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Abstract
We study how to fairly allocate a set of indivis-
ible chores among n agents who may have dif-
ferent weights corresponding to their involvement
in completing these chores. We found that some
of the existing fairness notions may place agents
with lower weights at a disadvantage, which mo-
tivates us to explore weighted maximin share fair-
ness (WMMS). While it is known that a WMMS
allocation may not exist, no non-trivial approxima-
tion has been discovered thus far. In this paper, we
first design a simple sequential picking algorithm
that solely relies on the agents’ ordinal rankings of
the items, which achieves an approximation ratio of
O(log n). Then, for the case involving two agents,
we improve the approximation ratio to

√
3+1
2 ≈

1.366, and prove that it is optimal. We also con-
sider an online setting when the items arrive one
after another and design an O(

√
n)-competitive on-

line algorithm given the valuations are normalized.

1 Introduction
The task in fair job scheduling is to allocate a set of jobs
M = {o1, . . . , om} (called chores or items throughout this
paper) to a set of agents N = {a1, . . . , an} in a fair manner,
where every job has to be entirely allocated to exactly one
agent. Each agent ai has a valuation function vi : 2

M → R≥0

to evaluate the cost of completing the jobs allocated to her.
In this paper, we focus on additive valuations. In the gen-
eral situation, and most likely what happens in reality, the
agents have possibly different obligations or responsibilities
in completing these jobs. For example, a person in a lead-
ership position is naturally expected to undertake higher re-
sponsibility than the others. To model this asymmetry of
the agents, each agent ai is assumed to hold a share of
0 < wi < 1 over all jobs, where

∑n
i=1 wi = 1, and wi’s

are called the agents’ weights in the system. Among the
various fairness notions, which will be briefly reviewed in
Section 1.2, proportional fairness is a remarkable one, which
requires the allocation to respects the agents’ shares. For-
mally, an allocation (A1, . . . , An) is proportional (PROP),
if vi(Ai) ≤ wi · vi(M) for all agents ai [Steinhaus, 1948;
Robertson and Webb, 1998].

PROP is ideal, but it is very hard to satisfy. For example,
ifM contains a single job and all agents have non-zero cost
on it, no matter which agent receives it, the allocation is not
fair to her. Accordingly, several ways of relaxing the require-
ments of PROP are proposed in the literature. For example,
proportionality up to any item (PROPX) is studied in [Li et
al., 2022], where an allocation is PROPX if for all agents ai,
vi(Ai \ {e}) ≤ wi · vi(M) holds for any e ∈ Ai. The good
news is that a PROPX allocation is always guaranteed to exist
and can be found easily if the valuations are additive. Another
popular relaxation of PROP is the maximin share (MMS) fair-
ness, which was first proposed for allocating goods (where
agents prefer to get more items) and symmetric agents, i.e.,
when w1 = · · · = wn = 1

n , by [Budish, 2010]. The intuition
of MMS fairness is to relax the weight 1

n to a weaker share
that is easy to satisfy. Let A be the set of all allocations, then
the MMS of agent ai is

MMSi = min
(A1,...,An)∈A

max
j=1,...,n

vi(Aj),

which is the minimum of the maximum cost for ai in any
n-partition of the chores. Clearly, MMSi ≥ 1

n and thus
agent ai is satisfied if her cost is no greater than MMSi. Al-
though there are still, but rare, instances for which the MMS
value cannot be guaranteed for every agent [Aziz et al., 2017;
Feige et al., 2021], there are constant approximations [Huang
and Lu, 2021; Huang and Segal-Halevi, 2023]. To general-
ize this share-based notion to asymmetric agents (when the
agents have non-identical weights), AnyPrice share (APS)
fairness was proposed in [Babaioff et al., 2021]. The defi-
nition of APS is slightly more complicated; informally, APSi
defines a share for every agent ai which is the maximum ef-
fort she needs to pay when her loan to the system equals her
weight wi and she completes a least painful set of items to
repay her loan when the jobs are adversarially priced with a
total price of 1. Since APS is not easy to understand, a simple
notion, chore share (CS), is introduced in [Huang and Segal-
Halevi, 2023], which provides a convenient replacement and
a lower bound on the APS. For agent ai with weight wi,

CSi = max{wi · vi(M), vi({o1}), vi({ok, ok+1})},

where o1, ok, ok+1 are the items with the 1-st, k-th and (k +
1)-th highest values and k = ⌊ 1

wi
⌋. If m is not sufficiently

large, vi({ok, ok+1}) can be dropped from the max operator.
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agent weight item o1 item o2
a1 w1 = 1− ϵ 0.5 0.5
a2 w2 = ϵ 0.5 0.5

Table 1: An instance with two agents and two items.

Consider a simple instance of allocating two identical
items to two agents with w1 = 1 − ϵ, w2 = ϵ, where ϵ > 0
is a sufficiently small number. The values are shown in Table
1. It can be verified that, APS2 = CS2 = 0.5, which means
if we only allocate one item to agent a2 (and the other item to
a1), a2 would accept this allocation since the item’s value is
also 0.5, i.e., the allocation is APS and CS fair. The allocation
is also PROPX, since by removing the item from a2’s alloca-
tion, her bundle is empty. However, when ϵ approaches 0,
we may not regard this allocation as a fair one because agent
a2 bears little responsibility. This drawback is commonly ob-
served in all the aforementioned notions: if an agent receives
a single item, they would consider the allocation fair, regard-
less of the item’s value.

In fact, in the above instance, there is an allocation that
is fairer when ϵ is small – allocating both items to agent a1.
Agent a1 understands that she is expected to take 1 − ϵ frac-
tion of all the items, and allocating both items to her is not
too far away from a PROP one; however, if one of the items
is given to a2, agent a2’s value is 0.5 ≫ ϵ (even so in a1’s
perspective), which is far from a fair allocation. This intu-
ition has been formalized as weighted maximin share fairness
(WMMS) defined in [Aziz et al., 2019]. Given an allocation
(A1, . . . , An), we define the unfairness ratio of agent ai as

max
j=1,...,n

vi(Aj)

wj
,

and then the “fairest” allocation is to minimize the unfairness
ratio. Thus, the weighted MMS of ai is her weight times the
smallest unfairness ratio, i.e.,

WMMSi = wi · min
A∈A

max
Aj∈A

vi(Aj)

wj
.

It is easy to see that when all agents have the same weight,
WMMSi is exactly MMSi. An allocation is WMMS fair if all
agents’ values are no greater than their WMMS.

Recall the example in Table 1,

WMMS1 = (1− ϵ) ·min{v1({o1, o2})
1− ϵ

,
v1(o1)

ϵ
} = 1,

and

WMMS2 = ϵ ·min{v2({o1, o2})
1− ϵ

,
v2(o1)

ϵ
} = ϵ

1− ϵ
.

By the definition of WMMSi, we need to enumerate all pos-
sible allocations to find the smallest unfairness ratio. But in
the example, it is clear that this ratio appears between allo-
cating both items to agent a1 and allocating one of the items,
say o1, to agent a2. When ϵ → 0, we can see that WMMSi
is closer to the proportionality wi, and the only WMMS fair
allocation is to allocated both items to agent a1. Moreover, in

this case, any finite approximation of WMMS would allocate
both items to agent a1.

Then our question is if we can guarantee (approximate)
WMMS fairness for all instances. A trivial solution is to al-
locate all items to the agent with the largest weight, which
achieves n-approximate WMMS, but beyond that nothing is
known. In this paper, we show how to improve the approxi-
mation ratio via simple sequential algorithms, and also inves-
tigate the inherit difficulties of approximating WMMS.

1.1 Our Contribution
Our main results can be summarized as follows.

It is proved in [Aziz et al., 2019] that allocating all items to
the agent with the highest weight achieves n-approximation
of WMMS, but no non-trivial approximation ratio beyond n
has been proved thus far. Our first contribution is a simple se-
quential picking algorithm that improves the approximation
ratio to O(log n), where the algorithm only accesses each
agent’s ordinal ranking of the items. Informally, the algo-
rithm uses the weights of the agents to divide the run of the
algorithm in rounds. The agents with higher weights will join
the algorithm in earlier rounds and thus receive more items.
Within each round, we fractionally allocate the items to the
agents proportional to their weights, and show that such a
fractional allocation can be converted to an integral one with-
out loss of much approximation ratio, using a rounding tech-
nique in [Feige and Huang, 2023]. By carefully choosing all
parameters, we show that no agent obtains cost higher than
O(log n) times of her WMMS. Although the analysis of our
algorithm is not trivial, given these parameters, the imple-
mentation of the algorithm is straightforward.

Main Result 1. There exists an O(log n)-approximate
WMMS allocation for all instances with additive valuations.

We next focus on a typical case of two agents. Intuitively, if
the two agents possess similar weights, the divide-and-choose
algorithm should yield favorable results. Conversely, if one
agent has a significantly larger weight than the other, allocat-
ing all items to that agent should also produce a satisfactory
allocation. However, the challenge lies in the situations that
fall between these two extremes. Through a more intricate
analysis and by carefully distinguishing these three cases, we
show that we can achieve

√
3+1
2 ≈ 1.366 approximation. Fur-

ther, we prove that this is the optimal approximation ratio an
algorithm can reach, surpassing the previously proven inap-
proximability of 4

3 ≈ 1.33 in [Aziz et al., 2019].

Main Result 2. For the case of two agents, the optimal ap-
proximation ratio of WMMS fairness is

√
3+1
2 .

This result also shows the distinction between weighted
and unweighted cases, where 1.182-MMS allocation exists
[Huang and Segal-Halevi, 2023] when the agents have iden-
tical weights for arbitrary number of agents and an MMS al-
location exists when there are two agents.

Finally, we consider the online setting when the items ar-
rive one after another and the algorithm does not know the
information on the future events. The problem has been stud-
ied in [Zhou et al., 2023] when the agents are symmetric. It
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is shown that when the valuations are normalized, constant
competitive ratios can be achieved. It is also known that if
the valuations are not normalized, no online algorithm can
be better than Ω(n)-competitive. We follow this trend and
consider the general weighted case, and prove that we can
achieve a competitive ratio of O(

√
n) via a simple greedy al-

gorithm. Although we do not view this as a main result of
the paper, it may show some insights in further improving the
approximation ration in the offline setting. As mentioned in
Main Result 1, the algorithm there only relies on the agents’
weights and their ordinal valuations. We suspect that using
the cardinal values (more information than an ordering) can
give a better approximation ratio. The algorithm here shows
one possible way to utilize the values.

1.2 Related Works
Fair division is a multidisciplinary field that intersects com-
puter science, economics, and mathematics. It remains a
subject of ongoing debate regarding its fundamental con-
cepts. Among the various fairness notions, two extensively
studied and widely accepted ones are proportionality (PROP)
[Steinhaus, 1948] and envy-freeness (EF) [Foley, 1967; Var-
ian, 1973]. However, when it is not possible to divide the
items, satisfying PROP and EF is not always feasible. Conse-
quently, relaxations of these notions have been proposed, in-
cluding MMS [Budish, 2010], PROP1 [Conitzer et al., 2017],
PROPX [Aziz et al., 2020], EF1 [Budish, 2010; Lipton et
al., 2004], and EFX [Gourvès et al., 2014; Caragiannis et al.,
2019]. MMS fairness was first introduced in [Budish, 2010]
for goods and later [Kurokawa et al., 2018] proved that MMS
may not exist in some instances but a 2/3-approximation al-
ways exists. The approximation ratio is later improved or
extended to more general valuations in a series of works,
e.g., [Ghodsi et al., 2018; Barman and Krishnamurthy, 2020;
Garg and Taki, 2020], and the best-known approximation is
(3/4 + 3/3836) so far, given in [Akrami and Garg, 2024].

[Aziz et al., 2017] extended the MMS fairness to chores,
and proved that it may not be satisfiable for all additive val-
uations but a 2-approximate MMS allocation can be eas-
ily found. Later the approximation ratio is improved in
[Barman and Krishnamurthy, 2020; Huang and Lu, 2021;
Huang and Segal-Halevi, 2023] and generalized to more gen-
eral valuations in [Li et al., 2023]. The best-known approx-
imation for additive valuations is 13/11 [Huang and Segal-
Halevi, 2023]. For a more comprehensive introduction to
these concepts, interested readers can refer to a recent survey
[Amanatidis et al., 2023].

In recent years, most of the concepts mentioned earlier
have been extended to the weighted versions that accom-
modate asymmetric agents. For goods, while a weighted
PROP1 (PROP after removing some item) allocation exists
but a weighted PROPX (PROP after removing any item) al-
location may not exist [Aziz et al., 2020]. In contrast, for
chores, a weighted PROPX (implying weighted PROP1) al-
location exists and can be found easily [Li et al., 2022]. For
both goods and chores, a weighted EF1 allocation can be
computed in polynomial time [Wu et al., 2023], but the ex-
istence of weighted EFX allocations is not guaranteed [Ha-
jiaghayi et al., 2023]. Regarding weighted MMS, Farhadi

et al. [Farhadi et al., 2019] proved that the best possi-
ble approximation ratio is 1

n for goods, and Aziz [Aziz et
al., 2019] investigated the problem for chores but the best
possible approximation ratio is still unknown. Apart from
the aforementioned fairness criteria, there are additional no-
tions, such as AnyPrice share (APS) [Babaioff et al., 2021;
Feige and Huang, 2023] and maximin aware (MMA) up to
one or any [Wei et al., 2023] for which constant approxima-
tions are allowed for chores.

2 Preliminaries
2.1 Model
We first formally introduce our problem. For any integer
k ≥ 1, let [k] = {1, . . . , k}. For any set S and e ∈ S, let
S−e = S\{e}. In a fair allocation instance, there are n agents
and m indivisible chores (called items for convenience), de-
noted byN = {a1, . . . , an} andM = {o1, . . . , om}, respec-
tively. The agents have asymmetric shares for completing the
items, and let wi > 0 represent agent ai’s share (also called
weight). Without loss of generality, the weights are normal-
ized, i.e.,

∑
ai∈N wi = 1, and assume w1 ≥ · · · ≥ wn.

Denote w = (w1, . . . , wn). Each agent ai has a valuation
function vi : 2

M → R≥0, where vi(S) represents her cost on
completing the items in S. For simplicity, when a bundle con-
tains a single item o, denote vi(o) = vi({o}). In this paper,
we only consider additive valuation functions, i.e., vi(S) =∑

oj∈S vi(oj) for every S ⊆ M. Let v = (v1, . . . , vn).
We sometimes assume, without loss of generality, that the
valuations are normalized, i.e., vi(M) = 1 for all agents
ai. In summary, a chore allocation instance is represented
by I = (N ,M,w,v).

An allocation, denoted by A = (A1, . . . , An), is an or-
dered n-partition ofM where Ai is the set of items allocated
to agent ai such that

⋃
ai∈N Ai =M and Ai∩Aj = ∅ for all

i ̸= j. Denote by A the set of all allocations. An allocation
is called partial if

⋃
ai∈N Ai ⊊ M. Next, we introduce the

solution concepts.
Definition 1 (WMMS). Given any chore allocation instance
I = (N ,M,w,v), for agent ai ∈ N , its weighted maximin
share (WMMS), denoted by WMMSi(I), is defined as

WMMSi(I) = wi · min
A∈A

max
Aj∈A

vi(Aj)

wj
.

When the instance is clear from the context, WMMSi(I) is
also written as WMMSi for simplicity.

An partition A1, . . . , An ofM is called a WMMS-defining
partition for agent ai, if

vi(Aj)

wj
· wi ≤WMMSi, for all j = 1, . . . , n.

A simple observation from the definition of WMMS is that
WMMSi ≥ wi · vi(M), for all j = 1, . . . , n. (1)

This is because that for any partition B1, . . . , Bn ofM, there
must be some j such that vi(Bj) ≥ wj · vi(M) since the
weights of the agents are normalized.
Definition 2 (α-WMMS). Given α ≥ 1, an allocation
A = (A1, . . . , An) is called α-approximate WMMS fair (α-
WMMS), if vi(Ai) ≤ α ·WMMSi for all agents ai ∈ N .
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2.2 Proportional and Ordered Instances
We next introduce some properties of the fair allocation in-
stances, which will be used to simplify our analysis.

We start with additional definitions. A fair allocation in-
stance I = (N ,M,w,v) is called ordered if all agents have
the same ranking over the items, i.e., vi(o1) ≥ vi(o2) ≥
· · · ≥ vi(om) for all ai ∈ N . It is widely known that the hard-
est case to approximate WMMS fairness is the ordered in-
stances. The following lemma has been proved, for example,
in [Barman and Krishnamurthy, 2020; Huang and Lu, 2021;
Li et al., 2022].

Lemma 1. For any α ≥ 1, if there is an algorithm Ψ1 that re-
turns an α-WMMS allocation for all ordered instances, then
there is another algorithm Ψ2 that ensures an α-WMMS al-
location for all instances.

It deserves to note that in Lemma 1, if Ψ1 is a polynomial-
time algorithm, then Ψ2 also runs in polynomial time.

Next, given any normalized instance, a valuation function
vi is called proportional if WMMSi = wi, i.e.,M can be par-
titioned into n bundles A1, . . . , An such that vi(Aj) = wj

for j = 1, . . . , n. The instance is called proportional if
WMMSi = wi for all ai ∈ N . We prove that, similar as
Lemma 1, to approximate WMMS fairness, it suffices to fo-
cus on the proportional instances.

Lemma 2. For any α ≥ 1, if there is an algorithm Ψ1 that re-
turns an α-WMMS allocation for all proportional instances,
then there is another algorithm Ψ2 that ensures an α-WMMS
allocation for all instances.

Proof. Given the algorithm Ψ1, we design the algorithm
Ψ2 as follows. For any normalized instance I =
(N ,M,w,v), Ψ2 first constructs a proportional instance
I ′ = (N ,M′,w,v′). For each agent ai, let Ai

1, . . . , A
i
n be

an arbitrary WMMS-defining partition of her and construct
n extra items, denoted byMi = {oi1, . . . , oin}, such that for
j = 1, . . . , n,

v′i(o
i
j) =

WMMSi(I)
wi

· wj − vi(A
i
j).

Since Ai
1, . . . , A

i
n is a WMMS-defining partition, we have

vi(A
i
j)

wj
≤ WMMSi(I)

wi
and thus v′i(o

i
j) ≥ 0. Let v′l(o

i
j) = 0 for

all l ̸= i. LetM′ =M∪M1 ∪ · · · ∪Mn and v′i(o) = vi(o)
for all o ∈M and ai ∈ N . Accordingly, we have

v′i(Aj ∪ {oij}) =
WMMSi(I)

wi
· wj for all j = 1, . . . , n

and thus

v′i(A
i
1 ∪ {oi1})
w1

= · · · = v′i(A
i
n ∪ {oin})
wn

=
WMMSi(I)

wi
.

That is Ai
1∪{oi1}, . . . , Ai

n∪{oin}, plusM−i being arbitrarily
distributed among these n bundles, is a WMMS-defining par-
tition of v′i with itemsM′ and WMMSi(I ′) = WMMSi(I).
We remark that we do not normalize the valuations of I ′ to
make the connection between I and I ′ evident.

Suppose A = (A1, . . . , An) is an α-WMMS allocation of
instance I ′ returned by algorithm Ψ1. For i = 1, . . . , n, let
Bi = Ai ∩M and we have

vi(Bi) ≤ v′i(Ai) ≤ α ·WMMSi(I ′) = α ·WMMSi(I).

Thus B = (B1, . . . , Bn) is an α-WMMS allocation of I,
which completes the construction of Ψ2.

Remark The construction of instance I ′ in the proof of
Lemma 2 does not run in polynomial time, which means Ψ2

may not be a polynomial-time algorithm even if Ψ1 is. By in-
corporating the rounding method used in [Aziz et al., 2019],
our algorithm can be transformed to run in polynomial time,
albeit with a constant factor loss in the approximation ratio.

For any instance, we first reduce it to a proportional in-
stance, then reduce it to an ordered one, which is still propor-
tional. Due to Lemmas 1 and 2, in the remaining of this paper,
without loss of generality, it suffices to restrict our attention
on the ordered and proportional instances.

Finally, we present the following technical lemma, which
will be used to design our algorithms. It is easy to see that
since agent a1 has the largest weight and the instance is pro-
portional and ordered, we must have v1(o1) ≤ w1; otherwise,
WMMS1 > w1 no matter which bundle contains o1 in a1’s
WMMS-defining partition. In general, we have the following
property for all agents ai and i ≥ 2.

Lemma 3. For any proportional and ordered instance, given
any agent ai with i ≥ 2, if

∑
l∈[i−1]⌊

wl

wi
⌋ < m,

vi(oj) ≤ wi for all j >
∑

l∈[i−1]

⌊wl

wi
⌋.

Proof. Given any WMMS-defining partition B1, . . . , Bn for
agent ai, Bl cannot contain any item whose value is greater
than wi for any l ≥ i since the instance is proportional. More-
over, as vi(Bl) = wl for all l < i, Bl contains at most ⌊wl

wi
⌋

items whose value is greater than wi. Thus in total the num-
ber of such large items is at most

∑
l∈[i−1]⌊

wl

wi
⌋. Noting that

the instance is ordered, we have the lemma.

3 The Main Algorithm
In this section, we prove our main result, where an O(log n)-
WMMS allocation can be found in polynomial time.

3.1 Fractional Allocations
Before designing our main algorithm, we first introduce a
technical lemma which can further simplify the description
of the algorithm. An allocation is fractional if some items
are divided and allocated among agents. Formally, denote by
0 ≤ xij ≤ 1 the fraction of item oj that is allocated to agent
ai, and let xi = (xi1, . . . , xim). Denote by x = (x1, . . . ,xn)
a fractional allocation where it is required that

∑
ai∈N xij =

1 for all oj ∈ M. The following lemma, proved in [Feige
and Huang, 2023], shows that we can convert a fractional al-
location to an integral one without sacrificing much on the
approximation ratio of WMMS, if (1) the fractional alloca-
tion is a good approximation of WMMS and (2) the value
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Algorithm 1 fractional allocation→ integral allocation
Input: A fractional allocation x = (x1, . . . ,xn) for ordered
instance I = (M,N ,w,v).
Output: An integral allocation A = (A1, . . . , An).

1: Initialize that Ai = ∅ for ai ∈ N .
2: for j = 1 to m do
3: Choose one agent ai for whom |Ai| <

∑j
k=1 xik.

4: Ai ← Ai ∪ {oj}.
5: end for
6: return A = (A1, . . . , An).

of the largest item each agent positively receives is not much
larger than her WMMS. We include the proof of Lemma 4 for
completeness.

Lemma 4. [Feige and Huang, 2023] Given any ordered in-
stance I = (M,N ,w,v) and a fractional allocation x,
where for every agent ai ∈ N , vi(xi) ≤ α · WMMSi and
vi(oj) ≤ β · WMMSi for all oj ∈ M such that xij > 0,
Algorithm 1 returns an integral (α+ β)-WMMS allocation.

Proof. First, observe that Algorithm 1 is well-defined, i.e.,
for each iteration j = 1, . . . ,m, there exists at least one agent
ai such that |Ai| <

∑j
k=1 xij . This can be seen by induc-

tion. Suppose Algorithm 1 successfully reaches the j-th iter-
ation, and thus exactly j − 1 items have been allocated. Let
(Aj

1, . . . , A
j
n) be the current partial allocation. Since x is a

complete allocation, we have

∑
ai∈N

|Aj
i | = j − 1 < j =

∑
i∈N

j∑
k=1

xik,

and thus |Ai| <
∑j

k=1 xik for at least one agent ai.
Next we bound the value of vi(Ai) for an arbitrary agent

ai. If xij = 0 for all item oj ∈M, then ai cannot be selected
in Step 3 for any iteration j. Thus Ai = ∅ and vi(Aj) = 0,
which means the lemma holds trivially. Otherwise, let fi be
the first item for which xifi > 0, then vi(o) ≤ vi(ofi) for
any o ∈ Ai. Suppose Ai = {oj1 , oj2 , . . . , ojp}. Then j1 ≥ fi
and vi(oj1) ≤ vi(ofi). Moreover, for any l ≥ 2, ojl can
be added to Ai only when

∑
k≤jl

xik > l − 1 and ojl has
smallest value among all the items before ojl . Accordingly
vi(Ai \ {oj1}) ≤ vi(xi) and thus

vi(Ai) = vi(Ai \ {oj1}) + vi(oj1) ≤ vi(xi) + vi(ofi)

≤ (α+ β) ·WMMSi,

which completes the proof of the lemma.

3.2 The Algorithm
The goal of our algorithm is to find a fractional allocation x,
where for any agent ai ∈ N , vi(xi) ≤ log n ·WMMSi and
vi(oj) ≤WMMSi for all oj such that xij > 0. By Lemma 4,
x can be easily converted into an integral allocation A that is
(log n+ 1)-WMMS. Recall that it suffices for us to focus on
proportional and ordered instances. Given any such instance
I = (N ,M,w,v) with w1 ≥ · · · ≥ wn, we categorize the

items by n+ 1 disjoint groups G = {G0, G1, . . . , Gn}:
G0 = ∅;

G1 =

{
oj ∈M | j ≤ ⌊

w1

w2
⌋
}
;

Gi =

oj ∈M | j ≤
∑
l∈[i]

⌊ wl

wi+1
⌋

 \⋃
l<i

Gl, (2)

for all 1 < i < n;

Gn =M\
⋃
l<n

Gl.

Note that Gl may be empty for l ≥ 1 if there are not enough
items inM. Our algorithm ensures that the items in each Gi,
1 ≤ i ≤ n, are only allocated to agents in {a1, . . . , ai}, and
thus by Lemma 3, the value of each single item allocated to
an agent is no greater than her weight. In the following, we
show how to ensure everyone’s value for her assigned items
to be no greater than log n times her weight.

The algorithm is described in Algorithm 2. The key idea is
to allocate the items in each group Gi to agents {a1, . . . , ai}
proportionally to their weights. Given any N ,M,w, the
fractional allocation (x1, . . . , xn) is fixed no matter what the
valuation profile v is. To bound the approximation ratio of the
algorithm, we next show that, agent a1, who has the largest
weight, is the worst-off one in the algorithm, and her worst-
case valuation is when it aligns the weights of the agents, i.e.,
v1j = wj for 1 ≤ j ≤ n and v1j = 0 for j > n. Formally, let
v′1 be the worst-case valuation, i.e., the proportional valuation
vi that maximizes the value of v1(x1)

w1
.

Lemma 5. Given any N ,M,w, for any agent ai ∈ N and
any proportional valuation vi,

vi(xi)

wi
≤ v′1(x1)

w1
≤

∑n
j=1 x1j · wj

w1
.

Proof. To prove the first inequality, it suffices to consider
i ≥ 2. Let x′

1 be the projected allocation of xi on groups
Gi, . . . , Gn, i.e., x′

1j = 0 for all oj ∈ G1 ∪ · · · ∪ Gi−1 and
x′
1j = x1j otherwise. Then

vi(x1)

w1
≥ vi(x

′
1)

w1
=

vi(xi)

wi
,

where the equality is because the items in Gi, . . . , Gn are
proportionally allocated among the agents according to their

Algorithm 2 The main algorithm
Input: A proportional and ordered instance I =
(M,N ,w,v).
Output: A fractional allocation x = (x1, . . . ,xn).

1: for l = 1 to n do
2: for i = 1 to l do
3: For each oj ∈ Gl, set xij =

wi∑
k∈[l] wk

.
4: end for
5: end for
6: return x = (x1, . . . ,xn).
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weights. Since v′1 maximizes the value of v1(x1)
w1

,

vi(xi)

wi
≤ v1(x1)

w1
≤ v′1(x1)

w1
.

To prove the second inequality, it suffices to show
v′1(x1) =

∑m
j=1 xij · v′1(oj) ≤

∑n
j=1 x1j · wj . Recall that

v′1(·) is proportional, i.e., WMMS1 = w1 or equivalently the
items can be partitioned into n bundles whose values are ex-
actly w1, . . . , wn. Then we must have that for any 1 ≤ j ≤ n,

j∑
l=1

v′1(ol) ≤
j∑

l=1

wl.

This is because, otherwise, to ensure proportionality, any
WMMS-defining partition would assign at least one item in
{o1, . . . , oj} (whose value is greater than wj) to a bundle
with value in wj+1, . . . , wn, which also contradicts v1(·) be-
ing proportional. Note that by the design of the algorithm,
x11 ≥ x12 ≥ · · · ≥ x1m, and thus we have

(x1j − x1,j+1) ·
j∑

l=1

v′1(ol) ≤ (x1j − x1,j+1) ·
j∑

l=1

wl, (3)

for all j < n and

x1j ·
j∑

l=1

v′1(ol) ≤ x1j ·
j∑

l=1

wl (4)

for all j ≤ n. Therefore, summing up Inequality 3 for j =
1, . . . , n− 1 and Inequality 4 for j = n, we have

n∑
l=1

x1l · v′1(ol) ≤
n∑

l=1

x1l · wl.

By the linearity and normalization of the valuation function,
assigning positive value to items in {on+1, . . . , om} can only
make the total cost to be smaller. Thus

m∑
l=1

x1l · v′1(ol) ≤
n∑

l=1

x1l · wl,

which completes the proof of the lemma.

It remains to bound the value of
∑n

j=1 x1j ·wj

w1
, which gives

the approximatio ratio.
Lemma 6. For any instance I = (N ,M,w,v), we have∑n

j=1 x1j · wj

w1
=

n∑
j=1

x1j · wj

w1
< log n.

Proof. For each j = 1, . . . , n, let Gij be the group that con-
tains oj ; recall the definition of Gi in Equation 2. If j ≤ ij ,

x1j =
w1∑

k∈[ij ]
wk
≤ w1∑

k∈[j] wk
≤ w1

j · wj
,

and thus,

x1j · wj

w1
≤ 1

j
.

Actually, j cannot be strictly smaller than ij by the definition
of Gi’s, but it does not affect the analysis.

If j > ij , by the definition of Gij , we have

j ≤
∑
k∈[ij ]

⌊ wk

wij+1
⌋ ≤

∑
k∈[ij ]

⌊wk

wj
⌋,

and equivalently, j · wj ≤
∑

k∈[ij ]
wk. Therefore,

x1j · wj

w1
=

w1∑
k∈[ij ]

wk
· wj

w1
≤ w1

j · wj
· wj

w1
=

1

j
.

Combining both cases and summing up for all j,
n∑

j=1

x1j · wj

w1
≤

n∑
j=1

1

j
< log n,

which completes the proof.

Combining the above lemmas, we have the theorem, whose
proof is omitted.

Theorem 1. For any fair allocation instance, there is an
O(log n)-approximate WMMS allocation.

Finally, we note that our analysis is tight even when m =
n, all agents have the same weight, and all the items are iden-
tical to the agents. This is because the fractional allocation re-
turned by Algorithm 2 allocates 1

i fraction of item oi to agent
a1 for each i = 1, . . . , n, and then Algorithm 1 realizes an
integral allocation where a1 gets log n complete items. How-
ever, any WMMS allocation allocates only one item to a1.

4 Tight Bound for 2 Agents
In this section, we restrict our focus on the case of two agents
and prove the following result.

Theorem 2. When n = 2, the optimal approximation ratio
of WMMS is

√
3+1
2 ≈ 1.366.

We prove Theorem 2 through Lemmas 7 and 8 in the sub-
sequent two subsections.

4.1 Lower Bound
Lemma 7. When n = 2, no algorithm can be better than√

3+1
2 -WMMS.

Proof. We construct the following instance with two agents
a1 and a2 and three items o1, o2, o3. For agent a1, w1 =√
3 − 1,v1,1 =

√
3 − 1, v1,2 = 2 −

√
3, v1,3 = 0. For agent

a2, w2 = 2−
√
3, v2,1 =

√
3−1
2 , v2,2 =

√
3−1
2 , v2,3 = 2−

√
3.

Obviously, WMMS1 =
√
3− 1 and WMMS2 = 2−

√
3.

If agent a2 get item o1 or o2, the approximation ratio is at
least

√
3+1
2 . While if agent a2 doesn’t get item o1 and o2, it

means agent a1 get item o1 and o2, the approximation ratio is
also at least

√
3+1
2 . So the lower bound is

√
3+1
2 .
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agent weight item o1 item o2 item o3
a1 w1 =

√
3− 1

√
3− 1 2−

√
3 0

a2 w2 = 2−
√
3

√
3−1
2

√
3−1
2 2−

√
3

Table 2: An instance with two agents and three items.

4.2 Upper Bound

Lemma 8. When n = 2, a
√
3+1
2 -WMMS allocation exists.

Proof. Suppose the agents are N = {a1, a2}, and without
loss of generality, assume agent a1 has a larger weight of w1,
and thus 1

2 ≤ w1 ≤ 1. We determine different allocation
schemes based on the value of w1:

(1) When w1 ≥
√
3− 1, we allocate all the itemsM to a1,

which ensures an approximation ratio of 1
w1
≤

√
3+1
2 .

(2) When 1
2 ≤ w1 ≤ 3

5 , we ask agent a1 to partition all
itemsM into two parts, S1 and S2, with the goal of ensuring
that the values of the two parts are as equal as possible based
on her own valuation. If one of the two parts has a value
greater than WMMS1 for agent a1, agent a1 should divide
the items inM into the WMMS-defining partitions instead of
S1 and S2. Therefore, both parts S1 and S2 induce a WMMS
approximation ratio of at most 1 for agent a1. Next, we turn to
agent a2, and ask her to choose the part with the smaller value
between S1 and S2 based on her own valuation, i.e., the part
with a value less than or equal to 1

2 . The approximation ratio
of the chosen bundle for agent a2 is less than or equal to 0.5

w2
≤

5
4 <

√
3+1
2 . Agent a1 takes the remaining part, resulting an

approximation ratio less than or equal to 1. Thus it suffices to
set A2 = argminS∈{S1,S2} v2(S), A1 =M\A2.

(3) When 3
5 < α <

√
3 − 1, we find agent a2’s WMMS

partition B1 and B2. Afterwards, we let agent a1 partition
all items in B1 into two parts with values as equal as possi-
ble, denoted as B1,1 and B1,2, based on her own valuation.
Since B1 ⊆ M, according to the discussion in the previous
paragraph, the values of B1,1 and B1,2 are not greater than
WMMS1 for agent a1. Then, agent a2 selects the part with
smaller value according to her own valuation between B1,1

and B1,2, assuming it is B1,1. Therefore,

v2(B1,1) ≤
v2(B1)

2
≤ WMMS2w1

2w2
≤
√
3 + 1

2
WMMS2.

Now we have that for agent a2, the WMMS approximation
ratios for B1,1 and B2 are both less than

√
3+1
2 . As for which

one is chosen for agent a2 in the end, it is determined by
agent a1. Agent a1 selects the larger one between B1,1 and
B2 based on her own valuation and we give this bundle to a2,
such that A2 = argmaxS∈{B1,1,B2} v1(S). Agent a1 keeps
the remaining items inM as her allocation, i.e A1 =M\A2.
Let v1(B1,2) = β. Then we have

v1(A1) < v1(B1,2) +
vi(B1,1) + vi(B2)

2

= v1(B1,2) +
1− v1(B1,2)

2
= β +

1− β

2
.

Algorithm 3 The online greedy algorithm
Input: Online instance I = (M,N ,w,v).
Output: An allocation A = (A1, . . . , An).

1: Initialize that Ai = ∅ for ai ∈ N .
2: Find the set of valid agents

N ′ =

{
ai ∈ N | wi ≥

1

α
· w1

}
.

3: for each arrived item o ∈M do
4: ai ← argminaj∈N ′ vj(o).
5: Ai ← Ai ∪ {o}.
6: if vi(Ai) > α · wi and |N ′| ̸= 1 then
7: N ′ ← N ′ \ {ai}.
8: end if
9: end for

10: return A = (A1, . . . , An).

Given that β ≤ WMMS1 and WMMS1 ≥ w1 ≥ 3
5 , we have

the approximation ratio

v1(A1)

WMMSi
≤ β + 1

2WMMS1
≤ w1 + 1

2w1
≤ 4

3
.

Combining the above three cases, we always have a
√
3+1
2 -

WMMS allocation for any instance with two agents.

5 The Online Algorithm
In this section, we consider the online version of the problem,
and design a simple O(

√
n)-competitive algorithm. Similar

as [Zhou et al., 2023], we also assume the valuations are nor-
malized, and w1 ≥ · · · ≥ wn. Our algorithm relies on the
idea that we first find some agents whose weights are rela-
tively larger than the others, and then only allocate the items
to these them. Fix α =

√
n+1, and letN ′ = {a1, . . . , ak} be

the set of agents whose weights are no less than wi ≥ 1
α ·w1.

We call the agents in N ′ valid. Note that N ′ is not empty as
agent a1 always belongs to N ′. Our algorithm runs as fol-
lows. For each arrived item, we allocate it to one valid agent
in N ′ who has the smallest value, and when an agent’s value
becomes larger than α times of her weight, we remove this
agent from N ′. We can prove that our algorithm can allocate
all items, and the formal description is in Algorithm 3. Due
to space limit, we omit the proof of Theorem 3.
Theorem 3. Algorithm 3 returns an O(

√
n)-WMMS alloca-

tion in polynomial time.

6 Conclusion
In this paper, we study the weighted maximin share fair al-
location of indivisible chores when the agents have different
weights on completing them. We improve the previously best
known results for both upper and lower bounds. The direct
open and intriguing problem is to design the tight approxima-
tion algorithm for arbitrary number of agents. Our O(log n)-
approximation algorithm does not fully utilize the agents’ car-
dinal valuations, and we suspect a more involved design could
further improve the approximation ratio.
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