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Abstract
Screen user interfaces (UIs) and infographics, shar-
ing similar visual language and design princi-
ples, play important roles in human communica-
tion and human-machine interaction. We introduce
ScreenAI, a vision-language model that specializes
in UI and infographics understanding. Our model
improves upon the PaLI architecture with the flexi-
ble patching strategy of pix2struct and is trained on
a unique mixture of datasets. At the heart of this
mixture is a novel screen annotation task in which
the model has to identify the type and location of
UI elements. We use these text annotations to de-
scribe screens to Large Language Models and au-
tomatically generate question-answering (QA), UI
navigation, and summarization training datasets at
scale. We run ablation studies to demonstrate the
impact of these design choices. At only 5B parame-
ters, ScreenAI achieves new state-of-the-art results
on UI- and infographics-based tasks (Multipage
DocVQA, WebSRC, and MoTIF), and new best-in-
class performance on others (ChartQA, DocVQA,
and InfographicVQA) compared to models of simi-
lar size. Finally, we release three new datasets: one
focused on the screen annotation task and two oth-
ers focused on question answering.

1 Introduction
Infographics, such as charts, diagrams, illustrations, maps,
tables, and document layouts have long been a cornerstone
of effective communication, thanks to their ability to distill
complex data and ideas into simple illustrations through ar-
rangement of layouts, and visual cues. In the digital era, mo-
bile and desktop UIs, sharing similar design principles and
visual languages with infographics, facilitate human commu-
nication and human-machine interface with rich and interac-
tive user experiences.

Although the above observation suggests an opportunity
for a unified model, because of their complexity, infographics
and UIs present a unique challenge to building a single model
that can understand, reason, and interact on top of pictorial
pixels. To address this challenge, we introduce ScreenAI, a
Vision-Language Model (VLM) for comprehensive UI and

infographics understanding, including tasks such as question-
answering (QA) on infographics (charts, illustrations, maps,
etc.), and element annotation, summarization, navigation, and
QA on UIs. Our model combines the PaLI [Chen et al.,
2023b] architecture with the flexible patching mechanism of
Pix2struct [Lee et al., 2023] and handles vision tasks by re-
casting them as (text, image)-to-text problems. Figure 1 pro-
vides a high level description of the model architecture and
Section 2.1 describes its components in more detail.

The main contributions of this work are multifold and
greatly advance the field of digital content understanding:

• We propose ScreenAI, a Vision-Language Model
(VLM), as a holistic solution that focuses on understand-
ing UIs and infographics, taking advantage of their com-
mon visual language and design sophistication.

• We introduce a textual representation for UIs, which we
use to teach our model how to understand UIs during its
pretraining phase.

• We take advantage of this new UI representation and
Large Language Models (LLMs) to automatically gen-
erate training data at scale.

• We define pretraining and fine-tuning mixtures which
cover a wide spectrum of tasks in UI and infographic
understanding.

• We release three evaluation datasets for tasks described
in Section 4.2: Screen Annotation, ScreenQA Short, and
Complex ScreenQA. These datasets enable the research
community to utilize our textual representation and al-
low for a more comprehensive benchmarking of models
for screen-based question answering.

These innovations position ScreenAI as the go-to VLM
for any digital content understanding task, ranging from UIs
to infographics, and beyond. At a modest size of 4.6 bil-
lion parameters, dated on January 17, 2024 1 , our model
exhibits state-of-the-art (SoTA) performance on three public
infographics QA benchmarks, surpassing other models 10x
or more in size. In other tasks, ScreenAI exhibits best-in-
class, or close-to-best performance. We show in Section 5.2
that the model performance gets better as we increase its size,
suggesting that there is a strong potential for further gains in
performance by scaling up the model.

1The full paper submission deadline of IJCAI-24.
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Figure 1: The overall architecture of our model. The model contains an image encoder followed by a multimodal encoder consuming
embedded text and image features. The output of the multimodal encoder is fed to an autoregressive decoder to generate the final text output.
This figure also illustrates pix2struct patching, where the grid size adapts to the aspect ratio and shape of the image.

1.1 Related Work
We identify three categories of closely related works.
Screen-Based UI Models. Until recently, most screen un-
derstanding efforts focused on well-defined tasks with a nar-
row scope. Examples include the detection of icons [Zang
et al., 2021] or various UI elements [Zhang et al., 2021;
Sunkara et al., 2022; Li et al., 2022a], together with their
structure [Wu et al., 2021]. Other notable works encompass
the description of icons (widget captioning) [Li et al., 2020],
screen summarization [Wang et al., 2021], and single-step
navigation tasks [Wichers et al., 2018; Li et al., 2022b]. An-
other direction is to use LLMs to classify and describe UI
elements [Gur et al., 2022], or complete tasks [Nakano et al.,
2021; Rawles et al., 2023; Deng et al., 2023].
Generalist Foundation Models. The advent of large foun-
dation models, particularly in the multimodal domain, has led
to the development of versatile and unified models. These
universal models excel in a broad spectrum of image un-
derstanding tasks formulated through natural language such
as question-answering, image captioning, and object local-
ization. (e.g. UniTAB [Yang et al., 2022], OFA [Wang
et al., 2022], PaLI [Chen et al., 2022; Chen et al., 2023a;
Chen et al., 2023b], Flamingo [Alayrac et al., 2022], or
MaMMUT [Kuo et al., 2023]). Foundational work also in-
cludes pix2seq [Chen et al., 2021a], which recasts the object
detection problem as a text prediction task.
Efficient Vision-Language Models. Closer to the domain
of screen and document understanding, similar transformer-
based [Vaswani et al., 2017] architectures have been proposed
for solving various document-understanding tasks (e.g. Lay-
outLMv3 [Huang et al., 2022], Donut [Kim et al., 2021],
pix2struct [Lee et al., 2023], MatCha [Liu et al., 2022],
UDOP [Tang et al., 2023], or Spotlight [Li and Li, 2022]).
Another example is VuT [Li et al., 2021], which is made of

a multimodal encoder, followed by a text decoder and a ded-
icated head for object detection tasks.

Other approaches like UIBert [Bai et al., 2021], Do-
cLLM [Wang et al., 2023] perform screen- and document-
understanding using additional textual data extracted from
metadata like DOM or ancillary models like OCR.

In our paper, we introduce pre-training tasks along with
a data generation schema using self-supervision and model-
based annotation. Prior work with self-supervised learning
tasks have typically been focused on one domain. For ex-
amples, pix2struct [Lee et al., 2023], HTLM [Aghajanyan
et al., 2021] are focused on web-pages; ActionBert [He et
al., 2021], UIBert [Bai et al., 2021] are focused on mobile
apps, which can capture a subset of the elements like text
and exclude hierarchy information. Our representation, in-
ferred from only screen or image pixels, is applicable to a
wide range of domains beyond web-pages and mobile apps,
including documents, infographics, etc. Compared to prior
work, our model achieves superior performance on down-
stream tasks. We hypothesize this is due to the positive trans-
fer of performance when using screen, document and info-
graphics data jointly in the pre-training mixture. Given the
abundance of data in each of these domains, we believe future
research in this direction can result in further improvements.

2 Methodology
2.1 Architecture
Our model architecture as shown in Figure 1 is inspired by the
architecture of the PaLI family of models [Chen et al., 2022;
Chen et al., 2023a; Chen et al., 2023b], which is composed
of a multimodal encoder block with a vision encoder like
ViT [Dosovitskiy et al., 2020] and a mT5 [Xue et al., 2020;
Raffel et al., 2020] language encoder consuming image and
text inputs, followed by an autoregressive decoder. The input
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Model ViT Encoder-Decoder #params
670M B16 (92M) mT5 base (583M) 675M
2B H14 (653M) mT5 Large (1.23B) 1.88B
5B G14 (1.69B) UL2-3B (2.93B) 4.62B

Table 1: Model variants and details of their parameter counts and
split among vision and language models. The image encoders are
based on ViT [Dosovitskiy et al., 2020] and the text encoders are
based on mT5 [Xue et al., 2020] and UL2 models [Tay et al., 2022].

image is transformed into a sequence of embeddings by the
vision encoder and these embeddings are concatenated with
the input text embeddings and fed into the mT5 language en-
coder. The output of this encoder is passed to the decoder to
generate the text output. This generic formulation enables us
to use the same model architecture to solve a variety of vi-
sion and multimodal tasks that can be recast as a text+image
(input) to text (output) problem. Compared to the text input,
the image embeddings constitute a significant portion of the
input length to the multimodal encoder.

We further extend PaLI’s encoder-decoder architecture to
accept various image patching patterns. The original PaLI
architecture only accepts a fixed grid pattern of patches for
processing the input images. However, the data we encounter
in screen-related domains spans a wide variety of resolutions
and aspect ratios. To have a single model to work across all
screen shapes, it is necessary to use a patching strategy which
can work well with images of various shapes. To this end,
we borrow a technique introduced in Pix2Struct [Lee et al.,
2023], which allows us to have image patches with arbitrary
grid shapes based on the input image shape and a pre-defined
maximum number of patches, as shown in Figure 1. This en-
ables us to accommodate input images of various formats and
aspect ratios without the need for padding or stretching the
image to a fixed shape, making our model more polyvalent to
handle both mobile (i.e. portrait) and desktop (i.e. landscape)
image formats. In Section 5, we evaluate the impact of each
of these modeling choices.

2.2 Model Configurations
We train models of 3 different sizes containing 670M, 2B
and 5B parameters. For the 670M and 2B parameter models,
we start from pre-trained unimodal checkpoints for the vi-
sion encoder and the encoder-decoder language models. For
the 5B parameter model, we start from the multimodal pre-
trained checkpoint from PaLI-3 [Chen et al., 2023a], where
the ViT is trained together with the UL2 [Tay et al., 2022]
based encoder-decoder language model. A breakdown of the
parameter distribution among the vision and language models
can be seen in Table 1.

Our patching strategy allows variable aspect ratios and in-
put resolutions, as long as they fit within the allocated se-
quence length budget (2024 embeddings for the 670M model,
2916 embeddings for the 2B model, and 3364 embeddings
for the 5B model). For square images, the corresponding
maximum input resolution is 720× 720 for the 670M model,
756×756 for the 2B model, and 812×812 for the 5B model.

2.3 Stages of Training
In this section, we cover the different stages of training.

Pre-Training. Starting from the checkpoints mentioned in
Section 2.2, we do a first stage of training on large datasets
generated from self-supervision and other models, using min-
imal human labeling (see Section 4.1 for a detailed descrip-
tion of the pre-training mixture). Contrary to the later fine-
tuning stage, we train both the vision encoder and the lan-
guage model. The motivation behind training the vision en-
coder is to incorporate the new patching strategy, and to allow
the model to adapt from natural images to UI-related images.
We evaluate the impact of training the vision encoder and of
including LLM generated data on a variety of tasks in our
ablation experiments in Section 5.

After some initial steps of pretraining, we perform addi-
tional steps with the ViT encoder frozen to further train the
model while reducing the resource consumption.

Fine-Tuning. During fine-tuning, the model is trained on
mixtures of tasks, most of which are labeled using human
annotators. These tasks are described in details in Section 4.2.
For QA-related tasks, we start by fine-tuning the model on a
combination of QA-related tasks; then, additional training is
performed on each individual tasks separately. For all other
tasks, we fine-tune the model on each one individually.

3 Automatic Data Generation
The pretraining phase of our model’s development is criti-
cally dependent on access to a vast and diverse dataset. Given
the impracticality of manually annotating such an extensive
dataset, our strategy focuses on automatic data generation.
This approach leverages specialized smaller models, each
adept at generating and labeling data both efficiently and with
a high degree of accuracy.

In this section, we provide a detailed account of our data
generation process, particularly highlighting how we gather
and automatically annotate a diverse range of screenshots for
pretraining our model. This automated approach is not only
efficient and scalable compared to manual annotation but also
ensures a level of data diversity and complexity.

3.1 Screen Annotation
Our initial step is to equip the model with a comprehensive
understanding of textual elements, various screen compo-
nents, and their overall structure and hierarchy. This founda-
tional understanding is vital for the model’s ability to interpret
and interact accurately with a wide range of user interfaces.

An extensive collection of screenshots has been amassed
from various devices, including desktops, mobile, and tablets,
by crawling applications and web pages [Raffel et al., 2020].
These screenshots are then annotated with detailed labels that
describe the UI elements, their spatial relationships, and ad-
ditional descriptive information.

The cornerstone of our annotation process is a layout an-
notator based on the DETR [Carion et al., 2020] detection
model. This object detector is apt at identifying and labeling
a wide range of UI elements such as IMAGE, PICTOGRAM,
BUTTON, TEXT, and others. This detector and the list of UI
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Figure 2: Task generation pipeline: 1) the screens are first annotated using various models; 2) we then use an LLMs to generate screen-related
tasks at scale; 3) (optionally) we validate the data using another LLM or human raters.

elements is inspired by [Li et al., 2022a]. However, the mod-
els in [Li et al., 2022a] are classifiers and are provided a list
of candidate bounding boxes to annotate, whereas in our case
we predict the bounding boxes too.

Pictograms undergo further analysis using an icon classi-
fier [Sunkara et al., 2022] capable of distinguishing 77 differ-
ent icon types. This detailed classification is essential for in-
terpreting the subtle communication conveyed through icons.
For icons that are not covered by the classifier, infographics
and images, we use the PaLI image captioning model [Chen
et al., 2023b]. This model generates descriptive captions that
provide contextual information, aiding in the comprehensive
understanding of the screen’s content.

Additionally, an OCR engine extracts and annotates tex-
tual content on screen. This step is crucial for interpreting
the textual information presented in various formats on in-
terfaces. Finally, we combine the OCR text with the previ-
ous annotations to create a detailed and holistic description
of each screen. The bounding box coordinates are systemat-
ically included, providing spatial context to the elements on
the screen.

Figure 3 shows an example of the screen schema used in
most of our pretraining tasks. Each schema contains:

1. The UI element names.

2. The OCR text (when applicable).

3. The element descriptions, e.g. captioning or icon names.

4. The bounding box coordinates, quantized and normal-
ized between 0 and 999.

Parentheses are used to create a basic hierarchical structure
between the elements, i.e. the children of a parent element
are all put inside a parenthesis block. For ease of visualiza-
tion, the bounding boxes from the screen schema have been
overlaid on the original screenshot.

This schema plays a central role in our data generation for
pretraining tasks, offering a detailed and multifaceted repre-
sentation of screen content. The schema itself also serves as
a pretraining task, where the model is tasked with generating
a similar schema from a provided input image. This not only
enhances the model’s capacity to discern and interpret vari-
ous UI components but also their relationships to one another.
Additionally, the screen schema proves to be an invaluable
natural language tool to interface with large language models
(LLMs). By providing LLMs with a structured and detailed

Figure 3: Example of our screen schema. See Appendix B for more.

representation of screen content, we enable the creation of
more intricate and contextually nuanced tasks.

3.2 LLMs to Generate Additional Tasks
To infuse greater diversity into our pretraining data, we lever-
age the capabilities of LLMs, in particular PaLM 2-S [Anil et
al., 2023b] to generate Question-Answer pairs in two stages.
Initially, we generate the screen schema as previously de-
scribed. Subsequently, we craft a prompt incorporating the
screen schema and direct the LLM to generate synthetic data.
This stage is empirical and necessitates a degree of prompt
engineering. However, after several iterations, we typically
identify a prompt that effectively generates the desired task.
Example of such prompts are shown in Appendix C. To eval-
uate the quality of these generated responses, we conducted
human validation on a subset of the data, ensuring that it
meets a predetermined quality threshold.

This approach is described in Figure 2 and it enables us
to create a variety of synthetic but realistic tasks that sig-
nificantly enhance the depth and breadth of our pretraining
dataset. By leveraging the natural language processing capa-
bilities of LLMs, coupled with the structured screen schema,
we can simulate a wide range of user interactions and scenar-
ios. See Appendix D for generated examples.

4 Data Mixtures
We define two distinct sets of tasks for our model: an initial
series of pretraining tasks and a subsequent set of fine-tuning
tasks. The distinction primarily lies in two aspects:
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1. Source of the Groundtruth Data: For the fine-tuning
tasks, the labels are provided or verified by human raters.
For the pretraining tasks, the labels are inferred us-
ing self supervised learning methods or generated using
other models.

2. Size of the Datasets: Typically, the pretraining tasks en-
compass a significantly larger quantity of samples, and
consequently, these tasks are used for training the model
over a more extended series of steps.

4.1 Pretraining Mixture
Based on the methodology outlined in Section 3, we have
selected the following tasks for pretraining our models. These
tasks, each illustrated in Figure 4, are designed to cover a
wide range of skills and scenarios, endowing our model with
diverse real-world applications.

1. Screen Annotation: The model is tasked with detecting
and identifying UI elements present on a screen. This
includes performing OCR and image captioning to un-
derstand and interpret the textual and non-textual con-
tent. To enhance the model’s contextual understanding,
some text elements are intentionally masked, encour-
aging the model to infer information based on the sur-
rounding context and layout.

2. Screen Question-Answering (QA): For this task, the
model is asked to answer questions related to user in-
terfaces and computer-generated images, such as info-
graphics. After initial experiments, we identified certain
gaps in performance on attributes like arithmetic, count-
ing, understanding images with complex infographics.
To enhance the model capabilities, we create data specif-
ically addressing these gaps, e.g., QA involving count-
ing, arithmetic operations, and complex data containing
infographics. For these examples, we first crawl large
scale webpage and infographic images, then perform
prompt tuning to generate and validate relevant ques-
tions and their answers. For charts, the mix consists of
1) synthetic data [Liu et al., 2023], 2) UniChart [Masry
et al., 2023], 3) DVQA [Kafle et al., 2018], 4) TaTa
[Gehrmann et al., 2022], 5) Benetech 2.

3. Screen Navigation: This task involves interpreting nav-
igation instructions (e.g., ‘go back’) and identifying the
appropriate UI element to interact with. The expected
output is the bounding box coordinates of the target ele-
ment, bucketized between 0 and 999, demonstrating the
model’s ability to understand user intent and navigate
through interfaces accurately.

4. Screen Summarization: The model is tasked to suc-
cinctly summarize the content of a screen in one or two
sentences. This task assesses the model’s capability to
distill and caption the essence of the screen’s content.

To ensure comprehensive training robust to aspect ratios,
each task is made available across multiple formats (mobile
and desktop) and includes several aspect ratios.

2https://www.kaggle.com/competitions/benetech-making-
graphs-accessible

Task Name #samples
Generated Screen Annotation
Mobile webpages 262M
Mobile apps 54M
Mobile webpages (tall renders) 37M
Generated Screen Question-Answering
Mobile webpages 9.8M
Mobile apps 2.0M
Mobile webpages (tall renders) 2.3M
Desktop webpages 16.4M
Infographics 6.3M
ChartQA/PlotQA 2.4M
Generated Screen Navigation
Mobile webpages 2.6M
Mobile apps 5.9M
Mobile webpages (tall renders) 2.3M
Desktop webpages 5.1M
Generated Screen Summarization
Mobile webpages 5.6M
Desktop webpages 7.6M
Other
Tarzan [Xue et al., 2020] 297K
VQA CC3M [Sharma et al., 2018] 178K
WebLI Alt and OCR text [Kil et al., 2023] 297K

Table 2: Detailed breakdown of our pretraining mixture.

In addition to these screen-related tasks, our training regi-
men also incorporates a variety of other image and text data
sources: Span corruption on C4 [Xue et al., 2020], VQA
CC3M [Sharma et al., 2018], WebLI Alt and OCR text [Kil
et al., 2023; Chen et al., 2022] and Chart-to-table transla-
tion [Liu et al., 2023]. Such datasets have been instrumen-
tal in the development of PaLI models [Chen et al., 2022;
Chen et al., 2023b], which serve as the foundational architec-
ture for our model. Their inclusion ensures that our model not
only excels in screen and infographics understanding but also
maintains robust language and visual processing capabilities.

A summary of all our pretraining tasks is shown in Table 2.
In the mixture, datasets are weighted proportionally to their
size with a maximum allowed weight per task. Incorporating
multimodal sources in our multi-task training, from language
processing to visual comprehension and web content analy-
sis, prepares our model to handle diverse scenarios effectively
and enhances its overall versatility and performance.

4.2 Fine-Tuning Tasks and Benchmarks

We use a variety of tasks and benchmarks during fine-tuning
to estimate the quality of our model. These benchmarks are
summarized in Table 3 and include the main existing screen,
infographics and document understanding benchmarks. We
make the following changes to task formulations: (1) we
cast RefExp [Wichers et al., 2018] and Task Automation in
MoTIF [Burns et al., 2022] as object detection tasks, with-
out using candidate bounding boxes and report accuracy at
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Text input: What is the name 
of the tailor?
Target: Andrew Ramroop

Text input: Describe this 
screenshot.
Target: IMAGE pleasure or love 
follows truthfulness then the 
merciful appears before him 0 
993 0 261 (TEXT pleasure of 
love, follows truthfulness, 
then the Merciful appears 
before him 3 991 0 248), IMAGE 
a ma...

Text input: Select the 
first item in the list.
Target: click 15 983 199 
359

Text input: Summarize this 
screenshot.
Target: The screenshot shows a 
news article about UConn men's 
basketball recruiting. The 
article is about Dan Hurley's 
first recruit of the 2021 
class, Rahsool Diggins, a 6'1″ 
point guard from Philadelphia.

(a) Screen annotation (b) Question-Answering (c) Navigation (d) Summarization

Figure 4: Sample of tasks that we are using in our pretraining mixture: (a) Screen annotation, with masking; (b) Question-Answering; (c)
Navigation; (d) Summarization. The last three have been generated using our screen annotation model, coupled with PaLM-2-S.

IoU=0.13 considering only one box predicted; (2) for MoTIF,
we report the number for the app-unseen split of the test set
in Table 4, and other split results in Appendix E.

We supplement the tasks mentioned above with three new
benchmarks that we release:

• Screen Annotation (SA):4 To evaluate our model’s lay-
out annotation and spatial understanding capabilities, we
create a dedicated benchmark consisting of 4.2K screen-
shots from the Rico dataset [Deka et al., 2017]. Each UI
element has been annotated by human raters, and the an-
notations comprise a bounding box and a UI class from
the list described in 3.1. We evaluate the model’s predic-
tions using object detection metrics, including F1 score,
precision and recall values computed at IoU=0.1.

• ScreenQA Short (SQA Short):5 ScreenQA [Hsiao et
al., 2022], a benchmark for screen understanding, con-
tains UI elements and full-sentence answers as ground
truth. To align the output format with other question an-
swering tasks, we generate a new ground truth, a list of
alternative short answers, for each of the questions. We
use the maximum F1 score across all the candidate an-
swers as the metric. See Figure 5 and Appendix F for
more details.

3Intersection over union at threshold 0.1
4https://github.com/google-research-datasets/screen annotation
5https://github.com/google-research-datasets/screen qa?tab=

readme-ov-file#screenqa-short

Question: How many links and comments are there
of the post ”Why Michael Flynn kept his Job 17 days
after the White House!” ?
Full sentence answers:

• There is 1 like and 1 comment on the post
”Why Michael Flynn kept his job 17 days after
the White House!”.

• There is 1 like and 1 comment on the ”Why
Michael Flynn kept his Job 17 days after the
White House!” post.

• There is 1 like and 1 comment.
List of short answers:

• one and one
• 1 and 1
• one, one
• 1, 1
• 1 like, 1 comment
• 1 like and 1 comment

Figure 5: Examples of questions and answers from the ScreenQA
dataset, together with their LLM-generated short answers.

• Complex ScreenQA (Cplx SQA):6 To complement
SQA Short, we introduce Complex ScreenQA, which
includes more difficult questions (counting, arithmetic,
comparison, and non-answerable questions) and con-
tains screens with various aspect ratios. See Figures 6
and 7 for examples and Appendix G for more details.

We also provide a few additional details on how we handle
Multipage DocVQA and ChartQA.

6https://github.com/google-research-datasets/screen qa?tab=
readme-ov-file#complexqa
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Task Name/Benchmark Metric
Screen Analysis
Screen Annotation [Ours, Sec. 4.2] F1@IoU=0.1
Widget Captioning [Li et al., 2020] CIDEr
Screen Question-Answering
ScreenQA Short [Ours, Sec. 4.2] SQuAD F1
Complex ScreenQA [Ours, Sec. 4.2] SQuAD F1
WebSRC [Chen et al., 2021b] SQuAD F1
Screen Navigation
RefExp [Bai et al., 2021] Acc@IoU=0.1
MoTIF-Automation [Burns et al., 2022] Acc@IoU=0.1
Screen Summarization
Screen2Words [Wang et al., 2021] CIDEr
Infographics/Doc Visual QAs
ChartQA [Masry et al., 2022] Relaxed Acc.
DocVQA [Mathew et al., 2021] ANLS
Multipage DocVQA [Tito et al., 2023] ANLS
InfographicVQA [Mathew et al., 2022] ANLS
OCR-VQA-200K [Mishra et al., 2019] Exact Match

Table 3: Detailed breakdown of our fine-tuning mixture and their as-
sociated metrics. We assume readers are familiar with these metrics,
but include descriptions and citations in Appendix A for reference.

Multipage DocVQA. The standard fine-tuning task for
Multipage DocVQA [Tito et al., 2023] can be transformed
into a single-page DocVQA task by pairing the same ques-
tion with each page of the document and choosing the answer
with the highest score among all pages. In this formulation,
we modify the training set by splitting a question, answer and
multipage document into a positive pair (with the actual an-
swer for the page containing the answer) and multiple nega-
tive pairs (with “no answer” for pages which do not contain
the answer). The negative pairs are subsampled to avoid over-
fitting on not predicting an answer and the original DocVQA
task [Mathew et al., 2021] is added to the fine-tuning mixture.

ChartQA. Concurrent work in [Carbune et al., 2024]
showed that the original fine-tuning dataset [Masry et al.,
2022] is insufficiently rich for learning solving complex rea-
soning tasks. There, they overcome this limitation through
synthetic examples and rationales, paired with training loss
changes. Here, we leverage the synthetic examples, but with-
out modifying the training loss or incorporating rationales.
We therefore maintain parity how we fine-tune for the rest
of the tasks. We report similar performance with or with-
out OCR, hinting that the scale of the dataset contributes
more than the input features. Our results otherwise further
strengthen the contribution of the pre-training and architec-
ture changes with pix2struct to better leverage the same syn-
thetic examples and not needing to rely on rationales.

5 Experiments and Results
In this section, we present the setup we used to conduct our
experiments and analyze our findings. First, we compare the
best performing ScreenAI model to the SoTA on a variety of
Screen and Infographics related tasks. Next, we report the

Question: How many
songs have a duration of
less than 30 seconds?
Answer: 1

Question: How many
text size options are
there?
Answer: 5

Question: How many
days are between the de-
parture and return dates?
Answer: There is no an-
swer on the screen.

Figure 6: Examples of mobile screen in Complex QA dataset.

Question: What is the lift capacity at 35%? Answer: 1960 lb.

Figure 7: An example of desktop screen in Complex QA dataset.

impact of model size on overall performance. Finally, we re-
port results on ablation studies to validate the design choices
made for the models.

5.1 Experiments Setup
In the fine-tuning phase, we hold the ViT encoder frozen and
fine-tune the language model only. We use 512 as our batch
size for fine-tuning. Our text input sequence length is 128 and
output sequence length varies depending on individual tasks.
When fine-tuning with OCR as additional input, we increase
the input sequence length accordingly. We generally find that
the model converges within 30k steps. Unless specified oth-
erwise, all experiments are run on the 5B model.

5.2 Results
Table 4 shows the performance of our models and com-
pares them with state-of-the-art (SoTA) results on a variety
of screen- and infographics-related tasks. We also include
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SA Ref
Exp

SQA
Short

Cplx
SQA MoTIF Screen2

Words
Widget
Capt.

Chart
QA

Doc
VQA

MPDoc
VQA

Info
VQA

OCR
VQA

Web
SRC

SoTA - - - - 67.6a 130.7b 159.8b 80.8h 90.9h 61.8d 80.3h 77.8b 85.0f

Without OCR
SoTA≤5B - - - - 67.6a 130.7b 159.8b 77.3i 87.8c - 57.8b 76.7b 77.8g

ScreenAI 86.2 86.3 94.6 42.4 87.4 120.8 156.4 76.6 87.5 72.9 61.4 75.0 87.2
With OCR
SoTA≤5B - - - - - - - 70.4c 89.3c 61.8d 62.4b 77.8b 85.0f

ScreenAI - - 94.8 43.5 - 123.7 - 76.7 89.9 77.1 65.9 76.2 -

Table 4: Comparison of ScreenAI with various SoTA models: (a) MoTIF [Burns et al., 2022], (b) PaLI-3 [Chen et al., 2023b], (c)
SmoLA PaLI-X [Wu et al., 2023a], (d) Hi-VT5 [Tito et al., 2023], (e) TILT [Powalski et al., 2021], (f) DocPrompt [Wu et al., 2023b],
(g) DUBLIN [Aggarwal et al., 2023], (h) Gemini [Anil et al., 2023a], (i) ChartPaLI-5B [Carbune et al., 2024]. Bold font highlights SoTA
score, and underscore represents best-in-class score. See Table 3 for details about the tasks and their associated metrics.
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670M 2B 5B

Figure 8: Performance of different model sizes on fine-tuning tasks. The metrics improve consistently as the model size increases.

the best results for models of similar size (SoTA<5B). We
report new SoTA results on MoTIF, MPDocVQA, and Web-
SRC; and new best-in-class results in ChartQA, DocVQA
and InfographicVQA (InfoVQA). We report same or com-
petitive performance on Screen2Words, Widget Captioning,
and OCR-VQA. We also report our results on the benchmarks
introduced in Section 4.2 (Screen Annotations, Referring Ex-
pressions, ScreenQA Short and Complex ScreenQA).

Adding OCR as Additional Input. We analyze the impact
of adding OCR7 to the model input by conducting experi-
ments with and without OCR. This is inspired by fine-tuning
experiments in PaLI [Chen et al., 2023b], where across all
screen- and document-related tasks, passing OCR texts as
additional input improves task performance. In Table 4 we
present our single task fine-tuning results using OCR data.
For QA tasks, OCR input provides a boost in performance
(e.g. up to 4.5% on Complex ScreenQA, MPDocVQA and
InfoVQA). However, using OCR imposes a slightly larger in-
put length and hence results in slower overall training. It also
requires having OCR results available at inference time.

Model Size. We conducted single task experiments with the
following model sizes: 670M, 2B and 5B. We use bench-
marks for screen tasks as well as other public tasks. In Fig-
ure 8, we observe that across all tasks, increasing the model
size improves performances and the improvements have not
saturated at the largest size. We observe that for tasks that re-

7We use a proprietary OCR system similar to GCP Vision API to
produce additional OCR input for each image.

quire more complex visual-text and arithmetic reasoning e.g.
InfoVQA, ChartQA, and Complex ScreenQA, the improve-
ment between 2B and 5B models is significantly larger than
between 670M and 2B models.

5.3 Ablation Studies
In this section, we perform ablation studies evaluating (1) the
impact of pix2struct patching and (2) using LLM generated
data for pre-training. All ablation studies are performed on
the 670M parameter variant.
Impact of Pix2struct Patching. For this study, we com-
pare a 670M model using pix2struct patching with another
using fixed-grid patching. After pre-training, both models
are fine-tuned on all tasks in Table 3. We split each dataset
into subsets based on the image aspect ratio and compute the
respective metric on these subsets. To compare fixed-grid
patching to a variable pix2struct patching, we compute an
aggregate score, by first dividing the score of each task sub-
set using fixed-grid patching by the score of the model using
pix2struct on the entire task, and finally compute the geomet-
ric mean across all tasks. Figure 9 shows that for images with
aspect ratio > 1.0 (landscape mode images), the pix2struct
patching strategy is significantly better than the fixed grid
patching. For portrait mode images, the trend is reversed,
but fixed grid patching is only marginally better. Given that
we want the ScreenAI model to be used across images of dif-
ferent aspect ratios, we choose to use pix2struct patching.
Impact of LLM Generated Data. For this experiment, we
compare a 670M ScreenAI model pre-trained using all the
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Figure 9: Ablation study for Pix2Struct vs. fixed-grid patching; the numbers represent the aggregated scores across all fine-tuned tasks. For
aspect ratio > 1.0, using Pix2Struct patching significantly outperforms a fixed grid patching, whereas for aspect ratio < 1.0, a fixed grid
patching outperforms Pix2Struct by a smaller margin.

datasets mentioned in Section 4.1 against a model pre-trained
on a mixture excluding any LLM generated pre-training data.
After pre-training, both models are fine-tuned on all tasks
mentioned in Table 3 and an aggregate score is computed.
We observe that adding LLM generated data to the mixture
improves the aggregate score by 4.6 percentage points.

6 Conclusions
In this work, we introduce the ScreenAI model along with
a new unified schema for representing complex data and vi-
sual information, compatible with infographics, document
images, and various UIs. This unified representation enables
the design of a mixture of self-supervised learning tasks,
leveraging data from all these domains. We show that train-
ing on this mixture results in a positive transfer to screen-
related tasks as well as infographics and document-related
tasks. We also illustrate the impact of data generation us-
ing LLMs and justify our model design choices with ablation
studies. We apply these techniques to train a model that per-
forms competitively and achieves SoTA on a number of pub-
lic benchmarks. While our model is best-in-class, we note
that, on some tasks, further research is needed to bridge the
gap with models like GPT-4 and Gemini, which are orders
of magnitude larger. To encourage further research, we re-
lease a dataset with this unified representation, as well as two
other datasets to enable more comprehensive benchmarking
of models on screen-related tasks.

A Appendix
See extended edition at https://arxiv.org/abs/2402.04615 for
all appendices.
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Leveraging user actions for semantic understanding of user in-
terfaces, 2021.

[Hsiao et al., 2022] Yu-Chung Hsiao, Fedir Zubach, Maria Wang,
et al. ScreenQA: Large-scale question-answer pairs over mobile
app screenshots. arXiv preprint arXiv:2209.08199, 2022.

[Huang et al., 2022] Yupan Huang, Tengchao Lv, Lei Cui, Yutong
Lu, and Furu Wei. LayoutLMv3: Pre-training for document

ai with unified text and image masking. In Proceedings of the
30th ACM International Conference on Multimedia, pages 4083–
4091, 2022.

[Kafle et al., 2018] Kushal Kafle, Brian Price, Scott Cohen, and
Christopher Kanan. Dvqa: Understanding data visualizations via
question answering, 2018.

[Kil et al., 2023] Jihyung Kil, Soravit Changpinyo, Xi Chen, Hexi-
ang Hu, Sebastian Goodman, Wei-Lun Chao, and Radu Soricut.
PreSTU: Pre-training for scene-text understanding. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vi-
sion, pages 15270–15280, 2023.

[Kim et al., 2021] Geewook Kim, Teakgyu Hong, Moonbin Yim,
Jinyoung Park, Jinyeong Yim, Wonseok Hwang, Sangdoo
Yun, Dongyoon Han, and Seunghyun Park. Donut: Docu-
ment understanding transformer without OCR. arXiv preprint
arXiv:2111.15664, 7:15, 2021.

[Kuo et al., 2023] Weicheng Kuo, AJ Piergiovanni, Dahun Kim,
Xiyang Luo, Ben Caine, Wei Li, Abhijit Ogale, Luowei Zhou,
Andrew Dai, Zhifeng Chen, et al. MaMMUT: A simple archi-
tecture for joint learning for multimodal tasks. arXiv preprint
arXiv:2303.16839, 2023.

[Lee et al., 2023] Kenton Lee, Mandar Joshi, Iulia Raluca Turc,
Hexiang Hu, Fangyu Liu, Julian Martin Eisenschlos, Ur-
vashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. Pix2struct: Screenshot parsing as pretraining for vi-
sual language understanding. In International Conference on Ma-
chine Learning, pages 18893–18912. PMLR, 2023.

[Li and Li, 2022] Gang Li and Yang Li. Spotlight: Mobile UI un-
derstanding using vision-language models with a focus. arXiv
preprint arXiv:2209.14927, 2022.

[Li et al., 2020] Yang Li, Gang Li, Luheng He, Jingjie Zheng,
Hong Li, and Zhiwei Guan. Widget captioning: Generating natu-
ral language description for mobile user interface elements, 2020.

[Li et al., 2021] Yang Li, Gang Li, Xin Zhou, Mostafa Dehghani,
and Alexey Gritsenko. VUT: Versatile ui transformer for
multi-modal multi-task user interface modeling. arXiv preprint
arXiv:2112.05692, 2021.

[Li et al., 2022a] Gang Li, Gilles Baechler, Manuel Tragut, and
Yang Li. Learning to denoise raw mobile UI layouts for improv-
ing datasets at scale. In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, pages 1–13, 2022.

[Li et al., 2022b] Tao Li, Gang Li, Jingjie Zheng, Purple Wang, and
Yang Li. MUG: Interactive multimodal grounding on user inter-
faces, 2022.

[Liu et al., 2022] Fangyu Liu, Francesco Piccinno, Syrine Krich-
ene, Chenxi Pang, Kenton Lee, Mandar Joshi, Yasemin Altun,
Nigel Collier, and Julian Martin Eisenschlos. MatCha: Enhanc-
ing visual language pretraining with math reasoning and chart
derendering. arXiv preprint arXiv:2212.09662, 2022.

[Liu et al., 2023] Fangyu Liu, Julian Martin Eisenschlos, Francesco
Piccinno, Syrine Krichene, Chenxi Pang, Kenton Lee, Mandar
Joshi, Wenhu Chen, Nigel Collier, and Yasemin Altun. DePlot:
One-shot visual language reasoning by plot-to-table translation,
2023.

[Masry et al., 2022] Ahmed Masry, Do Xuan Long, Jia Qing Tan,
Shafiq Joty, and Enamul Hoque. ChartQA: A benchmark for
question answering about charts with visual and logical reason-
ing. arXiv preprint arXiv:2203.10244, 2022.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

3067



[Masry et al., 2023] Ahmed Masry, Parsa Kavehzadeh, Xuan Long
Do, Enamul Hoque, and Shafiq Joty. Unichart: A universal
vision-language pretrained model for chart comprehension and
reasoning, 2023.

[Mathew et al., 2021] Minesh Mathew, Dimosthenis Karatzas, and
CV Jawahar. DocVQA: A dataset for VQA on document images.
In Proceedings of the IEEE/CVF winter conference on applica-
tions of computer vision, pages 2200–2209, 2021.

[Mathew et al., 2022] Minesh Mathew, Viraj Bagal, Rubèn Tito,
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