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Abstract
We study envy-free up to any item (EFX) alloca-
tions on graphs where vertices and edges repre-
sent agents and items respectively. An agent is
only interested in items that are incident to her and
all other items have zero marginal values to her.
Christodoulou et al. first proposed this setting and
studied the case of goods. We extend this setting
to the case of mixed manna where an item may be
liked or disliked by its endpoint agents. In our prob-
lem, an agent has an arbitrary valuation over her in-
cident items such that the items she likes have non-
negative marginal values to her and those she dis-
likes have non-positive marginal values. We pro-
vide a complete study of the four notions of EFX
for mixed manna in the literature, which differ by
whether the removed item can have zero marginal
value. We prove that an allocation that satisfies the
notion of EFX where the virtually-removed item
could always have zero marginal value may not ex-
ist and determining its existence is NP-complete,
while one that satisfies any of the other three no-
tions always exists and can be computed in polyno-
mial time. We also prove that an orientation (i.e.,
a special allocation where each edge must be allo-
cated to one of its endpoint agents) that satisfies any
of the four notions may not exist, and determining
its existence is NP-complete.

1 Introduction
Fair allocation of indivisible items has been broadly stud-
ied in the research fields of computer science, economics,
and mathematics in the past few decades. One of the most
compelling and natural fairness notions is envy-freeness (EF),
which requires that every agent prefers her own bundle to
any other agent’s bundle. Though envy-freeness can always
be satisfied for divisible items [Aziz and Mackenzie, 2016;
Dehghani et al., 2018], it is too demanding for indivisible
items. An EF allocation does not exist even for the simple
instance where there are two agents and one indivisible item
with non-zero marginal values to both agents.

The fact that envy-freeness is hard to satisfy necessitates
the study of its relaxations, the most popular one among

which is envy-freeness up to any item (EFX). EFX requires
that any envy could be eliminated by virtually removing any
item that the envious agent likes from the envied agent’s bun-
dle or any item that the envious agent dislikes from her own
bundle. As remarked by [Caragiannis et al., 2019]: “Ar-
guably, EFX is the best fairness analog of envy-freeness for
indivisible items.” Despite significant effort in the literature,
the existence of EFX allocations still remains an open prob-
lem for indivisible items. Only a few special cases are known
to admit EFX allocations [Plaut and Roughgarden, 2020;
Chaudhury et al., 2020; Amanatidis et al., 2021; Hosseini et
al., 2021; Li et al., 2022].

Recently, [Christodoulou et al., 2023] studied EFX allo-
cations on graphs where vertices correspond to agents and
edges correspond to indivisible goods. An agent (vertex) is
only interested in the goods (edges) that are incident to her
and all other edges have zero marginal values to her. Thus,
each good is liked by exactly two agents in their setting. As
motivated in [Christodoulou et al., 2023], a direct applica-
tion of this setting is the allocation of geographical resources,
for instance, natural resources among countries on the bound-
aries, working offices among research groups, and public ar-
eas among communities in a region, etc. [Christodoulou et
al., 2023] proved that EFX allocations always exist and can
be computed in polynomial time for arbitrary graphs. Re-
markably, this is one more rare case with more than three
agents for which an EFX allocation is guaranteed to exist.
They also considered a more restricted scenario where each
edge must be allocated to one of its endpoint agents. In this
scenario, an allocation is also called an orientation. Unfortu-
nately, [Christodoulou et al., 2023] proved that an EFX ori-
entation may not exist, and determining whether it exists or
not is NP-complete.

Besides goods, recent years have seen a rapidly growing
interest in the case of mixed manna in the literature of fair
division [Aziz et al., 2022; Aleksandrov and Walsh, 2019;
Liu et al., 2023]. A mixed manna contains items that are
goods for some agents but chores for others. Practically, the
setting of mixed manna can model the scenarios where agents
have different opinions on items. Many real-world scenarios
involve the allocation of mixed manna. For example, when
the items are paid jobs, they are goods for some people be-
cause completing them can bring extra revenue; however,
they can be chores for some people who do not care much
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Orientation Allocation

EFX0
0

may not exist, NP-c
(Corollary 1)

may not exist, NP-c
(Theorem 2)

EFX0
−

may not exist, NP-c
(Corollary 1)

always exist, P
(Theorem 3)

EFX+
0

may not exist, NP-c
(Corollary 2)

always exist, P
(Theorem 4)

EFX+
−

may not exist, NP-c
(Theorem 1)

always exist, P
(Corollary 3)

Table 1: Main results. “NP-c” means determining the existence
of the corresponding orientations/allocations is NP-complete. “P”
means the allocations can be found in polynomial time.

about this amount of money and would like to save time for
other matters. The case of mixed manna is also a typical set-
ting where the valuations are not monotone. [Christodoulou
et al., 2023]’s graphic nature also appears in the setting of
mixed manna. For example, in sports games, each match
(that can be viewed as an item) involves two teams (that can
be viewed as the agents) and has to be hosted by one of them
(i.e., home or away). Hosting a match might be a good for
some teams as they can make profit and might be a chore
as they cannot cover the expenses. Furthermore, the graph
orientation setting can use the topology to indicate who are
capable of completing what jobs (edges), so that the jobs can
only be allocated to people (incident vertices) who are able
to do them. The allocation setting can model the case when
people really do not have any cost or benefit on the items they
are not incident to.

1.1 Our Problem and Results
In this work, we extend the model of [Christodoulou et al.,
2023] to the case of mixed manna, where an edge may be
liked or disliked by its endpoint agents. We consider the four
variants of EFX for mixed manna in the literature, i.e., EFX0

0,
EFX0

−, EFX+
0 , and EFX+

−, where the super and sub scripts in-
dicate the items removed from the envied agent’s and the en-
vious agent’s bundles respectively, +/− means an item with
a strictly positive or negative margin and 0 means an item
with a possibly zero margin.

Similar as [Christodoulou et al., 2023], we first study the
setting where each edge must be allocated to one of its end-
point agents, i.e., orientations. The main results are summa-
rized in the second column of Table 1. Specifically, we show
that an orientation that satisfies any of the four EFX notions
may not exist, and determining its existence is NP-complete.
Due to the hardness results for orientations, we also study
some simple graphs such as trees, stars and paths, for which
the existence of orientations that satisfy the four notions can
be determined in polynomial time.

We then study the setting where the edges can be allocated
to any agent. The main results are summarized in the third
column of Table 1. Specifically, we show that an EFX0

0 al-
location may not exist and determining its existence is NP-
complete. In contrast, an allocation that satisfies any of the
other three notions always exists and can be computed in
polynomial time.

1.2 More Related Works
There are many other works that study fair allocation of in-
divisible items on graphs, whose settings whereas, are quite
different from ours and [Christodoulou et al., 2023]’s. [Bou-
veret et al., 2017] formalized the problem that there is an un-
derlying graph whose vertices are indivisible items and each
agent must receive a connected component of the graph. They
considered several fairness notions such as proportionality,
envy-freeness, maximin share, and gave hardness results for
general graphs and polynomial-time algorithms for special
graphs. Many following works investigated the same problem
with different fairness notions or graph structures [Bilò et al.,
2022; Suksompong, 2019; Igarashi and Peters, 2019]. [Bei
et al., 2022] considered the same model and quantified the
loss of fairness when imposing the connectivity constraint,
i.e., price of connectivity. [Madathil, 2023] studied a simi-
lar model where each agent must receive a compact bundle
of items that are “closely related”. Different from this line
of works, [Hummel and Hetland, 2022] used a graph to re-
flect conflicts between items. Each vertex on the graph is an
item and each edge means that its two endpoint items have
a conflict. They require that two items that have a conflict
cannot be allocated to the same agent. In other words, the
bundle allocated to each agent must be an independent set of
the graph. [Payan et al., 2023] studied fair allocation on graph
where vertices are agents (as in our setting). The graph was
used to relax fairness notions such that fairness only need to
be satisfied for the endpoint agents of the edges.

2 Preliminaries
For any positive integer k, let [k] = {1, . . . , k}. In an in-
stance of our problem, there is a graph G = (N,M) where
N = {a1, . . . , an} is the vertex set and M is the edge set.
Each vertex corresponds to an agent and each edge corre-
sponds to an indivisible item. We use vertex and agent, edge
and item, interchangeably. We also write both (ai, aj) and
ei,j to represent the edge between ai and aj . Each agent
ai ∈ N has a valuation vi : 2M → R over the edges and
vi(∅) = 0. We also write vi(e) to represent vi({e}).

For an agent ai, each item e ∈ M is classified as a good
(if it has strictly positive marginal values to ai, i.e., vi(S ∪
{e}) > vi(S) for any S ⊆M \ {e}), a chore (if it has strictly
negative marginal values to ai, i.e., vi(S ∪ {e}) < vi(S)
for any S ⊆ M \ {e}), or a dummy (if it has zero marginal
value to ai, i.e., vi(S ∪ {e}) = vi(S) for any S ⊆M \ {e}).
Accordingly, an instance is called a goods instance (if no item
is a chore for any agent), a chores instance (if no item is a
good for any agent), or a mixed instance (if an item may be a
good, a chore, or a dummy for any agent). Let Ei be the set
of all edges that are incident to ai, E

≥0
i ⊆ Ei be the subset

of non-chores for ai, and E>0
i ⊆ Ei be the subset of goods

for ai. Note that in our setting, all edges that are not incident
to ai (i.e., M \ Ei) are dummies for ai.

An allocation X = (X1, . . . , Xn) is an n-partition of M
such that Xi contains the edges allocated to agent ai ∈ N ,
where Xi ∩Xj = ∅ for any ai, aj ∈ N and

⋃
ai∈N Xi = M .

An orientation is a restricted allocation where each edge must
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be allocated to one of its endpoint agents. An allocation X is
partial if

⋃
ai∈N Xi ⊊ M .

2.1 Fairness Notions
Given an allocation X, we say agent ai envies agent aj if
vi(Xj) > vi(Xi). The allocation is envy-free (EF) if no
agent envies the others, i.e., for every two agents ai, aj ∈ N ,
vi(Xi) ≥ vi(Xj). As we have seen, envy-freeness is too de-
manding for indivisible items. Thus, in this paper, we focus
on its relaxation envy-free up to any item (EFX).

For the case of mixed manna, there are four variants of
EFX in the literature [Aziz et al., 2022; Aleksandrov and
Walsh, 2020; Bérczi et al., 2020], namely, EFX0

0, EFX0
−,

EFX+
0 , and EFX+

−. EFX0
0 requires that any envy could be

eliminated by removing any item that is not a chore for the
envious agent from the envied agent’s bundle or any item that
is not a good from the envious agent’s own bundle. Formally,

Definition 1 (EFX0
0). An allocation X = (X1, . . . , Xn) is

EFX0
0 if for every two agents ai, aj ∈ N such that ai envies

aj , both of the following conditions hold:

1. for any e ∈ Xj such that vi(Xj \ {e}) ≤ vi(Xj),
vi(Xi) ≥ vi(Xj \ {e});

2. for any e ∈ Xi such that vi(Xi \{e}) ≥ vi(Xi), vi(Xi \
{e}) ≥ vi(Xj).

EFX0
− differs from EFX0

0 in that the item removed from the
envious agent’s bundle cannot be a dummy. More concretely,
the item e considered in the second condition is subject to
vi(Xi \ {e}) > vi(Xi). EFX+

0 differs from EFX0
0 in that

the item removed from the envied agent’s bundle cannot be a
dummy, i.e., the item e considered in the first condition is sub-
ject to vi(Xj \ {e}) < vi(Xj). EFX+

− differs from EFX0
0 in

that the item removed from the envied agent’s and the envious
agent’s bundles cannot be a dummy. The formal definitions
of EFX0

−, EFX+
0 and EFX+

− can be seen in the full version.
Obviously, any EFX0

0 allocation is also EFX0
− or EFX+

0 ,
and any EFX0

− or EFX+
0 allocation is also EFX+

−.

Goods and Chores Instances. Goods instances have been
well studied in [Christodoulou et al., 2023], and we will see
that our results provide alternative approaches. For chores
instances, we provide a discussion in the full version of this
paper. In the subsequent sections, we shall focus on the gen-
eral case of mixed manna.

3 EFX Orientations
In this section, we elaborate on EFX orientations. Firstly, we
have the following proposition, whose proof can be seen in
the full version of this paper.

Proposition 1. There exist graphs for which no orientation
satisfies any of the four notions of EFX.

Due to this negative result, we turn to studying the com-
plexity of determining the existence of EFX orientations.
The result by [Christodoulou et al., 2023] (see Theorem 2 in
their paper) directly implies that determining the existence of
EFX0

− orientations is NP-complete. In the graphs constructed
in their reduction, each edge is a good for both its endpoint

Figure 1: A gadget where agent ai must receive (ai, a
∆
1 ) if the orien-

tation is EFX+
−. Each dashed edge is a chore for both its endpoints.

agents. For such graphs, any EFX0
− orientation is also EFX0

0.
Therefore, we have the following corollary.

Corollary 1. Determining whether an EFX0
0 or EFX0

− orien-
tation exists or not is NP-complete.

In the following, we prove the below theorem for EFX+
−.

Theorem 1. Determining whether an EFX+
− orientation ex-

ists or not is NP-complete, even for additive valuations1.

To prove Theorem 1, we reduce from (3, B2)-SAT prob-
lem to the EFX+

− orientation problem. A (3, B2)-SAT in-
stance contains a Boolean formula in conjunctive normal
form consisting of n variables {xi}i∈[n] and m clauses
{Cj}j∈[m]. Each variable appears exactly twice as a positive
literal and exactly twice as a negative literal in the formula,
and each clause contains three distinct literals. Determining
whether a (3, B2)-SAT instance is satisfiable or not is NP-
complete [Berman et al., 2007].

Our reduction uses a gadget to ensure that a specific agent
must receive a chore if the orientation is EFX+

−. One such
gadget is shown in Figure 1. In this example, agent ai must
receive (ai, a

∆
1 ) if the orientation is EFX+

−. Otherwise, one
of the other three agents must receive at least two chores and
envy ai even after removing one chore.

Given a (3, B2)-SAT instance ({xi}i∈[n], {Cj}j∈[m]), we
construct a graph as follows:

• For each variable xi, create two vertices aTi , a
F
i and one

edge (aTi , a
F
i ) with a value of 2 to both aTi and aFi .

• For each clause Cj , create one vertex aCj . Besides, if Cj

contains a positive literal xi, create one edge (aCj , a
T
i )

with a value of 1 to both aCj and aTi . If Cj contains
a negative literal ¬xi, create one edge (aCj , a

F
i ) with a

value of 1 to both aCj and aFi .

• Create three vertices a∆1 , a
∆
2 , a

∆
3 and three edges

(a∆1 , a
∆
2 ), (a

∆
2 , a

∆
3 ), (a

∆
1 , a

∆
3 ). Besides, for each i ∈

[n], create two edges (aTi , a
∆
1 ) and (aFi , a

∆
1 ). For each

j ∈ [m], create one edge (aCj , a
∆
1 ). Each of these edges

has a value of −1 to both its endpoint agents.

• Each vertex has an additive valuation.

To visualize the above reduction, we show the graph con-
structed from the formula (x1∨x2∨x3)∧ (x1∨x2∨¬x3)∧
(¬x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) in Figure 2.

We now prove that a (3, B2)-SAT instance is satisfiable if
and only if the constructed graph has an EFX+

− orientation.

1Valuation vi is additive if vi(S) =
∑

e∈S vi(e) for any S ⊆ M .
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Figure 2: The graph constructed from the formula (x1 ∨ x2 ∨ x3)∧
(x1 ∨x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨¬x3)∧ (¬x1 ∨¬x2 ∨x3), where
each edge has the same value to both its endpoint agents, each bold
solid edge has a value of 2, each non-bold solid edge has a value of
1 and each dashed edge has a value of −1.

Proof of Theorem 1. For ease of presentation, for each vari-
able xi, we denote by Cji,T,1 , Cji,T,2 the two clauses that
contain the positive literal xi and by Cji,F,1 , Cji,F,2 the two
clauses that contain the negative literal ¬xi.

For one direction, we assume that the (3, B2)-SAT in-
stance has a satisfying assignment and use the assignment to
create an EFX+

− orientation as follows:

• Allocate (a∆1 , a
∆
2 ) to a∆1 , (a∆2 , a

∆
3 ) to a∆2 , and (a∆3 , a

∆
1 )

to a∆3 . Allocate each other edge that is incident to a∆1 to
the endpoint that is not a∆1 .

• For each variable xi that is set to True, allocate (aTi , a
F
i )

to aTi , (aTi , a
C
ji,T,1) to aCji,T,1 , (aTi , a

C
ji,T,2) to aCji,T,2 , and

(aFi , a
C
ji,F,1), (a

F
i , a

C
ji,F,2) to aFi .

• For each variable xi that is set to False, allocate (aTi , a
F
i )

to aFi , (aFi , a
C
ji,F,1) to aCji,F,1 , (aFi , a

C
ji,F,2) to aCji,F,2 , and

(aTi , a
C
ji,T,1), (a

T
i , a

C
ji,T,2) to aTi .

Next, we show that the above orientation is EFX+
−. For agents

a∆1 , a
∆
2 , a

∆
3 , each of them receives one edge with a value of

−1 and all edges received by other agents have non-positive
values to them. After removing the edge from their bundles,
they do not envy others. For each variable xi that is set to
True, agent aTi does not envy others since she receives a total
value of 1 and each of her incident edges that she does not
receive has a value of 1. Agent aFi receives three edges with
values of 1, 1,−1, respectively. The only incident edge that
she does not receive is (aTi , a

F
i ), which is allocated to aTi and

has a value of 2. After removing the edge with a value of
−1 from her own bundle or (aTi , a

F
i ) from aTi ’s bundle, aFi

does not envy aTi . We have an analogous argument for each
variable that is set to False. It remains to consider the agents
that correspond to clauses. Since the assignment is satisfying,
each clause contains at least one literal that is evaluated to
True. This implies that each agent aCj receives at least one
edge with a value of 1. For example, if the clause Cj contains
a positive literal xi that is evaluated to True, aCj receives the
edge (aTi , a

C
j ). Since each of aCj ’s incident edges that she

does not receive has a value of 1, aCj does not envy other
agents after removing the edge with a value of −1 from her

own bundle or the edge with a value of 1 from other agents’
bundles.

For the other direction, we assume that the constructed
graph has an EFX+

− orientation and use the orientation to cre-
ate a satisfying assignment as follows: for each variable xi,
if the edge (aTi , a

F
i ) is allocated to agent aTi , then set xi to

True; otherwise, set xi to False. Next, we show that the as-
signment is satisfying. First, since the orientation is EFX+

−,
each agent that corresponds to a variable or a clause must re-
ceive the edge between herself and a∆1 that has a value of
−1. For each variable xi, if the edge (aTi , a

F
i ) is allocated

to agent aTi , both (aFi , a
C
ji,F,1) and (aFi , a

C
ji,F,2) must be al-

located to agent aFi . Otherwise, aFi will envy aTi even after
removing (aFi , a

∆
1 ) from her own bundle. For a similar rea-

son, if the edge (aTi , a
F
i ) is allocated to aFi , both (aTi , a

C
ji,T,1)

and (aTi , a
C
ji,T,2) must be allocated to aTi . For each clause

Cj , agent aCj must receive at least one edge with a value of 1.
Otherwise, aCj will envy the agents who receive her incident
edges that have a value of 1 even after removing the edge with
a value of −1 from her own bundle. This implies that each
clause has a literal that is evaluated to True.

Notice that in the graphs constructed in the above reduc-
tion, each edge has non-zero values to both its endpoint
agents. For such graphs, an orientation is EFX+

0 if and only
if it is EFX+

−, since no agent receives an edge with a value of
zero. Therefore, the hardness of determining the existence of
EFX+

− orientations also applies to EFX+
0 orientations.

Corollary 2. Determining whether an EFX+
0 orientation ex-

ists or not is NP-complete, even for additive valuations.

Simple Graphs. To bypass the hardness results in Corollar-
ies 1, 2 and Theorem 1 for general graphs, in the full version
of this paper, we also study EFX orientations on some simple
graphs such as trees, stars and paths. For these simple graphs,
though orientations that satisfy the four notions may not exist,
their existence can be determined in polynomial time.

4 EFX Allocations
In this section, we elaborate on EFX allocations.

4.1 EFX0
0 Allocations

We start with the strongest one among those four notions, i.e.,
EFX0

0. We say an edge e is priceless to an agent ai if for
any S1, S2 ⊆ M such that e /∈ S1 and e ∈ S2, we have
vi(S1) < vi(S2). We first have the following proposition,
which provides some characterization of EFX0

0 allocations on
some graphs with priceless edges. The proof can be seen in
the full version of this paper.

Proposition 2. For graphs that satisfy (1) each edge is a good
for both its endpoint agents, (2) each agent has one priceless
incident edge and (3) each priceless edge is priceless to both
its endpoint agents, we have that each edge must be allocated
to one of its endpoint agents in any EFX0

0 allocation.

In the full version, we provide a graph with priceless edges,
which proves the following proposition.
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(a)

(b) (c) (d)

Figure 3: (a) OR gadget, (b) NOT gadget, (c) WIRE gadget, (d)
TRUE terminator gadget. In these graphs, each agent has an addi-
tive valuation. Each bold solid edge is priceless to both its endpoint
agents (e.g., it has an infinitely large value of +∞), each non-bold
solid edge has an infinitely small value of ϵ1 > 0 to both its endpoint
agents, each dashed line also has an infinitely small value of ϵ2 to
both its endpoint agents with ϵ1 > ϵ2 > 0.

Proposition 3. There exist graphs for which no allocation is
EFX0

0.
We next study the complexity of determining the existence

of EFX0
0 allocations and have the following result.

Theorem 2. Determining whether an EFX0
0 allocation exists

or not is NP-complete, even for additive valuations.
To prove Theorem 2, we reduce from Circuit-SAT problem

to the EFX0
0 allocation problem. Circuit-SAT problem deter-

mines whether a given Boolean circuit has an assignment of
the inputs that makes the output True, which is well-known
to be NP-complete [Karp et al., 1975].

We first show how to simulate the OR gate, the NOT gate,
the wire in the circuit and how to force the final output to be
True. To achieve this, we construct four graphs, named OR
gadget, NOT gadget, WIRE gadget, TRUE terminator gadget,
respectively (see Figure 3). It is easy to see that Proposition 2
applies to all these four gadgets. That is, in any EFX0

0 alloca-
tion on each of these gadgets, each edge must be allocated to
one of its endpoint agents. This enables us to represent each
input (or output) in the circuit as an edge in the gadgets and
its value (True or False) as the orientation of the edge.

In the OR gadget (see Figure 3a), edges (a1, a
′
1) and

(a2, a
′
2) represent the two inputs of the OR gate, edge (a3, a′3)

represents the output. The following claim shows that the OR
gadget correctly simulates the OR gate.
Claim 1. In every EFX0

0 allocation on the OR gadget, edge
(a3, a

′
3) is allocated to a3 if and only if edge (a1, a

′
1) is allo-

cated to a1 or edge (a2, a
′
2) is allocated to a2.

Proof. We first show that if (a1, a
′
1) is allocated to a1,

(a3, a
′
3) must be allocated to a3. Since (a1, a

′
1) is priceless

to a′1 but is allocated to a1, a′1 envies a1. Hence, (a1, a′3)
must be allocated to a′3. Otherwise, a′1 still envies a1 after re-
moving (a1, a

′
3) from a1’s bundle. Moreover, (a3, a′3) must

be allocated to a3. Otherwise, a3 still envies a′3 after remov-
ing (a1, a

′
3) from a3’s bundle. By symmetry, it holds that if

(a2, a
′
2) is allocated to a2, (a3, a′3) must be allocated to a3.

We then show that when (a1, a
′
1) is allocated to a1 and

(a3, a
′
3) is allocated to a3, no matter which endpoint agent

(a2, a
′
2) is allocated to, there exists an EFX0

0 allocation.
When (a2, a

′
2) is allocated to a2, we construct an EFX0

0 al-
location as follows: allocate each priceless edge to the upper
endpoint agent, i.e., (ai, a′i) to ai for every i ∈ {1, 2, 3} and
(bi, b

′
i) to bi for every i ∈ {1, 2, 3}; allocate the middle four

edges to the endpoint agents who are further away from b′2,
i.e., (a′1, b

′
1) to a′1, (b′1, b

′
2) to b′1, (b′2, b

′
3) to b′3, (b′3, a

′
2) to a′2;

allocate (b′2, a3) to b′2, (a1, a′3) to a′3, (a2, a′3) to a′3. Since
each agent has a positive value for each edge she receives,
to verify that the allocation is EFX0

0, it suffices to consider
the agents who receive more than one edge (only a′3 in the
above allocation). Since both a1 and a2 receive their price-
less edges, neither of them envies a′3 and thus the allocation
is EFX0

0. When (a2, a
′
2) is allocated to a′2, we construct an

EFX0
0 allocation as follows: allocate each priceless edge ex-

cept (a2, a′2) and (b1, b
′
1) to the upper endpoint, i.e., (ai, a′i)

to ai for every i ∈ {1, 3}, (bi, b′i) to bi for every i ∈ {2, 3},
(a2, a

′
2) to a′2, (b1, b′1) to b′1; for the middle four edges, allo-

cate (a′1, b
′
1) to a′1, (b′1, b

′
2) to b′2, (b′2, b

′
3) to b′3, (b′3, a

′
2) to b′3;

allocate (b′2, a3) to b′2, (a1, a′3) to a′3, (a2, a′3) to a2. In the
above allocation, only b′2 and b′3 receive more than one edge.
For b′2, neither b′1 nor a3 envies her since both of them receive
their priceless edges. For b′3, a′2 does not envy her since she
receives her priceless edge, and b′2 does not envy her since she
receives a value of ϵ1 + ϵ2 and thinks that b′3 receives a value
of ϵ1. Therefore, the allocation is also EFX0

0. By symmetry,
when (a2, a

′
2) is allocated to a2 and (a3, a

′
3) is allocated to

a3, no matter which endpoint agent (a1, a′1) is allocated to,
there exists an EFX0

0 allocation.
We next show that if both (a1, a

′
1) and (a2, a

′
2) are allo-

cated to their lower endpoint agents, (a3, a′3) must be allo-
cated to a′3. It suffices to show that (b′2, a3) must be allocated
to a3. This is because if both (a3, a

′
3) and (b′2, a3) are allo-

cated to a3, a′3 will envy a3 even after removing (b′2, a3) from
a3’s bundle. If (b2, b′2) is allocated to b′2, (b′2, a3) must be al-
located to a3 and we have done, since otherwise b2 will envy
b′2 even after removing (b′2, a3) from b′2’s bundle. Therefore,
it remains to consider the case when (b2, b

′
2) is allocated to

b2. Since (a1, a
′
1) is allocated to a′1, (a′1, b

′
1) must be allo-

cated to b′1 since otherwise a1 will envy a′1 even after remov-
ing (a′1, b

′
1) from a′1’s bundle. Furthermore, (b1, b′1) must be

allocated to b1. By the same reasoning, (a′2, b
′
3) must be al-

located to b′3 and (b3, b
′
3) must be allocated to b3. Then con-

sider the incident edges of b′2 that have not been allocated so
far, i.e., (b′1, b

′
2) and (b′2, b

′
3). b

′
2 must receive one of these two

edges, since otherwise she will envy b′1 even after removing
(a′1, b

′
1) from b′1’s bundle, and b′3 even after removing (a′2, b

′
3)

from b′3’s bundle. No matter which edge b′2 receives, (b′2, a3)
must be allocated to a3. To see this, let the edge that b′2 re-
ceives be (b′1, b

′
2). Since b′1 receives a value of ϵ2 and thinks

that b′2 receives a value of ϵ1 > ϵ2, she envies b′2 and thus b′2
cannot receive (b′2, a3) any more.

Lastly, we show that when all of (a1, a
′
1), (a2, a

′
2) and
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Figure 4: The graph is constructed from the circuit that consists of
only one AND gate, two inputs, and one final output. (a1, a

′
1) and

(a2, a
′
2) simulate the inputs, (a3, a

′
3) simulates the final output.

(a3, a
′
3) are allocated to their lower endpoint agents, there

exists an EFX0
0 allocation. We allocate each priceless edge

except (b1, b′1) and (b3, b
′
3) to the lower endpoint agent, i.e.,

(ai, a
′
i) to a′i for every i ∈ {1, 2, 3}, (b2, b′2) to b′2, and (bi, b

′
i)

to bi for every i ∈ {1, 3}; for the middle four edges, allocate
(a′1, b

′
1) and (b′1, b

′
2) to b′1, (b′2, b

′
3) and (b′3, a

′
2) to b′3; allocate

(b′2, a3) to a3, (a1, a′3) to a1, (a2, a′3) to a2. In the above
allocation, only b′1 and b′3 receive more than one edge. For
b′1, neither a′1 nor b′2 envies her since both of them receive
their priceless edges. By the same reasoning, neither b′2 nor
a′2 envies b′3. Therefore, the allocation is EFX0

0.

We can also prove that the other three gadgets correctly
simulate the corresponding elements of a circuit. The formal
claims and proofs can be seen in the full version of this paper.

Given a circuit, we first substitute each AND gate with
three NOT gates and one OR gate, and get an equivalent cir-
cuit without AND gates. For the new circuit, we construct a
priceless edge with a value of +∞ for each input, and the cor-
responding gadget for each gate and wire. We then construct
a True terminator gadget to force the final output to be True.
Figure 4 shows the graph constructed from a simple circuit
with one AND gate, two inputs and one final output. Note
that Proposition 2 still applies to the graph we construct.

Up to now, it is not hard to see the correctness of Theorem
2, whose formal proof can be seen in the full version.
Remark 1. Our reduction borrows an idea from the reduc-
tion by [Christodoulou et al., 2023] (see Theorem 2 in their
paper) and generalizes their reduction. Our reduction can
imply their result, while theirs cannot carry over to our prob-
lem since it relies on the orientation model.

4.2 EFX0
− Allocations

We next study EFX0
− and have the following theorem.

Theorem 3. For any graph, an EFX0
− allocation always ex-

ists and can be computed in polynomial time.
We first introduce some notations. Given a (partial) alloca-

tion X = (X1, . . . , Xn), let R(X) denote the set of unallo-
cated edges, i.e., R(X) = M \

⋃
ai∈N Xi. We say an agent

aj is safe for another agent ai if ai does not envy aj even
if aj receives all her unallocated incident edges that are not

chores for her, i.e., vi(Xi) ≥ vi(Xj ∪ (E≥0
i ∩ R(X))). We

next introduce some properties of allocations.
Definition 2 (Properties of a (Partial) Allocation). We say
that a (partial) allocation X satisfies

• property (1) if for every agent ai, the value of her bun-
dle is at least the largest value among her unallocated
incident edges that are not chores for her. That is,
vi(Xi) ≥ vi(e) for every edge e ∈ E≥0

i ∩R(X);
• property (2) if for every envied agent ai, the value of

her bundle is at least the value of all her unallocated
incident edges that are not chores for her. That is,
vi(Xi) ≥ vi(E

≥0
i ∩R(X));

• property (3) if for every two envied agents, there exists a
non-envied agent who is safe for both of them;

• property (4) if no agent receives an edge that is a chore
for her. That is, e ∈ E≥0

i for any ai ∈ N and e ∈ Xi;
• property (5) if every envied agent ai receives exactly one

edge, i.e., |Xi| = 1.
• property (6) if every envied agent is envied by exactly

one agent;
• property (7) if there is no envy cycle among the agents.

That is, there does not exist a sequence of the agents
ai0 ← ai1 ← · · · ← ais such that ail envies ail−1

for
every l ∈ [s] and i0 = is;

• property (8) if for any sequence of agents ai0 ← ai1 ←
· · · ← ais such that ail envies ail−1

for every l ∈ [s]
and ais is non-envied, we have that ail is safe for ai0 for
every l ∈ [s].

We obtain an EFX0
− allocation in two parts.

Part 1. In the first part, we compute a (partial) EFX0
− orienta-

tion that satisfies properties (1)-(8) in Definition 2. Our algo-
rithms in this part are adapted from those by [Christodoulou
et al., 2023]. There are two differences between our algo-
rithms and [Christodoulou et al., 2023]’s. First, since there is
one more requirement in our problem that agents cannot envy
others after removing a chore from their own bundles, we
need to carefully allocate the edges that are chores for their
endpoint agents. Second, the algorithms by [Christodoulou et
al., 2023] cannot guarantee property (8) and our algorithms
need to deal with the case where property (8) is not satisfied.

We have the following lemma. The detailed algorithms and
proofs can be seen in the full version.
Lemma 1. For any graph, a (partial) EFX0

− orientation that
satisfies properties (1)-(8) in Definition 2 can be computed in
polynomial time.
Part 2. In the second part, we allocate the edges that are not
allocated in Part 1. We first categorize the unallocated edges
into four disjoint groups:

• G1 contains each edge that has at least one non-envied
endpoint agent for whom the edge is not a chore;

• G2 contains each edge that has two envied endpoints;
• G3 contains each edge that has one non-envied endpoint

agent for whom the edge is a chore and one envied end-
point agent for whom it is not a chore;
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• G4 contains the edges that have not been included in G1,
G2, G3. Notice that each edge in G4 is a chore for both
its endpoint agents.

We will allocate the unallocated edges from G1 to G4 such
that no agent will receive an edge that is a chore for her and
thus property (4) will be retained. Besides, no agent will get
worse off and no allocated edge will become unallocated,
which will ensure that properties (1) and (2) are retained.
Moreover, no new envy will occur, which will ensure that
properties (6) and (7) are retained. Furthermore, no allocated
edge will be reallocated to another agent, which will ensure
that an agent who is safe for some agent is always safe for
that agent and thus properties (3) and (8) are retained. We
will also see that the (partial) allocation is always EFX0

− dur-
ing the allocation process. Specifically,

• For each edge in G1, we allocate it to the non-envied
endpoint agent for whom it is not a chore.

• For each edge in G2, we allocate it to the non-envied
agent who is safe for both its endpoint agents.

• For each edge ei,j in G3, we consider three cases. With-
out loss of generality, let ai be the endpoint agent for
whom ei,j is not a chore and aj be the other one for
whom it is a chore. First, ai becomes non-envied. Sim-
ilar to the allocation of G1, we allocate the edge to ai.
Second, there exists a non-envied agent ak ̸= aj who is
safe for ai. Similar to the allocation of G2, we allocate
ei,j to ak. Third, aj is the only non-envied agent who is
safe for ai. By property (8), it must be the case that there
exists a sequence of agents ai0 ← ai1 ← · · · ← ais such
that ail envies ail−1

for every l ∈ [s], ai0 is ai and ais is
aj . For this case, we allocate ei,j to ais−1

.
• For G4, we consider two cases. First, if no agent is en-

vied, we allocate each edge to an agent who is not its
endpoint. Second, if some agent is envied, we find two
agents ai and aj such that ai is envied by aj and aj is
non-envied. We allocate the edges in G4 that are inci-
dent to aj (i.e., Ej ∩ G4) to ai, and the other edges in
G4 (i.e., G4 \ Ej) to aj .

We have the following lemma in Part 2, whose proof can
be seen in the full version of this paper.
Lemma 2. For any graph, given a (partial) EFX0

− orienta-
tion that satisfies properties (1)-(8) in Definition 2, we can
compute an EFX0

− allocation in polynomial time.
By Lemmas 1 and 2, it is clear that Theorem 3 holds.

4.3 EFX+
0 Allocations

Finally, we study EFX+
0 and have the following theorem.

Theorem 4. For any graph, an EFX+
0 allocation always ex-

ists and can be computed in polynomial time.
First recall that for chores instances where each edge is a

chore for both its endpoint agents, we can compute an envy-
free allocation by allocating each edge to an agent who is not
its endpoint. Thus in the following, we only consider graphs
where there exists an edge that is not a chore for at least one
of its endpoint agents.

To get some intuitions about how to compute an EFX+
0 al-

location, consider the graphs where each edge is a good for

at least one of its endpoint agents. For these graphs, we can
simply allocate each edge to the endpoint agent for whom it
is a good. For any agent ai, each edge she receives is a good
for her, and at most one edge that each other agent aj receives
is a good for her. After removing the good from aj’s bundle,
ai does not envy aj . Thus, the allocation is EFX+

0 .
The trickier graphs to deal with are those with edges that

are not goods for any of their endpoint agents. For these
graphs, we want to find an agent who can receive all such
edges, so that we can simply allocate each remaining edge
to one of its endpoint agents as above. At the same time,
the allocation should be EFX+

0 for the agent we find. When
there exists an agent ai to whom the total value of her incident
edges is non-negative (i.e., vi(Ei) ≥ 0), we let ai receive all
her incident edges as well as all edges that are not goods for
any of their endpoint agents. We then allocate each remain-
ing edge to one of its endpoint agents for whom it is a good.
Since ai receives all her incident edges whose total value is
non-negative, the allocation is EFX+

0 for her.
However, when the total value of the incident edges is neg-

ative to every agent (i.e., vi(Ei) < 0 for every ai), we cannot
simply allocate all incident edges to an agent as above, since
the allocation may not be EFX+

0 for her. For this case, we
let an agent receive all her incident edges that are not chores
for her and allocate her other incident edges to another agent.
More concretely, we first choose an edge ei,j that is not a
chore for ai, breaking the tie by giving priority to the edges
that are not chores for one endpoint agent and are chores for
the other. We then let ai receive all her incident edges that are
not chores for her, as well as all edges that are not incident to
her but are not goods for any of their endpoint agents. Next,
we let aj receive all her unallocated incident edges that are
goods for her, as well as ai’s unallocated incident edges that
are not goods for any of their endpoint agents. At last, we al-
locate each remaining unallocated edge to one of its endpoint
agents for whom it is a good. The formal description of the
allocation process and the formal proof of Theorem 4 can be
seen in the full version.

Since any EFX0
− or EFX+

0 allocation is also EFX+
−, we

have the following corollary.
Corollary 3. For any graph, an EFX+

− allocation always ex-
ists and can be computed in polynomial time.

5 Conclusion
In this paper, we give a complete computational study of EFX
allocations on graphs when the items are a mixture of goods
and chores. There are some future directions. In our set-
ting, exactly two agents are interested in one common item
that is incident to both of them. One immediate direction is
to study the generalized setting with multi-edges where mul-
tiple edges exist between two agents or hypergraphs where
more than two agents are interested in one common item. An-
other direction is to study the setting where agents are also
interested in the edges that are not very far away from them.
To bypass the hardness results of EFX orientations, we have
studied some simple graphs including trees, stars and paths.
One can also study complex graphs for which the existence
of EFX orientations can be determined in polynomial time.
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