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Abstract
In this paper, we investigate under which conditions
normal-form games are (guaranteed to be) strate-
gically equivalent. First, we show for N -player
games (N ≥ 3) that
(A) it is NP-hard to decide whether a given strategy

is a best response to some strategy profile of the
opponents, and that

(B) it is co-NP-hard to decide whether two games
have the same best-response sets.

Combining that with known results from the lit-
erature, we move our attention to equivalence-
preserving game transformations.
It is a widely used fact that a positive affine (lin-
ear) transformation of the utility payoffs neither
changes the best-response sets nor the Nash equi-
librium set. We investigate which other game trans-
formations also possess either of the following two
properties when being applied to an arbitrary N -
player game (N ≥ 2):
(i) The Nash equilibrium set stays the same;

(ii) The best-response sets stay the same.
For game transformations that operate player-wise
and strategy-wise, we prove that (i) implies (ii) and
that transformations with property (ii) must be pos-
itive affine. The resulting equivalence chain high-
lights the special status of positive affine transfor-
mations among all the transformation procedures
that preserve key game-theoretic characteristics.

1 Introduction
1.1 Motivation
When faced with a strategic interaction with other agents, it
can be computationally useful for AI systems – as we will
discuss further down – to detect when the current situation
can be treated in the same way as another strategic game that
has already been dealt with in the past. This problem can

∗An earlier extended abstract of this paper can be found in the
Proceedings of the 23rd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2024).

also be critical for the robustness and generalizability of our
AI systems. AI agents will often need to act in new envi-
ronments, possibly with multiple equilibria, and yet be pre-
dictable to each other and to us to avoid bad outcomes. Rec-
ognizing a new environment as strategically equivalent to a
previously encountered one can help tremendously with this,
providing a precedent for action that ensures that everyone’s
expectations on behavior are well calibrated. Oesterheld and
Conitzer [2022], for example, build on that in order to achieve
Pareto-improved outcomes in games played by AI represen-
tatives (where games can be transformed by reprogramming
the AIs’ rewards).

Not least for these various reasons, even the simplest class
of games – 2-player normal-form with 2 actions per player
– has been studied extensively in order to obtain a complete
taxonomy for them; see for example [Robinson and Goforth,
2005; Rapoport et al., 1976; Borm, 1987]. With it, it is easy
to recognize when a 2 × 2 game contains traits of compe-
tition, cooperation, coordination, etc. [Bruns and Kimmich,
2021]. Such interpretation tools are also being developed for
more complex strategic situations [Marris et al., 2023], but
this still remains an important venue of further research. One
challenge is that larger games become prohibitively complex
to compare directly: Du [2008] show that deciding whether
two 2-player normal-form games share Nash equilibria is a
computationally hard task. We will show in Section 3 that
this task is also computationally hard for the case of best re-
sponse sets and at least three players.

One classic tool that emerged in the beginnings of game
theory has been to transform a given game into other strate-
gically equivalent games that are easier to analyze [von Neu-
mann and Morgenstern, 1944]. Positive affine (linear) trans-
formations (PATs) have been particularly useful in that re-
gard [Aumann, 1961; Adler et al., 2009]. To illustrate PATs,
consider any 2-player normal-form game in which the play-
ers’ utilities are measured in dollars. Then, the best-response
strategies of player 1 do not change if her utility payoffs are
multiplied by a factor of 5. Moreover, they also do not change
if 10 dollars are added to all outcomes that involve player 2
playing his, say, third strategy. More generally, PATs have
the power to rescale the utility payoffs of each player and to
add constant terms to the utility payoffs of a player i for each
strategy choice k−i of her opponents.

Through leveraging PATs, previous work significantly ex-
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tended the applicability of efficient Nash equilibrium solvers
[von Neumann, 1928; Dantzig, 1951; Adler, 2013; Adsul et
al., 2021] to classes beyond those of zero-sum and rank-1
games1 [Moulin and Vial, 1978; Kontogiannis and Spirakis,
2012; Heyman and Gupta, 2023].

PATs are also popular in mechanism design and e-
commerce: Affine maximizer auctions are PAT transforma-
tions of the classic VCG mechanism, and as such, inherit
strategy-proofness and individual rationality by the strategy-
preserving nature of PATs. They play a key role in finding
revenue-maximizing mechanisms (both with classical opti-
mizers [Likhodedov and Sandholm, 2004] and deep learning
[Curry et al., 2023; Curry et al., 2024], and in improving wel-
fare in redistribution mechanisms [Guo and Conitzer, 2010]
and advertisement auctions [Deng et al., 2021].

The versatility of PATs is based on their well-known prop-
erty that they do not change preferences, best responses, or
Nash equilibria, when being applied to an arbitrary game. In
a very precise sense, PATs are also the only game transforma-
tions that do not change preferences; cf. Section 7. The main
result in this paper addresses the question of whether there
are other (efficiently computable) game transformations that
do not change best responses or Nash equilibria.

1.2 Overview
Sections 2 and 4 provide some background on game-theoretic
concepts that are relevant to understanding and deriving our
main results. In Section 3, we develop computational hard-
ness results for deciding whether a strategy in a game ever
constitutes a best response and for deciding whether two
games have the same best-response sets. We believe these
results are of independent interest. However, they are also
important for Section 5, in which we discuss why we will
henceforth restrict our attention to game transformations that
transform utilities player-wise and strategy-wise (called sep-
arability). In Section 6, we proceed to characterize all separa-
ble game transformations that preserve the Nash equilibrium
set – or, alternatively, the best response sets – when being ap-
plied to an arbitrary N -player game. Last but not least, Sec-
tion 7 puts our results into context with further related work.

To illustrate the insights of Section 6 on an example, con-
sider HEx that takes any 2-player 2 × 2 normal-form game
with payoff matrices

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
and transforms it into the game HEx(A,B) := (A′, B′) that
is defined as

A′ =

(
−2a11 + 10 a512

ea21 0

)
, B′ =

(
|b11| sign(b12)√
|b21| arctan(b22)

)
As one can see with the sign function in B′, it is notewor-
thy to highlight that our notion of a game transformation al-
lows for non-continuous functions. With Theorem 2, we will
show that there must exist 2× 2 games (Ā, B̄) for which HEx
does not preserve their Nash equilibrium set or - respectively

1A 2-player game, represented by its payoff matrices A,B ∈
Rm×n, is said to have rank 1 if rank(A+B) = 1.

- their best-response sets. More generally, we derive that uni-
versally preserving the Nash equilibrium set implies that the
best-response sets always have to be preserved as well; and
that the latter property is only satisfied by game transforma-
tions H with the very restricted structure of a PAT. In the
example of HEx, each transformation map within it single-
handedly already violates a PAT structure.

Full proofs for statements in this paper can be found in the
full version of this paper.

2 Normal-Form Games
Notation-wise, we denote [n] := {1, . . . , n} for any n ∈ N.
A normal-form multiplayer game G specifies

(a) the number of players N ∈ N, N ≥ 2,

(b) a set of pure strategies Si = [mi] for each player i where
mi ∈ N, mi ≥ 2, and

(c) the utility payoffs for each player i given as a function
ui : S

1 × . . .× SN → R.

Denote the set of strategy profiles in G as S := S1×. . .×SN .
Throughout this paper, all considered multiplayer games shall
have the same number of players N and the same set of strat-
egy profiles S. Hence, any game G will be determined by its
utility functions {ui}i∈[N ]. The players choose their strate-
gies simultaneously and they cannot communicate with each
other. A utility function ui can be summarized by its pure
strategy outcomes for player i, captured as an N -dimensional
tensor or array

{
ui(k)

}
k∈S

.
As usual, we allow the players to randomize over their pure

strategies, called mixed strategies. Then, player i’s strategy
space extends to the set of probability distributions ∆(Si) :={
si = (sik)k ∈ Rmi

≥0 :
∑

k∈[mi]
sik = 1

}
over Si. A tuple

s = (s1, . . . , sN ) ∈ ∆(S1) × . . . × ∆(SN ) =: ∆(S) is
called a mixed strategy profile2 in G. The utility payoff of
player i under profile s is defined as the player’s utility payoff
in expectation ui(s) :=

∑
k∈S s1k1

· . . . ·sNkN
·ui(k). The goal

of each player is to maximize her utility.
We will abbreviate with S−i the set that con-

sists of all possible pure strategy choices k−i =
(k1, . . . , ki−1, ki+1, . . . , kN ) of the opponent players
(resp. ∆(S−i) for the set of mixed strategy choices
s−i = (s1, . . . , si−1, si+1, . . . , sN )). We will also use
ui(ki,k−i) instead of ui(k) to stress how player i can only
influence her own strategy when it comes to her payoff (resp.
ui(s

i, s−i) instead of ui(s)).

Definition 2.1. The best-response set of player i to the oppo-
nents’ strategy choices s−i is defined as
BRui

(s−i) := argmaxti∈∆(Si)

{
ui(t

i, s−i)
}

.

Best-response strategies capture the idea of optimal play
against the other player’s strategy choices. The most popu-
lar equilibrium concept in non-cooperative games is based on
best responses.

2Not to be confused with a correlated strategy: In our notation,
∆(S) itself is not a simplex of high dimension but only the product
of N lower-dimensional simplices.
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Definition 2.2. A strategy profile s ∈ ∆(S) to a game G =
{ui}i∈[N ] is called a Nash equilibrium if for every player i ∈
[N ] we have si ∈ BRui

(s−i).
By a result of Nash [1950], any such multiplayer game G
admits at least one Nash equilibrium.

3 Decision Problems about Best Responses
In this section we show that two decision problems about best
responses are hard for N -player games, when N ≥ 3. To our
knowledge, these results are novel.

For computational problems involving N -player games G
with strategy sets (Si)i∈[N ] and utility functions (ui)i∈[N ],
we are interested in their computational complexities in
terms of |S| and the binary encoding of all utility payoffs
(ui(s))s∈S,i∈[N ]. For that, we require that utility payoffs take
on rational values only.

First, we consider the problem of deciding whether a mixed
strategy of a player is ever a best response to some mixed
strategy profile of the opponent players. In its computation-
ally easiest form, we may formulate it as the following.
Definition 3.1 (CHECKIFEVERBR). Given a 3-player
normal-form game, do there exist mixed strategies r ∈
∆(S2) of PL2 and s ∈ ∆(S3) of PL3 such that pure strat-
egy 1 of PL1 is a best response to (r, s)?

This is different from determining the best responses of a
player to a given strategy profile of the opponents, a task that
can be solved in polynomial time. Our problem is related to
rationalizable strategies [Bernheim, 1984; Pearce, 1984] - a
concept that is based on the idea that a rational player can
and should eliminate any strategy that is not a best response
to some belief over what her opponents may play.
Proposition 3.2. CHECKIFEVERBR is NP-hard.

The analogous formulation of CHECKIFEVERBR for the
case of 2-player games can be efficiently decided by solving
a system of linear (in-)equalities. We can recover polynomial-
time solvability for many-player games if we allow the oppo-
nents to play in a coordinated fashion (cf. correlated strate-
gies). On a related note, Pearce [1984][Lemma 3] shows that
a strategy s∗ is a best response to some correlated strategy of
the opponents if and only if s∗ is not strictly dominated by a
mixed strategy.

We prove Proposition 3.2 by a reduction from the Bal-
anced Complete Bipartite Subgraph problem. This deci-
sion problem asks whether a given weighted bipartite graph
G = (V ∪W,E) has subsets V ∗ ⊆ V and W ∗ ⊆ W of given
size K ∈ N that are fully connected, that is, (v, w) ∈ E for
all v ∈ V ∗, w ∈ W ∗. This problem is known to be NP-
complete [Garey and Johnson, 1990][GT24].

Proof sketch of Proposition 3.2. Given an instance G = (V ∪
W,E) and K of the Balanced Complete Bipartite Subgraph
problem, construct a three player game where PL2 has strat-
egy set V and PL3 has strategy set W . PL1 will have the
following strategies: Strategy “1” which will be the subject
of interest in CHECKIFEVERBR, one strategy for each node
in G, and one strategy for each edge (v, w) ∈ V ×W that is
not present in G. The utility payoffs of PL1 will be carefully

constructed such that strategy 1 is a best response to mixed
strategies (r, s) of PL2 and PL3 if and only if the support of
r and s form subsets V ∗ and W ∗ that make a balanced com-
plete bipartite subgraph of G. To that end, we make strategy
v (resp. w) of PL1 very attractive for PL1 in the case that
PL2 (resp. PL3) plays their corresponding strategy v (resp.
w) with too much probability. Moreover, we make a strategy
(v, w) /∈ E of PL1 very attractive for PL1 in the case that
PL2 and PL3 both play their corresponding strategies v and
w with any significant probability at all. Intuitively, these two
conditions accomplish that in any potential certificate (r, s),
PL2 and PL3 will mix over at least K strategies and, more-
over, they will only put non-negligible weight on strategies v
and w if (v, w) ∈ E.

Based on the hardness of CHECKIFEVERBR, we can prove
co-NP-hardness of deciding best-response equivalence.

Definition 3.3 (CHECKIFSAMEBRS). Given two 3-player
normal-form games with strategy set S1 × S2 × S3, do they
have the same best-response sets?

Theorem 1. CHECKIFSAMEBRS is co-NP-hard.

Proof sketch. Given a game instance G of CHECKIFE-
VERBR, construct another game G′ by changing the utility
that PL1 receives from playing strategy 1 to something worse
than the lowest payoff present in G. If a best-response set
changed from G to G′, then it must also be the case that strat-
egy 1 for PL1 was added or removed from that best-response
set. The former cannot happen because strategy 1 is strictly
dominated for PL1 in G′ which prevents it from ever being
a best response. Thus, G and G′ will have the same best-
response sets if and only if strategy 1 is never a best-response
strategy in G.

Together with prior work found in the literature, Theorem 1
will guide us in the next sections when it comes to the types
of game transformations that we may consider for preserv-
ing key game-theoretic characteristics. We believe, however,
that Proposition 3.2 and Theorem 1 are also of independent
interest for algorithmic game theory and AI research.

4 Preliminaries on Game Transformations
4.1 Positive Affine Transformations
The following lemma (or restricted versions of it) is a well-
known result for 2-player games.3 Here, the notation 1n ∈
Rn stands for the vector with all ones as its entries.

Lemma 4.1. Let (A,B) be an m1 × m2 bimatrix game
and take arbitrary scalars α1, α2 > 0 and vectors c1 ∈
Rm2 , c2 ∈ Rm1 . Define

A′ = α1A+ 1m1(c
1)T and B′ = α2B + c21T

m2
.

Then (A′, B′) has the same best-response sets as (A,B).
Thus, both games have the same Nash equilibrium set.

3See Heyman and Gupta [2023][Lemma 2.1], Maschler et
al. [2013][Theorem 5.35], [Moulin and Vial, 1978][Theorem
1], Harsanyi and Selten [1988][Chapter 3] or Başar and Olsder
[1998][Proposition 3.1].
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The game transformations in Lemma 4.1 are called (2-
player) positive affine transformations (PATs). An explicit
example of a 2-player PAT is one that transforms a 2 × 2
game (A,B) into

A′ =

(
2a11 + 10 2a12 − 5
2a21 + 10 2a22 − 5

)
,

B′ =

(
1
2b11

1
2b12

1
2b21 −

√
3 1

2b22 −
√
3

)
.

The intuition behind Lemma 4.1 is as follows: PL1 wants
to maximize her utility given the strategy of PL2. A posi-
tive rescaling of u1 will change the utility payoffs but not the
utility-maximizing strategies. The same holds true if we add
utility payoffs to u1 that are only dependent on the strategy
choice of her opponent PL2, because that would make a con-
stant shift in terms of the decision variables of PL1.
Let us generalize PATs to multiplayer games.
Definition 4.2. A positive affine transformation (PAT) speci-
fies for each player i a scaling parameter αi ∈ R, αi > 0, and
translation constants Ci := (cik−i

)k−i∈S−i for each choice
of pure strategies from the opponents. The PAT HPAT ={
αi, Ci

}
i∈[N ]

then takes any game G = {ui}i∈[N ] as an in-
put and returns the transformed game HPAT(G) = {u′

i}i∈[N ]

with utility functions

u′
i : S → R , k 7→ αi · ui(k) + cik−i

. (1)

Multiplayer PATs also preserve the best-response sets and
Nash equilibrium set, which we prove in the full version of
this paper for completeness.
Lemma 4.3. Take a PAT HPAT =

{
αi, Ci

}
i∈[N ]

and
any game G = {ui}i∈[N ]. Then, the transformed game
HPAT(G) = {u′

i}i∈[N ] has the same best-response sets as the
original game G. Consequently, HPAT(G) also has the same
Nash equilibrium set as G.

PATs have found much success as a tool for simplifying a
given game precisely because of this property. We want to in-
vestigate which other game transformations also preserve the
best-response sets or the Nash equilibrium set. If we found
more of these transformations, we could use them to, e.g.,
further increase the class of efficiently solvable games.

4.2 Separable Game Transformations
In this paper, we will focus on the following space of
game transformations. We discuss in Section 5 why this
forms a maximally large search space within which we may
still reasonably hope to find game transformation that are
equivalence-preserving and efficiently computable.
Definition 4.4. A separable game transformation H =
{Hi}i∈[N ] specifies for each player i a collection of func-
tions Hi :=

{
hi
k : R → R

}
k∈S

, indexed by the different
pure strategy profiles k.
The transformation H can then be applied to any N -player
game G = {ui}i∈[N ] with strategy set S to construct the
transformed game H(G) = {Hi(ui)}i∈[N ] where
Hi(ui) : S → R, k 7→ hi

k

(
ui(k)

)
.

Observe that the utility payoff of player i in the trans-
formed game H(G) from the pure strategy outcome k is only
a function of the utility payoff from that same player in that
same pure strategy outcome of the original game G.

We extend the utility functions Hi(ui) to mixed strategy
profiles s ∈ ∆(S) as usual through
Hi(ui)(s) :=

∑
k∈S s1k1

· . . . · sNkN
· hi

k

(
ui(k)

)
.

To simplify future notation, we will often use hi
ki,k−i

to refer
to hi

k.
Remark 4.5. A multiplayer positive affine transformation
HPAT =

{
αi, Ci

}
i∈[N ]

makes a separable game transforma-
tion H = {Hi}i∈[N ] by setting
hi
k : R → R , z 7→ αi · z + cik−i

.

In the following Definitions 4.6 and 4.7, we define the uni-
versally preserving characteristics that we are interested in.
Definition 4.6. Let H = {Hi}i∈[N ] be a separable game
transformation. Then we say that H universally preserves
Nash equilibrium sets if for all games G = {ui}i∈[N ] the
transformed game H(G) = {Hi(ui)}i∈[N ] has the same
Nash equilibrium set as G.
Definition 4.7. Let map Hi come from a separable game
transformation H . Then we say that Hi universally preserves
best responses if for all utility functions ui : S → R and for
all opponents’ strategy choices s−i ∈ ∆(S−i):

BRHi(ui)(s
−i) = argmax

ti∈∆(Si)

{
Hi(ui)(t

i, s−i)
}

= argmax
ti∈∆(Si)

{
ui(t

i, s−i)
}
= BRui

(s−i) .

Lemma 4.3 states that the maps Hi of a PAT universally
preserve best responses. Note, moreover, that by definition of
a Nash equilibrium, a game transformation H = {Hi}i∈[N ]

will universally preserve Nash equilibrium sets if for every
player i the map Hi universally preserves best responses.
Therefore, being a PAT implies Definition 4.7 implies Def-
inition 4.6. In Section 6 we will show the reverse implication
chain for game transformations that are separable.

5 Discussion of Restrictions
The space of separable game transformations forms a vast
landscape in which we may search for universally preserving
transformations. This can be seen from the game transforma-
tion example HEx of Section 1.2. However, one might still ask
why this paper does not expand its attention to non-separable
game transformations. We will discuss that in this section.

For example, consider a game transformation that intro-
duces or removes duplicate strategies or dummy players.
Note that this would require the transformations to have the
power to change the strategy sets and player set. Nonethe-
less, these specific examples are well-behaved in the sense
that they alter the Nash equilibrium set (or best responses)
in an easily describable manner. Abdou et al. [2022], for
example, managed to characterize how selected examples of
these transformations interact with various methods of de-
composing a game. Transformations that change the strat-
egy sets and player set also appear in the literature under
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the term Nash homomorphism, and they have been of use for
complexity-theoretic studies, e.g., of win-lose games [Abbott
et al., 2005] or ranking games [Brandt et al., 2006]. Suffice
to say, once we allow for game transformations to arbitrarily
change the game structure, i.e. the player set and strategy sets,
it is not straightforward to define anymore under what condi-
tions two games of different game structure should be con-
sidered “strategically equivalent”. This makes such general
game transformations prohibitively complex (or impossible)
to analyze beyond a case by case basis. Therefore, and in ac-
cordance with most of the literature on strategic equivalence
between games [Moulin and Vial, 1978; Morris and Ui, 2004;
Du, 2008; Liu, 1996], we restrict our attention to games
whose game structures are directly comparable.

Indeed, game transformations that preserve the player set
and the strategy sets form an interesting search space because
Definitions 4.6 and 4.7 can be directly extended to it and be-
cause within that search space, some of our following results
will not hold true anymore. Compare the Prisoner’s Dilemma
with the Quality game, as presented by von Stengel [2022]:(

2, 2 0, 3
3, 0 1, 1

)
and

(
2, 2 0, 1
3, 0 1, 1

)
.

Both games have the same unique Nash equilibrium, namely,
where PL1 plays the bottom row and PL2 plays the right col-
umn. But the best response of PL2 to PL1 playing the top
row is different in the two games. This example illustrates
the fact that strictly dominated strategies will never be a best
response, and so they will never appear in a Nash equilibrium
(nor in a best-response set). Therefore, we can think of a
game transformation procedure that iteratively detects strictly
dominated strategies and sets their payoffs to a large nega-
tive number. This transformation universally preserves Nash
equilibria, but it does not universally preserve best-response
sets. Note that this game transformation is not separable be-
cause its maps hi

k now need to take all utility payoffs of the
game into consideration, and not only what utility player i
receives from strategy profile k.

In a similar fashion, one may think of best-response-
preserving transformations that are not PATs. This was stud-
ied extensively by Liu [1996], who discusses the following
example of 3× 2 payoff matrices of PL1 in 2-player games:

A =

(
6 0
0 6
4 4

)
and A′ =

(
6 0
2 5
4 4

)
. (2)

As visualized by Figure 1, the best responses of PL1 to any
mixed strategy of PL2 are the same in A and A′. However,
A′ cannot be obtained from A through a PAT: If there were
such a PAT, then the payoff from profile (2, 1) requires a shift
of c11 = 2. Hence, the payoff from profile (1, 1) requires a
scaling of α1 = 2

3 . But these components of a positive affine
transformation do not work out for the payoff from profile
(3, 1), leaving us with a contradiction.

Liu [1996] develops a polynomial-time method, called bi-
affine transformation, that determines whether two 2-player
normal-form games have the same best-response sets. The
procedure detects which strategies and strategy pairs are es-
sential, and derives that only the essential pairs need to be

Figure 1: The utility payoffs of each pure strategy 1, 2, 3 of PL1 in
response to the mixed strategy of PL2 that plays 1 with probability x.
Plots correspond to matrices A and A′ from (2). The best-response
set to a strategy (x, 1 − x) of PL2 will be all convex combinations
of pure strategies of PL1 that are maximal at x in the respective plot.

in a positive affine relationship. Hence, the method includes
PATs, but it is also more powerful than that. Liu’s disserta-
tion (1995) extends those ideas to N -player games (N ≥ 3).
But in N -player games, the method downgrades to a suffi-
cient condition: Two N -player games (N ≥ 3) may have the
same best-response sets while not being a quasi-affine trans-
formation of each other. Furthermore, their method becomes
computationally inefficient. In fact, we have shown in Sec-
tion 3 more generally that determining whether two 3-players
games have the same BR sets is co-NP-hard.

Liu concludes with an immediate open problem for future
work: to characterize games with the same Nash equilibria.
To that end, Du [2008] proves that it is NP-complete to de-
cide whether two 2-player games share a common Nash equi-
librium, and that it is co-NP-hard to decide whether two 2-
player games have the same Nash equilibrium set.

In light of these negative results about characterizing best-
response equivalence and Nash equilibrium equivalence in
full generality - assuming the well-accepted complexity be-
lief co-NP ̸= P - we restrict our focus to a subclass of
equivalence-preserving transformations based on separabil-
ity. We argue that among naturally defined subclasses, sep-
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arable game transformations constitute a maximal subclass
for which it is still open whether it contains tractable and
equivalence-preserving transformations aside from PATs.

6 Transformations that Preserve Nash
Equilibrium Sets or Best-Response Sets

To our knowledge, the results of this section are all novel un-
less explicitly stated otherwise. They can be summarized in
the following statement.
Theorem 2. Let H = {Hi}i∈[N ] be a separable game trans-
formation. Then:

H universally preserves Nash equilibrium sets (i)

⇐⇒ for each player i, map Hi universally (ii)
preserves best responses

⇐⇒ H is a positive affine transformation. (iii)

Lemma 4.3 gives (iii) =⇒ (i), and so the novel part of The-
orem 2 is the implication chain (i) =⇒ (ii) =⇒ (iii). The key
property that enables us to develop this chain is that we re-
quire the separable game transformations H = {Hi}i∈[N ] to
be universally applicable, no matter the game G = {ui}i∈[N ]

we have at hand.
We shall state two algorithmic consequences of Theorem 2.

Corollary 6.1. Given two normal-form games, we can de-
cide within polynomial time whether one is a transform of
the other through an equivalence-preserving separable game
transformation.

This is because deciding whether a game is a PAT trans-
form of another reduces to solving a linear (in-)equation sys-
tem for the variables {αi, Ci}i∈[N ]. A case distinction is
needed for solution points that take on values αi = 0.
Corollary 6.2. Given a 2-player normal-form game G, we
can find a transform G′ of it (if it exists) via an equivalence-
preserving separable game transformation, such that G′ is a
zero-sum or rank-1 game. With that, a Nash equilibrium for
G can be computed subsequently. Both take polynomial time.

This follows from the results in [Heyman and Gupta, 2023;
Adsul et al., 2021].

Before tackling Theorem 2, let us characterize a special
property that a game transformation can satisfy in which the
strategy choice of player i does not influence the map that is
being used to transform her utilities.
Definition 6.3. Let map Hi come from a separable game
transformation H . Then we say that Hi only depends on
the strategy choices of the opponents if for all pure strategy
choices k−i ∈ S−i of the opponents, we have the map iden-
tities hi

1,k−i
= . . . = hi

mi,k−i
: R → R.

Next, we can show (i) =⇒ (ii).
Proposition 6.4. Let H = {Hi}i∈[N ] be a separable game
transformation that universally preserves Nash equilibrium
sets and consider the map Hi of a player i. Then Hi only de-
pends on the strategy choices of the opponents. Furthermore,
Hi universally preserves best responses.

Proof sketch.

1. Such a universally preserving transformation H should
in particular not change the Nash equilibrium set for a trivial
game in which all players receive the same constant utility
z ∈ R from all strategy profiles. In such a game, the whole
strategy set S will make the Nash equilibrium set. For that to
also be the case in the transformed game, we show for every
player i, that the transformations maps hi

1,k−i
, . . . , hi

mi,k−i

must all evaluate the same on any input value z.
2. Let ui be an arbitrary utility function of player i. Com-
plete ui to a full game G by setting the utilities of all other
players to the constant payoff of 0. This makes any strategy
sj of another player j ̸= i always a best-response strategy in
G. We can then show that this must also hold in the trans-
formed game H(G), using the first conclusion. Therefore,
we get the following equivalence chain:
(a) a strategy si of player i is a best response to a profile

s−i of the opponent players and with respect to ui if and
only if

(b) (si, s−i) is a Nash equilibrium of G if and only if
(c) (si, s−i) is a Nash equilibrium of H(G) if and only if
(d) si a best response to s−i with respect to Hi(ui).

The first conclusion captures the intuition that if the maps
hi
k from Hi would depend on the strategy choice of player

i, then in the transformed game H(G), player i may need
to adjust her strategy choice to those hi

k that map payoffs to
high values. This would affect the strategic decision making
of player i and therefore the Nash equilibrium set. Similar
reasoning provides us with a related (but independent) result:
Lemma 6.5. If map Hi universally preserves best responses,
then Hi only depends on the strategy choices of the oppo-
nents.

Due to Proposition 6.4, we can transition to the analysis
of transformation maps Hi that universally preserve best re-
sponses. Thus from now on, our results also become relevant
to game theory research that focuses on best-response sets,
such as best-response dynamics or fictitious play.

Proposition 6.4 moreover allows us to restrict our analy-
sis to the map H1 for PL1 w.l.o.g. because any results for
H1 will analogously also hold for maps H2, . . . ,HN . By
Lemma 6.5, we can also drop the dependence of H1 on k1
and write H1 :=

{
h1
k−1

: R → R
}
k−1∈S−1 .

For each pure-strategy map h1
k−1

we introduce its distance
distortion function which takes two utility values and mea-
sures their distance after a h1

k−1
-transformation:

∆h1
k−1

: R× R → R , (z, w) 7→ h1
k−1

(z) − h1
k−1

(w) (3)

The following lemma reveals an important preliminary ob-
servation on how the distance distortion functions ∆h1

k−1
re-

late to each other. It highlights how the distorted utility dis-
tances are connected upon a strategy change of a player j ̸= 1
from, e.g., some pure strategy kj ̸= 1 to their first pure strat-
egy 1 ∈ [mj ]. It is again crucial that H1 preserves best re-
sponses universally in order to deduce these global properties
of and connections between the maps within H1.
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Lemma 6.6. Suppose transformation map H1 universally
preserves best responses. Take a player j ∈ [N ] \ {1} and
profile k−1 ∈ S−1 with kj ̸= 1. Define k′

−1 ∈ S−1 to be the
same as k−1 except for player j’s choice which shall be set
to k′j = 1. Then, for all z, z′, w, w′ ∈ R:
z − w ≥ z′ − w′ ⇐⇒ ∆h1

k−1
(z, w) ≥ ∆h1

k′
−1
(z′, w′).

Proof sketch. Construct a utility function u1 for each set of
values for j,k−1, z, z

′, w, and w′. Namely, set u1(1,k−1) :=
z and u1(1,k

′
−1) := w′, and for all strategies l ∈ [m1] \ {1}

set u1(l,k−1) := w and u1(l,k
′
−1) := z′. Observe that

uniformly randomizing over k−1 and k′
−1 not only makes a

correlated strategy of the opponents, but also a valid mixed
strategy profile. Hence, the left hand side of the equivalence
can be reinterpreted as strategy 1 ∈ [m1] performing better
for player 1 than any other of her strategies l ∈ [m1] \ {1}
if player j uniformly mixes over strategies kj and k′j and
if all other players r /∈ {1, j} play their respective strategy
kr ∈ [mr]. We then derive the equivalence by using that H1

preserves strategy 1 being such a best response and by using
Lemma 6.5.

Next, observe that by definition, these distance distortion
functions are skew-symmetric, that is, ∀ z, w ∈ R :
∆h1

k−1
(z, w) = −∆h1

k−1
(w, z).

With the following lemma, we further tighten the connec-
tion between the pure-strategy maps h1

k−1
through their dis-

tance distortion functions. Last but not least, we shine some
light on how those maps h1

k−1
behave individually in the sub-

sequent lemma.

Lemma 6.7. If map Hi universally preserves best responses,
then the pure-strategy maps in H1 equally distort distances.
That is, ∀k−1 ∈ S−1 : ∆h1

k−1
= ∆h1

1−1
, where 1−1 :=

(1, . . . , 1) ∈ S−1.

Proof sketch. Make iterative use of Lemma 6.6 for all other
players j ̸= 1, and make use of the skew-symmetry.

Lemma 6.8. If map Hi universally preserves best responses,
then for all k−1 ∈ S−1:

1. map h1
k−1

is strictly increasing, and

2. map h1
k−1

distorts distances independently of their ref-
erence points:

∀z, z′, λ ∈ R : ∆h1
k−1

(z + λ, z) = ∆h1
k−1

(z′ + λ, z′) .

Proof sketch. For the first conclusion make use of Lemma 6.6
for values z′ = w′, and of Lemma 6.7. For the second con-
clusion, utilize skew-symmetry together with the same two
lemmata.

With Lemmata 6.7 and 6.8, we can finally show that posi-
tive affine transformations are the only game transformations
that universally preserve best responses. Intuitively speak-
ing, the second conclusion of Lemma 6.8 states that taking
a step of length λ in the domain space consistently maps to
taking a step of some other length in the range space, inde-
pendently of the base point z from which we take such a step.

This brings us to two known results from the analysis liter-
ature. Recall that a function h : R → R is called linear if
there exists some a ∈ R such that ∀z ∈ R : h(z) = az.
A function h : R → R is said to be additive if it satisfies
∀x, y ∈ R : h(x+ y) = h(x) + h(y).

Lemma 6.9 ([Darboux, 1875; Reem, 2017]). If a map h :
R → R is monotone and additive, then it is also linear.

Corollary 6.10. Let h : R → R be monotone and satisfy for
all z, z′, λ ∈ R : h(z + λ)− h(z) = h(z′ + λ)− h(z′).
Then h is affine linear, i.e., there exist some a, c ∈ R such that
for all ∀z ∈ R : h(z) = az + c.

This brings us to the completion of this section.

Proof sketch of Theorem 2.
Implication (iii) =⇒ (i) follows from Lemma 4.3, and impli-
cation (i) =⇒ (ii) follows from Proposition 6.4. For (ii) =⇒
(iii), recall that by symmetry, our results for H1 hold analo-
gously for all maps Hi. By Lemmata 6.5 and 6.8, the maps
hi
k = hi

k−i
satisfy the conditions of Corollary 6.10. Thus,

there exist parameters aik−i
, cik−i

∈ R for each k−i ∈ S−i

such that ∀z ∈ R : hi
k−i

(z) = aik−i
· z + cik−i

.
Lemma 6.7 implies aik−i

= ai1−i
for all k−i ∈ S−i. There-

fore, we only have to keep track of one scaling parameter
αi for all the maps within Hi. With the first conclusion of
Lemma 6.8, we obtain αi > 0. Putting everything together,
we have shown that H = (H1, . . . ,HN ) makes a positive
affine transformation.

Theorem 2 gives two novel equivalent characterizations of
PATs that highlight their special status among game transfor-
mations: PATs are the only separable game transformations
that always preserve the Nash equilibrium set or, respectively,
the best-response sets.

One way to circumvent this result is to focus on game
transformations that we only care to apply on particular sub-
classes of N -player games. Preferably, the game properties
defining such a subclass would be generic enough to still con-
tain ”most” games. On the other hand, one may instead also
consider non-separable game transformations as discussed in
Section 5.

7 Further Related Literature
Much work has gone into identifying when two games can be
considered strategically equivalent.

Strategic similarity, for example, is an important aspect of
Potential Games (cf. Monderer and Shapley [1996]). Morris
and Ui [2004] noted that a game G is a weighted potential
game if and only if it is the PAT transformation of an identi-
cal interest game4. They also characterized when two given
games are best-response equivalent, better-response equiva-
lent or von Neumann-Morgenstern equivalent. The former
and latter are directly tied to our concepts of preserving best-
response sets and to PATs. Unfortunately, we were not able to

4Identical interest game: Given an action profile s, each player
shall receive the same utility from s.
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base the second part of Theorem 2 on the insights from Morris
and Ui because their characterization for best-response equiv-
alence only holds for games that satisfy specific properties.

Hammond [2005] described that the strategic decision-
making in a game in mixed strategies does not depend on the
player’s numerical utility values, but solely on the preferences
that the utility functions induce over the strategies. In the full
version of this paper, we give some further background on
utility theory in order to put Hammond’s work into our con-
text. Using the Expected Utility Theorem – cf., e.g., Mas-
Colell et al. [1995] – Hammond deduced that utility func-
tions that induce the same preferences can only differ up to a
positive affine transformation. Note that the property of pre-
serving the player’s preferences is, in general, strictly harder
to satisfy than preserving best responses (and, hence, Nash
equilibria). Thus, our Theorem 2 generalizes their result to
the broader question of strategic equivalence.

Moving to more broadly related work, Gabarró et al.
[2011; 2013] gave several complexity-theoretic results for the
problem of deciding whether two pure strategy games are iso-
morphic w.r.t. a notion of game transformation that can help
us understand the symmetries within a game [Harsanyi and
Selten, 1988, Chapter 3]. McKinsey [1951] and Chang and
Tijs [2006] studied two notions of game equivalency specific
to cooperative games.

Finally, there are other lines of related research that work
more explicitly with different notions of transforming a game
and preserving strategic features [Thompson, 1952; Kohlberg
and Mertens, 1986; Elmes and Reny, 1994; Casajus, 2003;
Pottier and Nessah, 2014; Wu et al., 2022].

8 Conclusion

In this paper, we first gave hardness results about deciding
whether a strategy constitutes a best response or whether two
games have the same best-response sets. Next, we introduced
separable game transformations for multiplayer games, and
define the properties (i) universally preserving Nash equilib-
rium sets and (ii) universally preserving best responses. It
is well-known that PATs universally preserve Nash equilib-
rium sets. We showed that separable game transformations
which universally preserve Nash equilibrium sets also univer-
sally preserve best responses. In the subsequent results, we
derived further that if a separable game transformation uni-
versally preserves best responses then it is a positive affine
transformation.

When faced with a strategic interaction it can be highly
beneficial to consider equivalent variations of it that are eas-
ier to analyze. In this paper, we shed light on why PATs
have become the go-to transformation method for that pur-
pose, reinforcing their standing as the standard off-the-shelf
approach. The current literatures on game theory and on de-
cision making in AI are lacking methods to detect or generate
strategically equivalent games, and we hope that our results
can serve as guidance to the development of any such detec-
tion or generation toolkit.
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