12)

Here, λori, λrot, λ
SMPL
pos , λdec

pos, λvec are weights of corre-
sponding losses. The difference between L SMPL

pos and
L dec

pos is that L SMPL
pos is computed based on the position

SMPL(ŷrot) inferred by SMPL and the ground truth ypos,
while L dec

pos is computed based on the position ŷpos decoded
by the decoder and ypos.

4 Experiments
4.1 Implementation Details
For all GRUs in the model, the number of layers is set to 1
and the dimension is set to 256. The joint-relation Trans-
former has 4 layers with a dimension of 512. The initial
learning rate is set to 5 × 10−4, and is halved every 15000
iterations. The length of the input sequence L is set to 32.
{λori, λrot, λ

SMPL
pos , λdec

pos, λvec} = {0.02, 1, 1, 1, 0.5}. The
model is trained on two GeForce RTX 3090 GPUs for a total
of 90000 iterations, with a batch size of 32 on each GPU. The
training process costs approximately 32 hours to complete.

4.2 Evaluation Metrics
We adopt the following evaluation metrics.

• MPJPE: Mean Per Joint Position Error [cm].

• MPJRE: Mean Per Joint Rotational Error [degree].

• MPJVE: Mean Per Joint Velocity Error [cm/s].

• fps: Frames Per Second [frame].

4.3 Evaluation Protocols
Standard scenario. Following the experimental setup out-
lined in AvatarPoser [Jiang et al., 2022], we partition the
CMU [graphics lab., 2000], BMLrub [Troje, 2002], and
HDM05 [Müller et al., 2007] subsets into 90% training data
and 10% testing data. For comparison, we evaluate the re-
sults using both three inputs (head and wrists) and four in-
puts (head, wrists, and pelvis). It is worth noting that, unless
explicitly stated otherwise, all other results are based on the
usage of three inputs.

Instantaneous data-loss scenario. AGRoL [Du et al., 2023]
proposed a setting for instantaneous data-loss, which ran-
domly masks out 10% of the input sequence. However, in
practical applications, an instantaneous data-loss does not
necessarily mean the complete loss of all tracker signals. In-
stead, it might indicate the loss of information from a spe-
cific joint. Therefore, we propose a new setting where signals
of each tracker signal have a certain probability p of being
lost at each moment. We evaluated each model five times at
p = 0.1, 0.5 and 0.9, and took the average as the result.

Prolonged data-loss scenario. In the scenario of prolonged
data-loss, data is continuously lost for a long-last period. For
evaluation purposes, we set a protocol to mask out subsequent
M frames every 80 frames. We evaluated each model in M =
20, 40 and 60.

4.4 Comparison to the State-of-the-art
The evaluation results of each model in the standard scenario
are extracted from the reports in their respective papers. For
comparison in data-loss scenarios, we select several publicly
available state-of-the-art methods (AvatarPoser [Jiang et al.,
2022], AGRoL [Du et al., 2023] and AvatarJLM [Zheng et
al., 2023]). We conduct a fair comparison by retraining their
publicly available code and evaluating them under the proto-
cols for data-loss scenarios using the retrained parameters.

Standard scenario. To verify the effectiveness of our model,
we perform a fair comparison with the state-of-the-art meth-
ods in the standard scenario. The results, as shown in Table
2 and Table 3, demonstrate that our model achieves state-of-
the-art performance in three- and four-input conditions. This
indicates that ReliaAvatar, despite being primarily designed
to tackle data-loss scenarios, surpasses other models even in
the standard scenario.

Instantaneous data-loss scenario. We compare ReliaAvatar
with other models under three conditions: p = 0.1, p = 0.5,
and p = 0.9. As shown in Table 4, ReliaAvatar demon-
strates its superior robustness compared to other models in
the instantaneous data-loss scenario. Under the conditions of
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Method MPJRE MPJPE MPJVE

FinalIK [Unity, 2018] 16.77 18.09 59.24
CoolMoves [Ahuja et al., 2021] 5.20 7.83 100.54

LoBSTr [Yang et al., 2021] 10.69 9.02 44.97
VAE-HMD [Dittadi et al., 2021] 4.11 6.83 37.99
AvatarPoser [Jiang et al., 2022] 3.21 4.18 29.40

EgoPoser [Jiang et al., 2023] - 4.14 25.95
AGRoL [Du et al., 2023] 2.66 3.71 18.59

DAP [Di et al., 2023] 2.69 3.68 24.30
AvatarJLM [Zheng et al., 2023] 2.90 3.35 20.79

ReliaAvatar (Ours) 2.53 3.18 18.30

Table 2: State-of-the-art comparison on AMASS [Mahmood et al.,
2019] in the standard scenario using three inputs (head and wrists).
Best in bold.

Method MPJRE MPJPE MPJVE

FinalIK [Unity, 2018] 12.39 9.54 36.73
CoolMoves [Ahuja et al., 2021] 4.58 5.55 65.28

LoBSTr [Yang et al., 2021] 8.09 5.56 30.12
VAE-HMD [Dittadi et al., 2021] 3.12 3.51 28.23
AvatarPoser [Jiang et al., 2022] 2.59 2.61 22.16
AvatarJLM [Zheng et al., 2023] 2.40 2.09 17.82

ReliaAvatar (Ours) 2.16 1.94 14.32

Table 3: State-of-the-art comparison on AMASS [Mahmood et al.,
2019] in the standard scenario using four inputs (head, wrists, and
pelvis. Best in bold.

p = 0.1 and 0.5, ReliaAvatar is hardly affected. Even when
the signals of each tracker have only a 10% probability of
being received, ReliaAvatar can still operate normally.

Prolonged data-loss scenario. We compare our model with
the previous state-of-the-art models in the prolonged data-
loss scenario under three conditions: M = 20, 40, and 60.
Table 5 indicates that existing models are unable to handle
scenarios where there is a continuous loss of more than 40
frames of signals. In contrast, ReliaAvatar exhibits supe-
rior robustness compared to other methods, as it can function
nearly normally even with a continuous loss of 20 frames. It
is capable of operating even when the signal is continuously

p Method MPJRE MPJPE MPJVE

0.1

AvatarPoser 9.01 20.02 1532.62
AGRoL 6.59 12.31 101.71

AvatarJLM 6.65 13.40 887.24
ReliaAvatar(Ours) 2.66 3.32 20.44

0.5

AvatarPoser 15.47 53.07 3651.32
AGRoL 9.96 20.04 114.12

AvatarJLM 16.86 43.02 2512.13
ReliaAvatar(Ours) 2.77 3.51 26.51

0.9

AvatarPoser 17.98 63.53 2582.13
AGRoL 13.08 27.59 117.26

AvatarJLM 25.16 65.50 1154.16
ReliaAvatar(Ours) 5.12 7.86 45.00

Table 4: Comparison in instantaneous data-loss scenario. Best in
bold and second best underlined.

M Method MPJRE MPJPE MPJVE

20

AvatarPoser 7.43 14.46 102.18
AGRoL 6.59 12.31 101.71

AvatarJLM 8.96 18.71 133.92
ReliaAvatar (Ours) 2.84 3.67 24.69

40

AvatarPoser 11.52 23.57 123.33
AGRoL 9.96 20.24 114.12

AvatarJLM 14.52 34.39 154.17
ReliaAvatar (Ours) 3.48 5.17 34.01

60

AvatarPoser 15.05 31.36 118.73
AGRoL 13.08 27.59 117.26

AvatarJLM 20.14 49.95 181.36
ReliaAvatar (Ours) 4.70 7.69 45.02

Table 5: Comparison in prolonged data-loss scenario. Best in bold
and second best underlined.

Input signals MPJRE MPJPE MPJVE

{X} 2.69 3.49 23.49
{X, yrot} 2.54 3.25 19.44
{X, ypos} 2.58 3.28 18.39

{X, yrot, ypos} 2.53 3.25 19.07
{X, yrot, ypos,∆yrot,∆ypos} 2.53 3.18 18.30

Table 6: Ablation experiments of the input signals. Best in bold.

lost for 60 frames.
ReliaAvatar’s robustness to low-quality signals stems from

three aspects: 1) Our model abandons windowed inputs.
Models that solely rely on a window of tracker signals as in-
put (e.g., AvatarPoser with a window size of 40) exhibit obvi-
ous malfunctions when facing prolonged data-loss since the
signals within the window are all set to zero. 2) Our model in-
tegrates motion prediction into the avatar animator. When the
regression pathway fails to function properly, the prediction
pathway can still predict the current full-body motion based
on the historical trajectory states. 3) The autoregressive train-
ing paradigm allows for simulating abnormal scenarios that
may occur in applications.

4.5 Ablation Studies
To illustrate the roles of various designs in our model, we
conduct the following ablation experiments.

Input Signals. As shown in Table 6, we validate the perfor-
mance gain of incorporating historical trajectory states into
the input. Here, X represents the input used by most current
methods, i.e. X = {xr,∆xr, xp,∆xp}.

If the historical trajectory states are not used as input, the
regression pathway remains inactive. The experimental re-
sults demonstrate that incorporating yrot,∆yrot, ypos,∆ypos
into the input leads to performance gains. Due to the continu-
ity of motion, the current full-body is naturally influenced by
and aligned with the previous trajectories. So this improve-
ment can be attributed to the previous trajectories providing
cues for the generation of the current full-body motion.

Decoder. As shown in Table 7, we compare the performance
of different decoder designs in our model. The model using a
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Decoder MPJRE MPJPE MPJVE fps

Shared 2.64 3.38 19.51 112.22
Multi-FC 2.51 3.21 18.64 46.73
Sparse-FC 2.53 3.18 18.30 109.65

Table 7: Ablation experiments of the design of decoder. Best in bold
and second best underlined.

method MPJRE MPJPE MPJVE

add 2.66 3.31 19.70
concat (joint-dim) 2.66 3.31 19.83
concat (feat-dim) 2.53 3.18 18.90

Table 8: Ablation experiments of the fusion method. Best in bold.

shared decoder has larger errors but shorter runtime while the
model using multi-FC decoders has smaller errors but suf-
fers from poor real-time performance. The model using a
Sparse-FC decoder has the advantages of both low error and
fast running speed.

Fusion Method. The methods to integrate features from two
pathways are worth exploring. We have explored three dif-
ferent methods for feature integration: addition, concatena-
tion along the feature dimension, and concatenation along the
joint dimension. As shown in Table 8, the fusion method
of concatenating features along the embedding dimensions
achieves the best performance.

Simulation Training. An important distinction of Relia-
Avatar compared to other methods is its ability to simulate
various scenarios during the training process. This is at-
tributed to the model architecture with joint motion predic-
tion and the autoregressive training paradigm. The results
presented in Table 9 demonstrate that simulation training for
data-loss scenarios does not adversely affect performance in
the standard scenario.

4.6 Analysis
Ability of motion prediction. An important capability that
we expect ReliaAvatar to achieve is the ability to predict full-
body movements of the current frame using historical trajec-
tory states when tracker signals are lost. This enables us
to drive avatars smoothly even in the absence of real-time
tracker information. We calculate MPJPE for the 40 frames
after losing real-time tracker signals. The results presented
in Table 10 demonstrate that ReliaAvatar is capable of pre-
dicting relatively accurate poses within several tens of frames
after the disappearance of tracker signals.

method Standard. Instantaneous Prolonged

no mask 3.17 51.41 24.30
+ random mask 3.18 3.92 12.26

+ prolonged mask 3.18 3.51 5.17

Table 9: Ablation experiments of simulation training. Best in bold
and second best underlined.

Frame #1 #3 #7 #10 #20 #30 #40

MPJPE 3.41 3.51 3.91 4.34 6.34 8.94 11.62

Table 10: The statistical errors after the interruption of tracker sig-
nals. #n represents the n-th frame after the interruption.

Inference Time. To ensure a fair comparison of the opera-
tional efficiency of different models, we conduct speed tests
on state-of-the-art models under identical operating modes
and hardware conditions. For each model, we construct a zero
input and run it 10,000 times to obtain the average time as its
inference time. All tests are conducted on a single GeForce
RTX 3090 GPU. As shown in Figure 4, ReliaAvatar surpasses
other models in both operational efficiency and accuracy.
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Figure 4: Inference time comparison.

5 Conclusion

We conducted a comprehensive exploration of the full-body
avatar pose estimation problem under low-quality signal sce-
narios, which had not been systematically investigated before.
We summarize three scenarios that may be encountered in
practical applications: standard scenario, instantaneous data-
loss scenario, and prolonged data-loss scenario. To address
these challenges, we proposed ReliaAvatar, a real-time, ro-
bust, autoregressive avatar animator. We consider the full-
body avatar pose estimation problem as a combination of joint
upsampling and motion prediction. Therefore, ReliaAvatar
possesses an upsampling pathway and a prediction pathway.
Furthermore, we incorporate simulation training for data-loss
scenarios on top of autoregressive training. Experimental re-
sults demonstrate that ReliaAvatar not only outperforms other
methods in the data-loss scenarios but also achieves state-of-
the-art performance in the standard scenario. In addition to
its outstanding accuracy and robustness, ReliaAvatar also ex-
hibits superior running efficiency compared to other methods.
These advantages reduce the hardware requirements for ani-
mating a full-body avatar. As a result, more affordable and
convenient devices can be used to drive avatars, which con-
tributes to the wider adoption of related technologies.
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