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Abstract

Emotion recognition based on multimodal phys-
iological signals is attracting more and more at-
tention. However, how to deal with the con-
sistency and heterogeneity of multimodal physio-
logical signals, as well as individual differences
across subjects, pose two significant challenges.
In this paper, we propose a Multi-level Disen-
tangling Network named MDNet for cross-subject
emotion recognition based on multimodal phys-
iological signals. Specifically, MDNet consists
of a modality-level disentangling module and a
subject-level disentangling module. The modality-
level disentangling module projects multimodal
physiological signals into modality-invariant sub-
space and modality-specific subspace, capturing
modality-invariant features and modality-specific
features. The subject-level disentangling mod-
ule separates subject-shared features and subject-
private features among different subjects from mul-
timodal data, which facilitates cross-subject emo-
tion recognition. Experiments on two multimodal
emotion datasets demonstrate that MDNet outper-
forms other state-of-the-art baselines.

1 Introduction
Emotion recognition plays a pivotal role in affective com-
puting [Cowie et al., 2001]. In recent years, researchers
have typically employed both non-physiological signals and
physiological signals for emotion recognition [Shen et al.,
2019]. Non-physiological signals such as text, video, and
audio are easily influenced by subjective factors and can be
easily masked [Deng et al., 2018]. Hence, it is not guaran-
teed to reflect human emotional states accurately. In contrast,
some crucial physiological signals such as electroencephalo-
gram (EEG), electromyogram (EMG), and electrooculogram
(EOG) can objectively represent the true emotional state of
the human body. As a result, emotion recognition based on
physiological signals has gradually become a hot research
topic [Ning et al., 2023].
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Figure 1: The consistency and heterogeneity in physiological sig-
nals. Consistency refers to the uniform patterns of physiological
signals in representing the same emotional states across different
modalities. Heterogeneity refers to the signals’ distinct distributions
in the temporal and spectral domains across different modalities.

Compared to unimodal physiological signals, multimodal
physiological signals can represent emotional states com-
prehensively. Therefore, some emotion recognition meth-
ods based on multimodal physiological signals have achieved
state-of-the-art performance [Jia et al., 2021; Zhang et al.,
2020a; Abdullah et al., 2021; Zhang et al., 2022]. However,
there are still two major challenges for emotion recognition
based on multimodal physiological signals:

1) How to model the consistency and heterogeneity of
multimodal physiological signals simultaneously. The con-
sistency and heterogeneity are two important characteristics
of multimodal physiological signals [Zhang et al., 2020a;
Khan et al., 2023]. Specifically, the consistency of multi-
modal physiological signals refers to the interrelatedness of
different physiological signals for the same physiological ac-
tivity. In emotion recognition, different physiological signals
can reflect the same emotional state, providing comprehen-
sive information. As shown in Figure 1, both EEG and EOG
reflect a happy emotional state. The heterogeneity of mul-
timodal physiological signals refers to distinct features be-
tween different physiological signals [Jia et al., 2023]. As
shown in Figure 1, EEG and EOG exhibit notable differences
in temporal and spectral domain distributions. However,
most existing methods model either the consistency or hetero-
geneity of multimodal physiological signals individually. To

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3069



model consistency, joint models project different physiologi-
cal signals into a common subspace for feature extraction [Lu
et al., 2015; Yin et al., 2017; Xu et al., 2021; Jia et al.,
2021], but ignore the heterogeneity between different physio-
logical signals. To model heterogeneity, coordination models
typically use different feature extractors for each physiologi-
cal signal to capture their distinct features [Qiu et al., 2018;
Ma et al., 2019b; Zhang et al., 2020b; Jia et al., 2022b;
Lai, 2004], yet overlook consistency. Thus, how to model
the consistency and heterogeneity of multimodal physiologi-
cal signals simultaneously still remains a challenge.

2) How to model individual differences across subjects in
emotion recognition. Due to structural and functional dif-
ferences between subjects, physiological signals are different
even though the subjects are in the same emotion state [Liu
et al., 2024; Zhang et al., 2018]. This leads to poor per-
formance in cross-subject emotion recognition [Fdez et al.,
2021]. Some researchers attempt to use domain adaptation to
improve model performance in cross-subject emotion recog-
nition [Zhao et al., 2021; Li et al., 2019a]. Although they can
achieve excellent performance, Domain adaptation requires
collecting extensive data from new subjects to customize the
model in practical application, making the practical applica-
tion of emotion recognition models inconvenient. Therefore,
how to model individual differences across subjects in emo-
tion recognition still remains a challenge.

To address these challenges, we propose a Multi-level Dis-
entangling Network named MDNet for cross-subject emotion
recognition based on multimodal physiological signals. MD-
Net consists of a modality-level disentangling module and a
subject-level disentangling module. The modality-level dis-
entangling module includes a modality-invariant encoder and
several modality-specific encoders. The subject-level disen-
tangling module comprises a subject-shared encoder and sev-
eral subject-private encoders.

Overall, the main contributions of our work are summa-
rized as follows:

• We propose a modality-level disentangling mod-
ule, which captures modality-invariant features and
modality-specific features. Both the consistency and
heterogeneity of multimodal physiological signals are
integrated into a unified framework.

• We develop a subject-level disentangling module, which
separates both subject-shared features and subject-
private features, in order to address the individual dif-
ferences across subjects.

• Experiments on two multimodal emotion datasets show
that MDNet achieves state-of-the-art performance.

2 Related Works
2.1 Multimodal Emotion Recognition
Multimodal emotion recognition models can mainly be clas-
sified into joint models and coordination models. Joint mod-
els extract features of multimodal physiological signals in
the same subspace to model the consistency of multimodal
signals [Xu et al., 2021; Jia et al., 2021; Lu et al., 2015;
Liu et al., 2023; Yin et al., 2017]. Xu et al. [2021] treat

multimodal physiological signals as a multi-dimensional ten-
sor. They integrate the multi-scale characteristics by fus-
ing multi-core information. Jia et al. [2021] propose a two-
stream heterogeneous graph recurrent neural network, which
achieves multimodal feature fusion of temporal, spectral, and
spatial features. Coordination models, on the other hand,
extract features of multimodal physiological signals in sep-
arate subspaces and apply certain correlation constraints to
these features to model the heterogeneity of multimodal sig-
nals [Qiu et al., 2018; Jia et al., 2022a; Zhang et al., 2020b].
Qiu et al. [2018] utilize deep canonical correlation analysis
(DCCA) for emotion recognition, which can learn separate
representations for each modality in a non-linear way. Ma
et al. [2019b] design a multimodal residual LSTM network
for emotion recognition, projecting different modalities into
separate LSTM branches to extract multimodal features.

Although joint models and coordination models can
achieve high accuracy, they do not simultaneously model the
consistency and heterogeneity of multimodal physiological
signals. Our model combines the advantages of both joint
models and coordination models, modeling the two charac-
teristics within the same framework.

2.2 Cross-Subject Emotion Recognition
Individual differences exist in inter-subject physiological sig-
nals [Jia et al., 2022b]. The variations of physiological sig-
nals from different subjects limits the model’s performance
for cross-subject emotion recognition. To address this chal-
lenge, researchers have proposed a series of methods to
enhance emotion recognition models’ generalizability [Ghi-
fary et al., 2016; Ma et al., 2019a; Ganin et al., 2016;
Li et al., 2018]. Li et al. [2019b] use source selection and
style transformation mapping to reduce the domain differ-
ences between target and source, facilitating the acquisition
of common features in EEG. Zhao et al. [2021] develop a
plug-and-play domain adaptation method. This method cus-
tomizes the model by inputting EEG from target subjects
to enhance the model’s specificity, which makes emotion
recognition more generalizable and practicable as well. Li
et al. [2019a] improve the model’s generalizability by min-
imizing the classification error on the source while making
the source and the target similar in latent representations. Li
et al. [2021] propose a Transferable Attention Neural Net-
work (TANN), which distinguishes the contribution of dif-
ferent samples for emotion recognition and uses local and
global attention mechanisms to highlight the discriminative
EEG data adaptively.

The methods above can effectively deal with individual dif-
ferences across subjects and improve the accuracy of models
in cross-subject emotion recognition. However, these meth-
ods only consider the individual differences in unimodal EEG
and do not take a further concern of multimodal signals for
cross-subject emotion recognition.

3 Multi-level Disentangled Network
Our goal is to achieve high performance in cross-subject emo-
tion recognition by modeling key features from multimodal
data. As shown in Figure 2, MDNet consists of a modality-
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Figure 2: The overall structure of the proposed MDNet. MDNet takes the multimodal data X1,X2, · · · ,Xn as inputs. Modality encoders are
used to initially extract the features of each modality. Modality-invariant encoder and modality-specific encoder project the initial features
into the modality-invariant subspace and the modality-specific subspace, capturing modality-invariant features and modality-specific features.
A multi-head self-attention mechanism is applied to obtain the subject-level representation. Then, subject-shared encoder and subject-private
encoder separate subject-shared features and subject-private features. Finally, subject-shared features are used for cross-subject emotion
recognition.

level disentangling module and a subject-level disentan-
gling module. Specifically, the modality-level disentangling
module captures modality-invariant features and modality-
specific features from multimodal physiological signals. A
self-attention mechanism is then used to fuse these features to
obtain subject-level representation, reducing the information
redundancy when fusing multimodal features. Afterwards,
subject-level disentangling module separates subject-shared
features and subject-private features from the subject-level
representation. In order to deal with the individual differ-
ences across subjects, only subject-shared features are used
for classification, enhancing the accuracy of emotion recog-
nition.

3.1 Modality-level Disentangling Module
To model key features from multimodal data, modality-
invariant features and modality-specific features are cap-
tured by projecting each modality into modality-invariant
subspace and modality-specific subspace, respectively. In
the modality-invariant subspace, modality-invariant features
learn the multimodal consistency. In the modality-specific
subspace, modality-specific features learn the multimodal
heterogeneity. Afterwards, modality-invariant features and
modality-specific features for each modality are obtained. A
multi-head self-attention mechanism is applied to these fea-
tures, which allows each feature to induce potential infor-
mation from other features that are synergistic for emotion
recognition.

Specifically, for each modality, a modality encoder is used
to initially extract the modality features. The encoding pro-
cess can be formally expressed as:

ui = ModalityEncoderi(Xi) (i = 1, 2, · · · , n) (1)

where Xi ∈ RCi×Li represents the input of the i-th modality,
Ci denotes the number of channels in the i-th modality, Li de-

notes the number of sampling points in each channel of the i-
th modality, and n represents the number of input modalities.
Then, we obtain the initial features ui(i = 1, 2, · · · , n) ∈ Rd

extracted from all modalities, where d represents the dimen-
sion of each feature.

The modality-level disentangling module consists of a
modality-invariant encoder and n modality-specific encoders.
The modality-invariant encoder re-encodes the initial features
ui(i = 1, 2, · · · , n) of the modalities, projecting them to the
modality-invariant subspace. The encoding process of the
modality-invariant encoder can be formally expressed as:

ũi = Et(ui, θt) (i = 1, 2, · · · , n) (2)
where Et represents the modality-invariant encoder composed
of fully connected layers, θt denotes the parameters of the
modality-invariant encoder, and ũi represents the modality-
invariant features of i-th modality. For all modalities, the
modality-invariant encoder Et shares the parameters θt, en-
abling the re-encoded features to learn the multimodal con-
sistency. Hence, we obtain the modality-invariant features
ũi(i = 1, 2, · · · , n) ∈ Rd extracted from the initial features
of all modalities.

The modality-invariant features of different modalities in
the modality-invariant subspace have to be as similar as pos-
sible. We use Central Moment Discrepancy (CMD) to mea-
sure the similarity between modality-invariant features. The
CMD decreases as the distribution of modality-invariant fea-
tures become more similar. The modality similarity loss Lm

sim
is defined as:

Lm
sim =

2

n(n− 1)

n∑︂
i=1

n∑︂
j=i+1

CMD(ũi, ũj) (3)

For i-th modality, the i-th modality-specific encoder re-
encodes the initial features ui, projecting them to a modality-
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specific subspace. The encoding process of the modality-
specific encoder can be formally expressed as:

ûi = E i
c(ui, θ

i) (i = 1, 2, · · · , n) (4)
where Ec represents the modality-specific encoder composed
of fully connected layers, θi denotes the parameters of the
modality-specific encoder, and ûi represents the modality-
specific features of i-th modality. For each modality, the
modality-specific encoder E i

c has different parameters θi, en-
abling the re-encoded features to learn the individual differ-
ences across subjects. Consequently, we obtain the modality-
specific features ûi(i = 1, 2, · · · , n) ∈ Rd extracted from the
initial features of all modalities.

Modality-invariant features and modality-specific features
represent different aspects of a same modality. Orthogonal-
ity constraint is used to maximize the difference between
modality-invariant features and modality-specific features.
Similarly, the differences between modality-specific features
of different modalities are maximized by the same orthogo-
nality constraint. The modality difference loss Lm

diff is de-
fined as:

Lm
diff =

n∑︂
i=1

||ũT
i ûi||2F +

n∑︂
i=1

n∑︂
j=i+1

||ûT
i ûj ||2F (5)

where || · ||2F represents the squared Frobenius norm.
During the re-encoding process, some information con-

tained in the initial features is inevitably lost. Mean squared
error is used to minimize the distortion of the re-encoded fea-
tures. To measure the distortion of re-encoded features, we
use a decoder composed of fully connected layers to recon-
struct the initial features ūi = D(ũi + ûi, θ

d). The modality
reconstruction loss Lm

recon is defined as:

Lm
recon =

1

n

n∑︂
i=1

||ui − ūi||22
d

(6)

where || · ||22 represents the squared L2-norm.
After obtaining modality-invariant features and modality-

specific features of all modalities, we concatenate these
features to obtain the modality-level representation H =
(ũ1||û1||ũ2||û2 · · · ũn||ûn) ∈ R2n×d, where || denotes con-
catenation. To induce interaction between features, we intro-
duce the attention mechanism [Vaswani et al., 2017], which
can be formally expressed as:

Attention(Q,K, V ) = softmax
(︃
QKT

√
dk

)︃
V (7)

where Q, K, V stand for query, key, and value, respectively,
dk is the dimension of the features. Multi-head attention con-
sists of multiple parallel attention mechanisms. The headi is
defined as:

headi = Attention(QWQ
i ,KWK

i , V WV
i ) (8)

where WQ
i ,WK

i ,WV
i are the parameters of the i th attention

mechanism.
In order to obtain the subject-level representation h, we

apply the multi-head self-attention mechanism. Formally, the
subject-level representation is computed as:

h = MultiHead(H, θh) = (head1||head2|| · · · ||headn)WO

(9)

where θh = {WQ,WK ,WV ,WO}, the definition of headi
is as given above, and || denotes concatenation.

3.2 Subject-level Disentangling Module
After obtaining the subject-level representation, we use the
subject-level disentangling module to separate subject-shared
features and subject-private features. Subject-shared features
represent the similar expression of different subjects for the
same emotion. On the other hand, subject-private features
represent the personalized expression of different subjects for
the same emotion.

The subject-level disentangling module consists of a
subject-shared encoder and m subject-private encoders,
where m is the subject’s number in the training data. The
subject-shared encoder re-encodes the subject-level represen-
tation to capture the subject-shared features, which can be
formally expressed as:

h̃ = Es(h, θs) (10)

where Es represents the subject-shared encoder composed
of fully connected layers, θs denotes the parameters of the
subject-shared encoder, and h̃ represents the subject-shared
features. For all subjects, the subject-shared encoder Es
shares parameters θs, enabling the re-encoded features to
learn the similarities among different subjects. As a result,
we obtain the subject-shared features h̃ ∈ Rd extracted from
the subject-level representation.

For each subject, a subject-private encoder re-encodes their
subject-level representation to capture the subject-private fea-
tures, which can be formally expressed as:

ĥ = E i
p(h, θ

i
p) (11)

where E i
p represents the subject-private encoder composed of

fully connected layers, θip denotes the parameters of the i-th
subject-private encoder, and ĥ represents the subject-private
features. For each subject, the subject-private encoder E i

p has
different parameters θip, enabling the re-encoded features to
learn the uniqueness of different subjects. As a result, we
obtain the subject-private features ĥ ∈ Rd extracted from the
subject-level representation.

Subject-shared features and subject-private features reflect
different aspects of human emotional characteristics. In or-
der to capture different aspects of the subject-level repre-
sentation, an orthogonality constraint is applied to maximize
the differences between subject-shared features and subject-
private features. The subject difference loss Ls

diff is defined
as:

Ls
diff = ||h̃

T
ĥ||2F (12)

where || · ||2F represents the squared Frobenius norm.
We impose constraint using mean squared error which can

minimize the distortion of the re-encoded features. To mea-
sure the distortion of features after the separation process, we
use a decoder composed of fully connected layers to recon-
struct the subject-level representation h̄ = D(h̃+ ĥ, θd). The
individual reconstruction loss Ls

recon is defined as:
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Ls
recon =

||h− h̄||22
d

(13)

where || · ||22 represents the squared L2-norm, d is the dimen-
sion of h.

Finally, subject-shared features h̃ are fed into a classifier
Cs. The result can be formally computed as:

ŷ = Cs(h̃) (14)

where ŷ is the emotion classification result.
The cross-entropy is used as the task loss Ltask, which is

defined as:

Ltask = − 1

n

n∑︂
i=1

yi log(ŷi) (15)

where yi represents the label of the task, n is the number of
samples in a batch.

3.3 Learning Loss
A joint loss function is employed to constrain the model, for-
mally, the entire loss function can be represented as:

L = Ltask+αLm
sim+βLm

diff+γLm
recon+δLs

diff+ϵLs
recon (16)

where α, β, γ, δ, ϵ are the weights of the loss terms. The
task loss Ltask is used to ensure accurate classification. The
Modality similarity loss Lm

sim ensures that the modality-
invariant features remain similar. The modality difference
loss Lm

diff guarantees the distinction between modality-
specific features of different modalities and also between
modality-specific features and modality-invariant features
within the same modality. The modality reconstruction loss
Lm
recon minimizes distortion of modality-specific features

during the re-encoding process. The subject difference loss
Ls
diff ensures a clear separation between subject-shared fea-

tures and subject-private features. The subject reconstruction
loss Ls

recon reduces feature distortion of subject-shared fea-
tures and subject-private features during the separations.

4 Experiments
4.1 Datasets
We evaluate our MDNet on two public multimodal datasets:
DEAP [Koelstra et al., 2011] and MAHNOB-HCI [Soley-
mani et al., 2011].

The DEAP dataset is a collection comprising 40 music
videos, each with a duration of one minute. The dataset is
created based on the responses of 32 subjects who conducted
online self-assessments. During the experiment, the 32 sub-
jects watch the selected videos while their Electroencephalo-
gram (EEG) is recorded using a BioSemi EEG cap with 32
channels, conforming to the international 10-20 system stan-
dards. Additionally, 8 channels are dedicated to collecting
peripheral physiological signals (PPS), including respiration
rate, Electromyogram (EMG), and Electrooculogram (EOG).
Each subject rates the videos based on arousal, valence, lik-
ing, dominance, and familiarity. In the preprocessing stage,

all signals are downsampled to 128 Hz and EEG is passed
through a bandpass filter from 4 Hz to 45 Hz. Electrooculo-
gram (EOG) artifacts are removed. For the DEAP dataset, the
arousal and valence ratings range from 1 to 9. Thus, ratings
≥ 5 are labeled as positive for high arousal or valence, and
those < 5 as negative for low arousal or valence.

The MAHNOB-HCI dataset includes data from 30 sub-
jects, each watching 20 video clips while recording physi-
ological data for 20 trials. The length of these video clips
ranges from 34.9 seconds to 117 seconds (average 81.4 sec-
onds, standard deviation 22.5 seconds). Subjects provide
subjective feedback using a score range from 1 to 9. This
dataset includes EEG signals from 32 channels and 6 chan-
nels of peripheral physiological signals (PPS). Their EEG
data are recorded using the Biosemi Active II system with 32
Ag/AgCl electrodes at a sampling rate of 512Hz. The periph-
eral physiological signals include Electrocardiogram (ECG),
Galvanic Skin Response (GSR), respiration, and body tem-
perature. We downsample all signals to 128Hz. In model
evaluation, a fixed 5-point threshold is used to discretize the
subjective feedback into binaries for two emotional dimen-
sions, valence and arousal, where values ≥ 5 indicate posi-
tive, and < 5 as negative. However, data from subjects 12,
15, and 26 are missing, and thus excluded. Therefore, data
from 27 out of the 30 subjects are used, consistent with exist-
ing models like TSecption [Ding et al., 2022] and HetEmo-
tionNet [Jia et al., 2021].

4.2 Experiment Settings and Implementation
Multiple modalities are employed across two datasets: EEG,
EOG, and EMG for the DEAP dataset, while EEG, ECG, and
GSR for the MAHNOB-HCI dataset. To avoid data leakage
during the evaluation process, we adopt a leave-one-subject-
out cross-validation protocol on both datasets. Specifically,
the training and test data are from different subjects, ensuring
no data leakage. For example, in DEAP dataset, we use data
from 31 subjects for training and the remaining subject’s data
for testing, repeating the validation process until each sub-
ject’s data has been used as test data once. The entire experi-
ment is conducted with 32 validations, and the average of all
obtained test results is calculated as the final cross-validation
performance.

To ensure a fair comparison, we apply the same treatment
to our MDNet and all baseline models. Specifically, we set
a 6s window with a 1s overlap. Considering the potential
imbalance in label distribution in the original datasets, we re-
sample and balance the training set labels. This helps avoid
biases in the model during training and enhances its general-
ization ability, preventing imbalances in predicted labels.

We implement our MDNet based on the Pytorch frame-
work. Our model is trained by Adam optimizer with a learn-
ing rate lr = 0.0003. The batch size is 64. The weights are
α=0.002, β=0.1, γ=0.04, δ=0.5, and ϵ=0.05.

4.3 Baseline Methods
We compare our MDNet with eight state-of-the-art mod-
els, including SVM [Chatterjee and Bandyopadhyay, 2016],
DGCNN [Song et al., 2018], EEGNet [Lawhern et al., 2018],
ACRNN [Tao et al., 2020], SST-EmotionNet [Jia et al.,
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DEAP MAHNOB-HCI

Arousal Valence Arousal Valence

SVM 0.518 0.516 0.472 0.525

DGCNN 0.598 0.594 0.622 0.578

EEGNet 0.617 0.590 0.645 0.605

ACRNN 0.635 0.595 0.586 0.623

SST-EmotionNet 0.597 0.565 0.606 0.590

HetEmotionNet 0.621 0.593 0.627 0.621

TSception 0.621 0.550 0.550 0.618

LGGNet 0.647 0.594 0.597 0.592

MDNet 0.653 0.615 0.663 0.660

Table 1: Comparative analysis of accuracy across different methods
on DEAP and MAHNOB-HCI datasets. The accuracy is measured
in terms of arousal and valence for both DEAP and MAHNOB-HCI
datasets.

2020], HetEmotionNet [Jia et al., 2021], TSception [Ding et
al., 2022], LGGNet [Ding et al., 2023].

4.4 Experiment Analysis
To validate the effectiveness of our MDNet, we com-
pare it with eight baseline methods on DEAP dataset and
MAHNOB-HCI dataset, as shown in Table 1. Specifically,
traditional models like EEGNet primarily contribute to ex-
tracting effective features from EEG signals to improve the
performance of emotion recognition. However, these mod-
els neglect the significance of multimodal signals and do not
utilize the fusion of multiple modalities to improve perfor-
mance. In contrast, HetEmotionNet effectively extracts dis-
criminative features from multimodal signals. It can model
the heterogeneous information of different modalities, mak-
ing it perform better than EEG-based models. TSception is
able to extract discriminative features from multiple modal-
ities, which in turn improves model performance. However,
these models overlook the individual differences across sub-
jects in multimodal signals, which often reduces the classifi-
cation accuracy. In comparison, our MDNet employs disen-
tangled representation learning to utilize the consistency and
heterogeneity of multimodal physiological signals and reduce
the impact of individual differences across subjects. As a re-
sult, our MDNet yields the highest accuracy in cross-subject
emotion recognition tasks, and outperforms all the baseline
models on both datasets.

4.5 Ablation Studies
To validate the effectiveness of our model, we conduct ab-
lation experiments on DEAP dataset. These experiments are
categorized into three types:

1) validating the effectiveness of modality-level disentan-
gling module and subject-level disentangling module;

2) assessing the effectiveness of multimodal fusion;
3) examining the effectiveness of the loss terms.

Figure 3: Ablation studies of disentangling modules on DEAP
dataset. ‘w/o SD’ represents ‘without the subject-level disentangling
module’, and ‘w/o MD’ represents ‘without the modality-level dis-
entangling module’.

Figure 4: Ablation studies of multimodal fusion on DEAP dataset.

Ablation on disentangling modules: To validate the ef-
fectiveness of the disentangling modules, we conduct abla-
tion experiments on modality-level disentangling module and
subject-level disentangling module, as shown in Figure 3.
The results indicate that the classification accuracy for va-
lence and arousal significantly decreases in the absence of the
modality-level disentangling module. Similarly, the accuracy
drops without the subject-level disentangling module, partic-
ularly in classifying valence. This demonstrates that both dis-
entangling modules improve the performance of our MDNet
in cross-subject emotion recognition.

Ablation on multimodal fusion: To verify the superiority
of multimodal fusion, we conduct ablation experiments by
removing each modality (EEG, EMG, and EOG) individually
from the original setting that uses three modalities. Figure 4
shows that removing any modality results in a decrease in
classification accuracy. The removal of EEG signals has the
most pronounced effect on accuracy reduction. This aligns
with traditional cognition that EEG has the primary contribu-
tion to emotion recognition [Zhang et al., 2020a].

It is also observed that using unimodal EEG yields bet-
ter results than unimodal EOG, and using unimodal EOG
performs better than unimodal EMG. This further validates
the importance of EEG. The combination of multimodal data
achieves better performance, which proves multimodal fusion
has critical importance for emotion recognition.

Ablation on loss terms: To validate the effectiveness of
the loss terms, we conduct ablation experiments, designing
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Figure 5: Ablation studies of loss terms on DEAP dataset.

five variants:

• L1 = Ltotal − Ls
recon

• L2 = Ltotal − Ls
diff

• L3 = Ltotal − Lm
recon

• L4 = Ltotal − Lm
sim

• L5 = Ltotal − Lm
diff

To assess the importance of each loss term, we conduct ab-
lation experiments by removing each loss term individually
and retraining the model. Figure 5 indicates that the model
performance is optimal when all loss terms are involved
(Ltotal). Removing any loss term leads to a decrease in ac-
curacy. Observations on L4 and L5 reveal that the model is
most sensitive to Lm

diff and Lm
sim, which validate their impor-

tance in separating modality-specific features and modality-
invariant features. Similarly, removing Ls

diff and Ls
sim also

leads to a drop in classification accuracy, which verifies the
vital role of Ls

diff and Ls
sim in separating subject-shared fea-

tures and subject-private features. Overall, these results prove
the importance of loss terms in maintaining and improving
model performance and their necessity in the model optimiza-
tion process.

4.6 Visualizations of Disentangling Modules
Validation of modality-level disentangling To explore the
role of the modality-level disentangling module, we visual-
ize the outputs of modality-invariant and modality-specific
encoder. The t-SNE dimensionality reduction technique
is utilized to transform high-dimensional data into lower-
dimensional data. Additionally, a scatter plot visualization
is applied to effectively present the outputs of the modality-
invariant encoder and the modality-specific encoder which
are shown in Figure 6a. In this figure, different colors rep-
resent different physiological signal modalities. The grey-
shaded area covers the outputs of the modality-invariant en-
coder, while the outer area represents the outputs of the
modality-specific encoder. This visualization reveals a dis-
tinction between the modality invariant representations and
specific representations in the encoded data. This indicates
that the modality-level disentangling module is effective in

(a) Visualization of the out-
puts of modality-invariant and
modality-specific encoder for
the 32nd subject (test subject).

(b) Visualization of the outputs
of subject-shared encoder and
subject-private encoders.

Figure 6: Visualizations of disentangling modules on DEAP dataset.

separating modality-invariant features from modality-specific
features and in modeling the consistency and heterogeneity of
multimodal data.

Validation of subject-level disentangling To validate the
effectiveness of the subject-level disentangling module, we
use the t-SNE dimensionality reduction and scatter plot visu-
alization. Figure 6b shows the output feature distribution of
the subject-shared encoder and subject-private encoders: the
densely packed dots in the central area represent the shared
emotional components, while the scattered dots around the
periphery, separated from the central area, represent sub-
ject private components. Here, red triangles indicate data
points from the test subject. This result demonstrates that
the encoded outputs provide distinguishable shared and pri-
vate features. The subject-shared encoder successfully ex-
tracts subject-shared features that are highly relevant to emo-
tions, while the subject-private encoders effectively separate
subject-private features.

5 Conclusion

In this paper, we propose a multi-level disentangling net-
work for cross-subject emotion recognition based on mul-
timodal physiological signals. To the best of our knowl-
edge, it is the first to apply disentangled representation learn-
ing to simultaneously model consistency and heterogene-
ity in multimodal physiological signals, as well as the indi-
vidual differences across subjects. The modality-level dis-
entangling module captures modality-invariant features and
modality-specific features to model the consistency and het-
erogeneity of multimodal physiological signals. The subject-
level disentangling module separates subject-shared features
and subject-private features, to model individual differences
across subjects. Experimental results show that our model
achieves state-of-the-art performance. In addition, ablation
studies validate the effectiveness of the disentangling mod-
ules. To sum up, we propose a general framework, and we
plan to further explore the application of MDNet in sleep
stage classification and depression detection in the future.
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