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Abstract
We study letter grading schemes, which are rou-
tinely employed for evaluating student perfor-
mance. Typically, a numerical score obtained via
one or more evaluations is converted into a letter
grade (e.g., A+, B-, etc.) by associating a disjoint
interval of numerical scores to each letter grade.
We propose the first model for studying the
(de)motivational effects of such grading on the stu-
dents and, consequently, on their performance in
future evaluations. We use the model to compare
uniform letter grading schemes, in which the range
of scores is divided into equal-length parts that are
mapped to the letter grades, to numerical scoring, in
which the score is not converted to any letter grade
(equivalently, every score is its own letter grade).
Theoretically, we identify realistic conditions un-
der which numerical scoring is better than any uni-
form letter grading scheme. Our experiments con-
firm that this holds under even weaker conditions,
but also find cases where the converse occurs.

1 Introduction
Student evaluations and grading play an integral and influ-
ential role in every individual’s academic experience. Nat-
urally, there has been widespread debate among researchers
and policy-makers about the efficacy of various grading sys-
tems such as letter v.s. number grades. For instance, coarse-
grained grading schemes (i.e., letter grades) are considered to
be less noisy indicators of performance, and stronger signals
of status, and consequently, are the norm in North American
universities. At the same time, there is also growing aware-
ness that the grade itself affects performance independent of
student ability, i.e., the grades are “not just an output of the
educational process, they may also be an input” [Gray and
Bunte, 2022]. For example, empirical evidence suggests the
disclosure of midterm grades may motivate or demotivate stu-
dents to perform better in a future exam, controlling for other
effects. In light of this evidence, it is clear that the design
of a grading system must be a deliberate choice that takes
into account student welfare in addition to other extraneous
factors [Guskey, 2011]. In this work, we take an analytical

approach and study the design of an optimal grading system
with a particular focus on numeric v.s. uniform letter grades.1
As far as we are aware, this work is among the first to look
at the problem of designing a grading scheme with the ex-
plicit objective of improving student performance in future
tests. Our model captures the impact of grades on future per-
formance via two well-motivated effects:

1. Anchoring: In any given test, students anchor them-
selves to (i.e., in expectation perform as well as) a spe-
cific score or performance level based on their intrinsic
ability. We refer to this anchor as the intrinsic quality.

2. (De)Motivation: When the students’ actual score
falls above (below) their intrinsic quality, they get
(de)motivated and subsequently, their expectation in-
creases (decreases) for future tests. This is a phe-
nomenon that has been widely noticed in practice [Deci
et al., 1999; Dev, 1997; Cameron and Pierce, 1994].

In this regard, our work departs from other papers in
this area, where students are often modelled as status-
maximizers [Dubey and Geanakoplos, 2010], i.e., their intrin-
sic motivation for a better grade stems from a desire to rank
above their fellow students. Our model does not induce any
artificial scarcity (status) and instead the fundamental friction
is a result of noisy performance and how the same grading
rule affects different students differently.

To better illustrate how different grading schemes impact
student performance under our model, consider a student with
an intrinsic quality of q1 = 85. Suppose that the student
scores s1 = 81 in the midterm exam. Disclosing this nu-
meric score may demotivate the student, which may reduce
her effective intrinsic quality for the final exam. This adverse
effect may be prevented if a (coarser) letter grading scheme is
used, in which (say) all students (including the student under
consideration) whose scores lie in [80, 90] are assigned a let-
ter grade of A−. However, consider another student whose
intrinsic quality is q2 = 91 and whose midterm score is
s2 = 89. Receiving the same letter grade A− as everyone
who scored in [80, 90] may be more demotivating to her than
receiving her numerical score of s2 = 89. Hence, the overall
effect of using a letter grading scheme remains unclear.

1We use the term uniform letter grades to refer to letter grading
schemes where each letter grade corresponds to an equal sized score
range, e.g., [90, 100]→A+, [80, 90]→A-, and so on.
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There is another subtle issue to be considered. While the
comparison made by a student between her numerical score
and intrinsic true quality is straightforward,2 it is not obvi-
ous how a student should compare her intrinsic true quality
to a letter grade received (such as A−). This depends on how
the student perceives the letter grade. To that end, we use a
scheme for mapping letter grades back to representative nu-
merical scores: each letter grade is mapped to the midpoint of
the interval containing all the scores that were mapped to that
letter grade. For example, if all scores in the range [80, 90]
are mapped to the letter grade A−, then A− is mapped back
to (i.e., considered worth) a score of 85, which is what any
student receiving A− would compare to her intrinsic quality.

This midpoint scheme has three in-built advantages. First,
it reflects how the letter grades may truly be perceived in
the outside world (and thus by the students) as it is actually
used in the real world [University of Western Ontario, 2022;
Victoria University of Wellington, 2022]. Second, the asso-
ciation of a letter grade to the midpoint of its score range
accurately conveys the (average) performance of a student re-
ceiving that letter grade. Third, in the absence of any struc-
ture on how the grades are perceived, the question we ask
in this work — which letter grading schemes would lead to
the maximum average student performance? — would have
a trivial and rather unsatisfactory answer: assign all students
a grade worth 100 to maximally motivate them. The mid-
point scheme makes this impossible: if the same grade (say
A+) was assigned to all the students with scores anywhere in
[0, 100], it would only be worth 50.

Building on the ideas presented in this example, we de-
velop a framework to compare various grading systems in
an environment with sequential testing. This includes eval-
uations within a course, e.g., a midterm followed by a final
exam, but also grading across related courses, e.g., a student
taking Calculus 101 followed by Calculus 102. Since a stu-
dent’s intrinsic quality increases after a test if the grade re-
ceived is higher than her intrinsic quality and decreases oth-
erwise, our aim is

to compare different grading schemes and choose
the one that provides a higher quality improvement
(or a lower quality degradation).

Our results. In this work, we compare the numerical scoring
scheme, where the student learns her exact score in an eval-
uation, to uniform letter grading schemes, where the interval
of scores is partitioned into T equal-length intervals mapping
to different letter grades (and each interval is represented by
its midpoint). While uniform letter grading is not completely
realistic, we view our work as a starting point for the curi-
ously unaddressed problem of quantitatively optimizing let-
ter grading schemes and a stepping stone for future work to
build on. That said, we note that real-world letter grading
schemes (at least those used in North American universities)
are close to uniform, once a very large interval mapped to the
failing grade and a somewhat large interval mapped to very
top grade are omitted. Since very few students fall in these

2This assumes that students is aware of their own intrinsic true
qualities, but it may suffice for them to have noisy estimates.

two intervals, this omission does not significantly affect the
overall analysis.

First, we theoretically study the case where two sequen-
tial evaluations take place, such as midterm and final exam.
We show that under natural conditions, numerical scoring
and all uniform letter grading schemes have equal perfor-
mance when the motivational and demotivational effects are
equally strong, and otherwise, either numerical scoring out-
performs all uniform letter grading schemes or the oppo-
site happens. Analytically identifying when each scheme
outperforms the other turns out to be far from obvious and
subtly dependent on properties of the distributions of in-
trinsic true qualities and scores, even for this limited set-
ting. Using carefully constructed bijections between stu-
dents, we are able to identify additional conditions under
which numerical scoring outperforms all uniform letter grad-
ing schemes when the demotivational effect is stronger than
the motivational effect, and the opposite happens when the
demotivational effect is weaker than the motivational effect.
Since there is significant evidence that negative events have a
greater impact than positive events [Baumeister et al., 2001;
Coleman et al., 1987], we expect the demotivational effect to
be stronger than the motivational effect; thus, our results are
in favour of numerical scoring.

Next, we empirically compare numerical scoring to uni-
form letter grading schemes. Under two sequential evalua-
tions, we observe that numerical scoring continues to outper-
form uniform letter grading when the demotivational effect is
stronger (and the opposite continues to hold when the moti-
vational effect is stronger), even under more realistic condi-
tions than in our theoretical analysis, such as when the true
qualities of the students follow a (truncated) normal distri-
bution. However, surprisingly, when more than two evalu-
ations take place, the effect is reversed. Even after just six
sequential evaluations, uniform letter grading begins to out-
perform numerical scoring when the demotivational effect is
stronger (and the opposite holds when the motivational ef-
fect is stronger). In the intermediate stage between these two
regimes, there is another surprising effect: with four sequen-
tial evaluations, numerical scoring outperforms uniform letter
grading regardless of which effect is stronger!

Our results indicate that the choice of the grading scheme
depends on the application at hand: with fewer evaluations
(e.g., courses with just a few tests or shorter education pro-
grams with just a few semesters), numerical scoring may
be better, while with many evaluations (e.g., courses with
weekly tests or longer education programs), uniform letter
grading may be better. At a high level, although our work
draws on literature from fields such as economics and psy-
chology, it provides a fundamental perspective on the ques-
tion of student grading within the framework of multi-agent
systems, i.e., where each student is modeled as an agent
whose behavior depends on the decisions made by the sys-
tem. Our results open up the possibility of designing grading
systems that are easy to implement, approximately-optimal,
and take into account students’ incentives.
Related work. There is a rich literature on comparing grad-
ing schemes using various objectives. However, to the best
of our knowledge, none of these papers study the objective of
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improving student quality that we focus on.
Several works have studied, both theoretically and empir-

ically, how the effort exerted by students for an evaluation
depends on the grading scheme to be used [Paredes, 2017;
Brownback, 2018; Main and Ost, 2014; Czibor et al., 2020].
For example, when using pass/fail grading, a student may
try hard enough to pass (with high probability), but not any
harder. Our work is orthogonal to this: we focus on effect of
the outcome of one evaluation on the student motivation in
subsequent evaluations.

Another related work is that of Sikora [2015], who also
compares grading schemes, but his goal is to study the trade-
off between conveying the most information about the stu-
dent’s true quality and minimizing noise due to factors un-
related to the true quality, not the (de)motivational effects of
the grading scheme in subsequent evaluations. In our work,
the task of keeping the grades “consistent” with the actual
performance is indirectly performed by the midpoint scheme.

Rohe et al. [2006] and Bloodgood et al. [2020] also study
how the grading scheme used may impact students’ psycho-
logical well-being and stress levels, but do not focus on the
impact of this in subsequent evaluations.

2 Model

Define [k] = {1, . . . , k} for k ∈ N. We introduce a model
in which the grading scheme used in one evaluation can mo-
tivate or demotivate students, affecting their performance in
future evaluations.

True qualities. A student begins with an intrinsic (true) qual-
ity q drawn from a (nonatomic) priorQ with probability den-
sity function (PDF) fQ(·). For simplicity, let the support of
Q be [0, 1].

Scores. There is a score model S such that the numerical per-
formance (score) of a student with true quality q in the first
evaluation, denoted s ∈ [0, 1], is drawn from the (nonatomic)
distribution S(q) with PDF fS(·; q). We focus on score mod-
els in which the expected score of a student is equal to their
true quality, i.e., Es∼S(q)[s] = q for all q ∈ [0, 1].

Grades. A grading scheme is a function B : [0, 1] → [0, 1]
that maps the score to a grade.

Letter grading. A letter grading scheme B~c is specified by
a vector ~c = (c0 = 0, c1, . . . , cT−1, cT = 1), for some T ∈ N
(referred to as the number of grades) and ci > ci−1 for all
i ∈ [T ], and is given by B~c(s) = ci−1+ci

2 for all i ∈ [T ] and
s ∈ [ci−1, ci). That is, it partitions [0, 1) into finitely many
disjoint intervals (one for each grade) and maps a score to the
midpoint of the interval containing it.

Uniform letter grading. We are particularly interested in
the uniform letter grading (ULG) scheme. For a given num-
ber of grades T ∈ N, uniform letter grading with T grades,
denoted ULGT , is specified by ci = i/T for each i ∈ [T ]. In
other words, it partitions [0, 1) into T equal-length intervals.
We will use ∆(T ) = 1/T to denote the length of the inter-
val, dropping T from the argument when it is clear from the

context. Formally, we have that for all s ∈ [0, 1),3

ULGT (s) = (bs/∆c+ 1/2) ·∆.
For instance, ULG10 maps all scores in [0, 0.1) to 0.05, all
scores in [0.1, 0.2) to 0.15, and so on. We restrict our focus to
uniform grading schemes for two reasons: a) it is straightfor-
ward and easy to implement in practice; b) given that different
institutions following different grading schemes, this allows
us to broadly compare letter and number grading without get-
ting lost in the minutiae. Further our assumption that each let-
ter grade maps to the midpoint of an interval is common prac-
tice across universities [University of Western Ontario, 2022;
Victoria University of Wellington, 2022] as well as the litera-
ture [McEwan et al., 2021; Nisbet, 1975]. More generally, it
is consistent with the practice of assigning a score or grade-
point to each letter grade.

Numerical scoring. We will compare (uniform) letter grad-
ing to numerical scoring (NS), given by NS(s) = s for all
s ∈ [0, 1]. Under numerical scoring, scores are not rounded
to any grades. This can also be viewed as the limit of uniform
letter grading with T →∞ grades.
(De)motivation. The grades affect students’ level of moti-
vation in subsequent evaluations. Under grading scheme B,
a student compares their true quality q to the obtained grade
B(s). If the grade is higher than the true quality, the student
experiences a motivational boost, but in the converse case,
gets demotivated. We model this by assuming that the effec-
tive true quality of the student for the next evaluation changes
to q′ = q + h(q,B(s)), where

h(q,B(s)) =

{
αm · (B(s)− q), if B(s) > q,

−αd · (q −B(s)), if B(s) < q.

We refer to αm, αd ∈ R>0 as motivation and demoti-
vation coefficients, respectively. Note that the amount of
(de)motivation is proportional to the difference between the
obtained grade and the true quality. In the next evaluation,
the student obtains a score s′ drawn from S(q′). We remark
that when αm, αd ∈ [0, 1], we automatically have q′ ∈ [0, 1];
thus, we focus on this range of parameters.4 Our choice of
a linear model for demotivation follows from studies show-
ing that student performance is linearly dependent on both
external [Christensen and Menzel, 1998] and internal stim-
uli [Latham and Locke, 2007]. Additionally, even when the
actual behaviour is more complex, our model serves as a first-
order approximation when (B(s)− q) is small.
Goal. Intuitively, we are interested in choosing grading
schemes that achieve a higher increase (or a lower decrease)
in the average student quality. Thus, we define the perfor-
mance of a grading scheme B as:

perf(B) , Eq∼Q,s∼S(q)[q
′ − q]

where q′ = q + h(q,B(s)). Due to linearity of expectation,

perf(B) = Eq∼Q,s∼S(q)[q
′−q] = Eq∼Q,s∼S(q)[h(q,B(s))].

3Because we assume nonatomic distributions, it does not matter
what ULGT (1) is. We will use the convention that ULGT (1) = 1.

4In principle, one can also use larger coefficients and truncate q′

to lie in [0, 1].
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Thus, we compare Eq∼Q,s∼S(q)[h(q,B(s))] under numerical
scoring and uniform letter grading. Hereinafter, we omit q ∼
Q and s ∼ S(q) from an expression of expectation, whenever
it is clear from the context.

Note that for our theoretical analysis, we focus on the case
of two evaluations. Later, we empirically study the case of
more than two evaluations.

3 Theoretical Results
In this section, we derive theoretical results for the perfor-
mance of uniform letter grading schemes and numerical scor-
ing, when students participate in two sequential evaluations
and identify conditions under which numerical scoring out-
performs every uniform letter grading scheme, and conditions
under which the converse holds. Let us begin by introducing
two useful definitions.
Definition 1 (Jointly Symmetric Distributions). We say that
the true quality prior Q and the score model S are jointly
symmetric if fQ(q) · fS(s; q) = fQ(1− q) · fS(1− s; 1− q)
for all s, q ∈ [0, 1].

Joint symmetry requires that true qualities and scores are
symmetric across [0, 1]. That is, the probability of having
true quality q and receiving score s should be the same as the
probability of having true quality 1 − q and receiving score
1 − s. If the true quality prior is uniform, then this means
the score distribution S(q) should be the mirror image of the
score distribution S(1 − q). Note that joint symmetry does
not necessarily require symmetry of the “noise” contained in
the score compared to the true quality. For example, we do
not need fS(s = 0.4; q = 0.5) = fS(s = 0.6; q = 0.5).
Definition 2 (Symmetric Grading Scheme). We say that a
grading scheme B is symmetric if B(1 − s) = 1 − B(s) for
all s ∈ [0, 1].

The reader can check that numerical scoring (NS) and uni-
form letter grading schemes (ULGT for any T ∈ N) are sym-
metric. Our first result shows that under such symmetry, the
performance of the grading scheme is linear in the difference
between the motivation and demotivation coefficients. As we
later show in Corollary 1, this allows us to compare numerical
scoring to uniform letter grading.
Theorem 1. When the true quality prior Q and the score
model S are jointly symmetric, and the grading scheme B is
symmetric, then we have

perf(B) =
αm − αd

2
· Eq∼Q,s∼S(q)

[
|q −B(s)|

]
. (1)

Proof. Note that due toQ and S being jointly symmetric, the
pairs (q, s) and (1− q, 1− s) are sampled with equal density.
Hence, we have that

E
[
h(q,B(s))

]
=

1

2
·E
[
h(q,B(s))+h(1−q,B(1−s))

]
. (2)

Due to the symmetry of the grading scheme, we have
B(1 − s) = 1 − B(s), which implies that the two terms
h(q,B(s)) and h(1 − q,B(1 − s)) are motivation and de-
motivation by the same amount. Hence, we have that
E
[
h(q,B(s)) + h(1− q,B(1− s))

]
= (αm − αd) · E

[
|q −

B(s)|
]
. Plugging this into Equation (2), we get the result.

Corollary 1. Assume that the true quality prior Q and the
score model S are jointly symmetric. Then, all symmetric
grading schemes have equal performance if αm = αd. Fur-
ther, if αm 6= αd, for every T ∈ N one of the following con-
ditions holds.

1. Uniform letter grading with T grades is at least as good
as numerical scoring if αm > αd, and the converse
holds if αm < αd.

2. Uniform letter grading with T grades is at least as good
as numerical scoring if αm < αd, and the converse
holds if αm > αd.

Proof. The first claim regarding αm = αd follows imme-
diately from Equation (1). For the second claim regarding
αm 6= αd, note that the comparison between numerical scor-
ing and uniform letter grading with T buckets reduces to the
sign of E[|q − NS(s)| − |q − ULGT (s)|], and depending on
this sign, one of the two statements in the corollary holds.

Corollary 1 tells us that having equal motivation and demo-
tivation coefficients (αm = αd) is the turning point: between
uniform letter grading with a fixed number of grades and nu-
merical scoring, one is better when αm < αd but the other
becomes better when αm > αd. But it does not tell us which
one is better in each case.

Our next result identifies a sufficient condition under which
this dilemma is settled: uniform letter grading is better when
αm > αd and numerical scoring is better when αm < αd.
To introduce this sufficient condition, we need to define the
following natural property of the score model.

Definition 3 (Ex-Ante Single-Peaked Score Model). We say
that the score model S is ex-ante single-peaked if, for every
q ∈ [0, 1], fS(·; q) is single-peaked with the peak at q, i.e.,
fS(s; q) 6 fS(s′; q) for all s 6 s′ 6 q and s > s′ > q.

Intuitively, in an ex-ante single-peaked score model, scores
closer to the true quality are more likely than scores farther
from the true quality.

For a fixed T , we also denote with D the set of all pairs
of true qualities and scores that belong to the same letter
grade interval, i.e., D = {(q, s) : ULGT (q) = ULGT (s)}.
For example, if T = 10, (q = 0.51, s = 0.59) ∈ D but
(q = 0.51, s′ = 0.49) /∈ D.

Theorem 2. Fix any T ∈ N. Assume that the true quality
prior Q and the score model S satisfy the following.

1. Q and S are jointly symmetric;

2. S is ex-ante single-peaked; and

3. E
[
|q − s|

∣∣∣ (q, s) ∈ D] 6 E
[
|q −ULGT (s)|

∣∣∣ (q, s) ∈ D].
Then, the first implication of Corollary 1 holds. That is, uni-
form letter grading with T grades is at least as good as nu-
merical scoring if αm > αd, the converse holds if αm < αd,
and the two have equal performance if αm = αd.

Before diving into the proof, let us make a remark regard-
ing the third technical condition in Theorem 2. The technical
condition states that, averaged over all such pairs, the true
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quality is closer to the score than to the midpoint of the inter-
val that they both belong to. Later, we show that this condi-
tion is satisfied in two natural cases. Intuitively, if the score
distribution is sufficiently concentrated near the true quality,
the expected distance between the score and the true quality
will be sufficiently small, satisfying the condition. Let us now
turn to the proof of Theorem 2.

Proof sketch. Given Theorem 1, we simply need to show that
E
[
|q − s|

]
6 E

[
|q − ULGT (s)|

]
. We already assume that

this holds conditioned on (q, s) ∈ D. Hence, we only need to
show that it also holds conditioned on (q, s) /∈ D. We show
this given the additional single-peakedness property. In fact,
we show that conditioned on (q, s) /∈ D, the desired equation
actually holds for every q ∈ [0, 1], and, thus, in expectation
over q ∼ Q too. To see why this is true, fix any q ∈ [0, 1] and
consider two cases based on whether the letter grade map-
ping for score s (i.e., ULGT (s)) is smaller or larger than the
corresponding grade for q (i.e., ULGT (q)).

In the first case where ULGT (s) < ULGT (q), the single-
peakedness property implies that |q − s| = q − s 6
q − ULGT (s) in expectation over s. Conversely, when
ULGT (s) > ULGT (q), one can infer that |q − s| = s− q 6
ULGT (s)− q = |q−ULGT (s)| in expectation over s, based
on the same argument. Putting these two cases together, we
get the third statement in the theorem. A formal proof can be
found in the full version.

In Theorem 2, we argued that single-peakedness of S es-
tablishes the desired inequality of E

[
|q − s|

]
6 E

[
|q −

ULGT (s)|
]

at least conditioned on (q, s) /∈ D, leaving only
the case of (q, s) ∈ D, which was stated as an assumption in.
Next, we show that if the true quality priorQ is uniform over
[0, 1], and it satisfies two natural assumptions then the desired
inequality also holds conditioned on (q, s) ∈ D.

Definition 4 (Ex-Post Single-Peaked Score Model). We say
that the score model S is ex-post single-peaked if, for every
s ∈ [0, 1], fS(s; ·) is single-peaked with the peak at s, i.e.,
fS(s; q) 6 fS(s; q′) for all s 6 q′ 6 q and q 6 q′ 6 s.

Definition 5 (Probabilistic Single-Dipped Score Model). We
say that the score model S is probabilistic single-dipped if,
for every x ∈ [0, 1], Pr

[
s ∈ [q, x] ∪ [x, q]

∣∣∣ q] (let us call
this p(x, q)) is single-dipped in q with the dip at q = x, i.e.,
p(x, q) 6 p(x, q′) for all x 6 q′ 6 q and q 6 q′ 6 x.

Before we state the next theorem, we further partition D
into two sub-spaces, Dsame and Dopp, such that Dsame con-
tains the set of all pairs of true qualities and scores such that
either both are at most or both are at least the midpoint of
their common letter grade interval, i.e.

Dsame = {(q, s) : q, s 6 ULGT (q) = ULGT (s)

∨ q, s > ULGT (q) = ULGT (s)}

and Dopp = D \ Dsame. For example, when T = 10, (q =
0.54, s = 0.51) ∈ Dsame, but (q = 0.54, s′ = 0.56) ∈ Dopp.
We are now ready to state the result.

Theorem 3. Fix arbitrary T ∈ N. Assume the following
regarding the true quality prior Q and the score model S .

1. Q is uniform over [0, 1];
2. Q and S are jointly symmetric;
3. S is ex-ante and ex-post single-peaked, and probabilistic

single-dipped; and

4. Pr
[
(q, s) ∈ Dsame

]
> 2(γ + 1) · Pr

[
(q, s) ∈ Dopp

]
,

where γ = maxa,b∈[0,1]
fS(a;b)
fS(b;a) .

Then, the first implication of Corollary 1 holds. That is, uni-
form letter grading with T grades is at least as good as nu-
merical scoring if αm > αd, the converse holds if αm < αd,
and the two have equal performance if αm = αd.

The proofs of Theorems 3 and 4 are our most intricate
proofs. However, due to space constraints, we have deferred
them to the full version.5 Let us now understand the assump-
tions in Theorem 3. A natural choice of S under which As-
sumptions 3 and 4 in Theorem 3 are satisfied is when S(q) is
a symmetric distribution around q, i.e., the noise in the score
follows a symmetric zero-mean distribution. Further, for such
a score model, we have γ = 1, so Assumption 4 becomes
Pr[(q, s) ∈ Dsame] > 4 · Pr[(q, s) ∈ Dopp]. More general,
from the definitions of Dsame and Dopp, when the variance
of the score distribution is sufficiently small, we can expect
Pr[(q, s) ∈ Dsame] to be much higher than Pr[(q, s) ∈ Dopp].
The full version includes a figure providing further intuition.

Ex-ante single-peakedness, ex-post single-peakedness, and
probabilistic single-dippedness can be subsumed into a single
property that captures a stronger form of symmetry, in which
the noise in the score is symmetric and zero-mean.
Definition 6 (Strongly Symmetric Score Model). We say that
the score model S is strongly symmetric if fS(s; q) = `(|s−
q|) for some non-increasing function ` : R>0 → R>0.

Under a strongly symmetric score model, we have γ = 1
in Assumption 4 of Theorem 3, which means a constant of
2(γ + 1) = 4 would be needed. However, using different
techniques, we can show that even a constant of 3 suffices to
obtain the same result under strong symmetry. This broadens
the scope to include less concentrated score models.
Theorem 4. Fix arbitrary T ∈ N. Let D, Dsame, and Dopp

be defined as in Theorem 3. Assume the following regarding
the true quality prior Q and the score model S .

1. Q is uniform over [0, 1];
2. S is strongly symmetric; and

3. Pr
[
(q, s) ∈ Dsame

]
> 3 · Pr

[
(q, s) ∈ Dopp

]
.

Then, the first implication of Corollary 1 holds. That is, uni-
form letter grading with T grades is at least as good as nu-
merical scoring if αm > αd, the converse holds if αm < αd,
and the two have equal performance if αm = αd.

We remark that in the proof of Theorem 4, we only really
need strong symmetry for pairs of true qualities and scores
that belong to the same letter grade interval.

5Full version: www.cs.toronto.edu/∼nisarg/papers/grading.pdf
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4 Experiments
In the previous section, we proved that when Q is uniformly
distributed and the variance of the score model is small, we
can conclude that the first implication of Corollary 1 holds. In
this section, we empirically compare numerical scoring and
uniform letter grading while relaxing these assumptions.

First, it is widely believed that students’ true qualities,
at least in large classes, are normally distributed based
on the evidence that “exam scores tend to be normally
distributed for well-constructed, norm-referenced, multiple
choice tests” [Wedell et al., 1989]. Hence, we empirically
study the case where Q is normally distributed, truncated to
[0, 1]. We also consider cases where the score is not necessar-
ily concentrated around the true quality. Finally, our analysis
was limited to two evaluations; in our experiments, we also
consider more than two evaluations. When a student partic-
ipates in r sequential evaluations, after each evaluation the
student compares her “current” true quality to the obtained
grade, and experiences (de)motivation that affects her effec-
tive true quality in the next evaluation. Formally, for j ∈ [r],
let qj and sj denote her effective true quality and score in
evaluation j, respectively. Then, sj ∼ S(qj) for each j ∈ [r],
and for j ∈ [r − 1], we have:

qj+1 =

{
qj + αm · (B(sj)− qj), if B(sj) > qj ,

qj − αd · (qj −B(sj)), if B(sj) < qj .

We measure the performance of a grading scheme by com-
paring the final true quality, qr, to the initial true quality q1,
which extends the performance measure introduced in pre-
liminaries for two evaluations:

perfF (B) , Eq∼Q,s∼S(q)[qr − q1].

Data generation. For all the simulations, we compare nu-
merical scoring (NS) to uniform letter grading (ULGT ) with
T ∈ {4, 8, 12, 16, 20} grades. We scale the interval of
grades to [0, 100] to resemble percentage grades. We simu-
late n = 5000 students (average results are plotted with 95%
confidence intervals), where the initial true quality q1 of each
student is drawn i.i.d. from a truncated normal distribution
capped to [0, 100], with the underlying normal distribution
characterized by mean µ and standard deviation σ. Given a
true quality q in an evaluation, the score s is drawn from an-
other truncated normal distribution capped to [0, 100], with
the underlying normal distribution characterized by mean q
and standard deviation γ.
Results. Figure 1 shows how the final quality improves (or
degrades) with respect to the motivation coefficient (top) and
the number of evaluations (bottom). In Figure 1a, the motiva-
tion coefficient takes values in {0, 0.1 . . . , 0.9, 1}, the demo-
tivation coefficient is set to 0.5 and the number of evaluations
is set to r = 2. We see that when αm < αd, numerical
scoring is better than any uniform letter grading (and uniform
letter grading with more grades is better than uniform letter
grading with fewer grades), whereas when αm > αd, the op-
posite is true. Hence, it seems that the first implication of
Corollary 1 continues to hold, even when the true quality is
drawn from more realistic distributions. The comparison be-
tween uniform letter grading schemes with different numbers

of grades is intuitive: uniform letter grading essentially con-
verges to numerical scoring when T goes to infinity, so larger
T should resemble numerical scoring more. The experiments
show that this holds even with small values of T .

Going beyond our theoretical analysis for r = 2 evalu-
ations, we consider the case where students participate in
more than two evaluations. Surprisingly, as seen in Figures 1c
and 1d, the comparison between numerical scoring and uni-
form letter grading flips completely with large values of r:
numerical scoring becomes worse than uniform letter grad-
ing (and ULGT becomes worse than ULGT ′ for T > T ′)
when αm < αd, but better when αd < αm. This shows
that the choice of the grading scheme depends not only on
the comparison between the strengths of motivational and de-
motivational effects (αm vs αd) but also, crucially, on the
number of evaluations r. When αm < αd, with fewer evalu-
ations (e.g., courses with fewer tests or curricula with fewer
semesters), use of numerical scoring may be recommended,
whereas with many evaluations (e.g., courses with frequent
tests or curricula with many semesters), use of uniform letter
grading with fewer letters may be more appropriate.

The transition between the regimes of few evaluations and
many evaluations is even more surprising. As seen in Fig-
ure 1b, with r = 4 evaluations, numerical scoring seems
to outperform uniform letter grading schemes regardless of
the comparison between αm and αd. Hence, in general, it is
always best to simulate different grading schemes under the
model and the number of evaluations of interest in order to
pick a suitable grading scheme.

Finally, we observe that under numerical scoring, as the
number of evaluations increases, the average student quality
declines linearly when αm < αd (Figure 1c) and improves
linearly when αm > αd (Figure 1d). This is expected be-
cause it can be shown that under numerical scoring, every
evaluation changes the expected student quality by the same
amount, which is proportional to αm−αd, leading to a linear
decline or growth. In contrast, under uniform letter grading
schemes with very few grades (small T ), the average student
quality seems to converge and remain stable as the number of
evaluations increases, regardless of the comparison between
αm and αd. This can be explained due to the following stabi-
lizing effect. Let [`, h] be a letter grade interval and m be its
midpoint. Consider a student who starts with a true quality
q ∈ [`, h]. The student is likely to receive a score s in the
same interval [`, h] (so that (q, s) ∈ D), and thus, a grade of
m. This causes the true quality to update in a manner so that
it gets closer to m after which the student experiences very
little motivation or demotivation due to receiving a grade that
is almost equal to her true quality. Of course, the effect is
more pronounced when T is small, so letter grade intervals
are large compared to the variance of the score model.

Due to the space constraints, we have presented only the
most striking observations, deferring the rest to the full ver-
sion.

5 Discussion
Our work takes the first step towards proposing a statistical
model of the impact of letter grading schemes on student per-
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Figure 1: Performance of numerical scoring and different uniform letter grading schemes, with µ = 65, σ = 12, γ = 1.5 and αd = 0.5 over
different motivation coefficients (top) and number of evaluations (bottom). 95% confidence intervals are shown.

formance in sequential evaluations and using it to compare
uniform letter grading schemes to numerical scoring. We
view our work as a stepping stone and outline appealing ex-
tensions below.

Beyond midpoint grading. In our model, we assume that
if all the scores from an interval [`, u] are mapped to the
same grade, they are effectively mapped to the midpoint
grade (` + u)/2. While this is a common method in prac-
tice of converting letter grades to percentages [University
of Western Ontario, 2022; Victoria University of Wellington,
2022], other values within the range [`, u] are also sometimes
used [University of Waterloo, 2022].

Non-uniform letter grading. It would be interesting to
extend our analysis to non-uniform letter grading schemes.
More broadly, how can our model be extended to incorporate
truly non-numeric grades (e.g., A, B, etc.) without converting
them to numeric grades somehow (e.g., 4, 3.7, etc.)?

Non-linear (de)motivation. Evidence from prospect the-
ory suggests that motivational effects from positive outcomes
are typically concave (diminishing rewards) while demotiva-
tional effects from negative outcomes are typically convex

(increasing losses) [Kahneman and Tversky, 1979]. It would
be interesting to study such nonlinear effects.

Exploring implications to pedagogy and beyond. There is
a growing literature on optimizing design choices in AI-based
learning systems, e.g., algorithmically deciding which expla-
nations to show to students [Zavaleta-Bernuy et al., 2021].
Our insights may inform the design of personalized grading
schemes in such systems; they can adjust grade disclosure by
learning over time whether students respond more strongly to
motivation or demotivation.

More broadly, insights from our work can be explored in
other multi-agent systems, such as contest design [Levy et al.,
2017] and crowdsourcing [Han et al., 2020], where agents
participate in rounds, and feedback from earlier rounds can
influence the effort in subsequent rounds. For example, under
the right conditions, Theorem 3 may suggest a leaderboard
design where teams are grouped into buckets (analogously to
letter grading) and their exact performance is not revealed.
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