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Abstract
This work studies Stackelberg network interdiction
games — an important class of games in which
a defender first allocates (randomized) defense re-
sources to a set of critical nodes on a graph while
an adversary chooses its path to attack these nodes
accordingly. We consider a boundedly rational ad-
versary in which the adversary’s response model
is based on a dynamic form of classic logit-based
(quantal response) discrete choice models. The re-
sulting optimization is non-convex and addition-
ally, involves complex terms that sum over expo-
nentially many paths. We tackle these computa-
tional challenges by presenting new efficient algo-
rithms with solution guarantees. First, we present
a near optimal solution method based on path sam-
pling, piece-wise linear approximation and mixed-
integer linear programming (MILP) reformulation.
Second, we explore a dynamic programming based
method, addressing the exponentially-many-path
challenge. We then show that the gradient of the
non-convex objective can also be computed in poly-
nomial time, which allows us to use a gradient-
based method to solve the problem efficiently. Ex-
periments based on instances of different sizes
demonstrate the efficiency of our approaches in
achieving near-optimal solutions.

1 Introduction
Network interdiction is a well-studied topic in Artificial In-
telligence. There are many practical problems [Smith and
Song, 2020], such as in cyber systems, that can be mod-
eled as a network interdiction problem. In literature, many
variations in models of network interdiction exist, and conse-
quentially, a variety of techniques have been used for solv-
ing different types of these problems. Our work focuses
on a particular type in which there is a set of critical nodes
to protect within a larger network. We employ a popular
network interdiction model [Fulkerson and Harding, 1977;
Israeli and Wood, 2002], where the interdictor (defender)

uses a randomized allocation of limited defense resources for
the critical nodes. The adversary traverses the graphs starting
from an origin and reaching a destination. There is an interac-
tion with the defender only if the adversary crosses any criti-
cal node. The interaction is modeled using a leader-follower
(Stackelberg) game where the defender first randomly allo-
cates resources and then the adversary chooses its path ac-
cordingly.
Motivated by the fact that human adversaries in real-world

security domains often act non-optimally [Tambe, 2011], we
model the adversary behavior in our game setting using a dy-
namic Quantal Response model (an instance of well-known
dynamic discrete choice (DDC) models [Rust, 1987; Aguir-
regabiria and Mira, 2010]). While many real world security
applications have benefited from bounded rational Quantal
Response model in single shot game settings [Tambe, 2011;
Yang et al., 2012; Fang et al., 2016; Bose et al., 2022], to the
best of our knowledge, existing works in sequential network
interdiction unrealistically assume perfectly rational adver-
saries and make use of the linearity to utilize linear program-
ming techniques to tackle the problem [Smith et al., 2009;
Smith and Song, 2020]. We are the first to explore the DDC
model of bounded rational adversaries in the network inter-
diction setting and formulate the defender’s problem as a
nonlinear optimization, leading to the requirement of solving
the network interdiction problems via nonlinear optimization
techniques.
While there is a closed form of the DDC adversary choice

probabilities in our game setting, which is mathematically
interesting in itself, the closed form presents computational
challenges as the naive computation of any such probabil-
ity involves reasoning about exponentially many paths from
origin to destination and is a non-convex problem. This
presents challenges beyond those observed in the single shot
setting with quantal responding adversary [Fang et al., 2016;
Mai and Sinha, 2022]. Thus, we address the challenge of
solving such complex non-convex optimization problem for
the defender with two different novel approximation algo-
rithms.
First, we introduce an MILP-based method, named LiSD

(Linearization via Sampling and Discretization). The solu-
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tion of LiSD is a bounded approximation for the interdiction
problem. LiSD is the result of an innovative combination
of path-sampling with piece-wise linear approximation (PL)
techniques. Path sampling tackles the computational chal-
lenge of exponentially many paths while PL provides a near-
optimal defender strategy solution with a guaranteed bound.
Second, we propose an efficient Dynamic Programming

method, named DynP. Essentially, DynP provides a compact
and tractable formulations of the defender utility function
and the optimization objective’s gradient even though these
terms involve summing over exponentially many paths. This
is accomplished by exploiting recursive relationships among
adversary utility-related terms across different paths that in-
volves in the defender’s optimal strategy computation. By
employing dynamic programming, we can follow a gradient
descent approach that is computationally efficient at each step
to optimize the defender strategy. Furthermore, while DynP
is computationally efficient, it does not guarantee global op-
timality due to the non-convexity of the defender problem.
We thus identify a special case in which the adversary can
visit only one (any one) critical node and show that the opti-
mization is unimodal in that case, implying that this problem
can be solved optimally in a tractable manner using gradient
descent. We further identify specific conditions under which
the solution to the restricted problem provides approximation
guarantees for the original unrestricted one.

Notation: Boldface characters represent matrices or vec-
tors or sets, and ai denotes the i-th element of a if a is in-
dexable. We use [m], to denote the set {1, . . . ,m}.

2 Related Work

Dynamic discrete choice (DDC) models. From the sem-
inal work of [Rust, 1987], DDC models have been widely
studied and used to analyze sequential looking-forward
choice behaviors and have various applications, e.g., on fer-
tility and child mortality [Wolpin, 1984], on job matching
and occupational choice [Miller, 1984], on bus engine re-
placement [Rust, 1987], and on route choice analysis [Fos-
gerau et al., 2013; Mai et al., 2015]. Among existing DDC
models, the logit-based DDC has been popular due to its
closed-form formulation [Rust, 1987]. This model can be
viewed as a dynamic version of the well-known multino-
mial logit (or Quantal Response) model [McFadden, 1981;
Train, 2003]. In transportation modeling, logit-based DDC
was utilized to develop models to predict people’s bound-
edly rational path-choice behavior [Fosgerau et al., 2013;
Mai et al., 2015]. As highlighted in [Zimmermann and
Frejinger, 2020], such a model presents synergies with the
stochastic shortest path problem [Bertsekas and Tsitsiklis,
1991].

Network interdiction. Our work is a boundedly rational
version of the well-studied shortest path interdiction prob-
lem [Fulkerson and Harding, 1977; Israeli and Wood, 2002].
Existing work only consider perfectly rational adversaries
[Smith et al., 2009; Smith and Song, 2020]. The shortest
path and other network interdiction problems with perfectly
rational adversaries are generally NP-hard and have strong

connections with the areas of bi-level optimization [Dempe et
al., 2015] and robust optimization [Ben-Tal and Nemirovski,
2002]. We refer the readers to [Smith and Song, 2020] for a
comprehensive review. Our work explores the DDC frame-
work to model bounded rational adversaries, resulting in a
significantly more challenging defender problem as it in-
volves complex nonlinear optimization. Besides, there are
other variant models where the problem data is not perfectly
known to players [Cormican et al., 1998], or where the play-
ers repeatedly make their actions [Sefair and Smith, 2016], or
where online learning is involved [Borrero et al., 2016].

Network security games and others. Our work also re-
lates to static Stackelberg security game models with Quantal
Response adversaries [Yang et al., 2011; Yang et al., 2012;
Haghtalab et al., 2016; Mai and Sinha, 2022; Černỳ et al.,
2021; Milec et al., 2020; Bose et al., 2023b]. In dynamic
models named as network security games [Jain et al., 2011],
the set-up is different from our work as in this work the ra-
tional adversary aims to reach a target and stop, whereas in
our work the boundedly rational adversary can attack multi-
ple targets. Other related works along this line only consider
zero-sum network security game setting [Xue et al., 2021;
Xue et al., 2022]. A Quantal Response type relaxation for
network security game was also studied, where the focus in
on smart predict and optimize [Wang et al., 2020], however,
the optimize part is done using standard non-linear solver
such sequential quadratic program with no guarantees.
There are other related game models where players act in

a graph-based environment, including pursuit-evasion and se-
curity patrol games [Zhang et al., 2019; Basilico et al., 2009;
Basilico et al., 2017]. However, these works do not consider
the attacker’s bounded rationality. Additionally, their strat-
egy spaces and problem settings are characterized differently
which involve aspects of real-time information or alarm sig-
nals., etc.

3 Problem Formulation
3.1 Stackelberg Network Interdiction Games
Our network interdiction problem is a leader-follower game
with a single adversary. The game is played on a network
(graph) (S,A) where S is a set of nodes S = {1, 2, . . . , |S|},
and A is a set of arcs. We formulate the problem as a two-
player network interdiction game . The follower (adversary)
takes a path through this network, which is sampled from a
distribution as described below. The origin so 2 S is a given
starting node. In our problem, we also assume the existence
of a sink (or destination) node sd 2 S that the adversary ulti-
mately reaches. Let L be the set of critical nodes (i.e., subset
of nodes in the network) that the defender can interfere or al-
ter. From the leader’s (defender’s) viewpoint, the aim is to
assign M resources to nodes s 2 L; each such assignment is
a defender pure strategy. Further, nodes and resources are of
certain types such that nodes of a given type can only be pro-
tected by resources of that same kind. Let there be K types
of nodes. Let the number of resources of each type k be Mk,
hence

P
k2[K] Mk = M . Also, let {Lk}k2[K] be a partition

of the set of nodes L by the types of the nodes.
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A mixed strategy is a randomized allocation resulting
in a coverage vector x = {xs, s 2 L,

P
s2Lk

xs 
Mk, 8k 2 [K]} where xs is the marginal probability of
covering node s, which then impacts the adversary’s path
choice probabilities. Given a node s 2 S , if the adver-
sary crosses this node, then the defender gets a node-specific
reward rl(s, xs). The Stackelberg equilibrium can be com-
puted by solving the following problem [Yang et al., 2012;
Mai and Sinha, 2022]:

maxx F l(x) =
X

⌧2⌦
Rl(⌧ |x)P f (⌧ |x) (OPT)

subject to
X

s2Lk

xs  Mk, 8k 2 [K] (1)

xs 2 [Lx, Ux], 8s 2 L,
where Rl(⌧ |x) =

P
s2L\⌧

rl(s, xs) is the defender’s accu-
mulated reward on path ⌧ and P f(⌧ |x) is the probability the
attacker follows the path ⌧ (of which computation is dis-
cussed in the behavior modeling part). Here, [Lx, Ux] rep-
resent the required lower bound and upper bound on the cov-
erage probability for each node in the critical set L.

3.2 Boundedly Rational Adversary Behavior
We model the adversary’s bounded rational behavior using
the dynamic discrete choice framework (and specifically the
logit-based recursive path choice model [Fosgerau et al.,
2013]). A known property in this setting is that the bounded
rational adversary chooses a policy that is equivalent to a
static multinomial logit (MNL) discrete choice model over
all possible paths [Fosgerau et al., 2013].
Concretely, let U(⌧ |s0, x)=

P
s2⌧

v(s; x) be the determin-
istic long-term utility of the adversary when starting in s0; if
s0=so, then we simply write U(⌧ |x). Here, v(s; x) is the ad-
versary’s utility associated with node s when the defender’s
strategy is x. Given x, the probability the adversary follows a
path ⌧ can be computed as follows [Fosgerau et al., 2013]:

P f(⌧ |x)= e
U(⌧;x)

/µ

Z
, where Z=

X
⌧2⌦

e
U(⌧;x)

/µ , (2)

given ⌦ is the set of all possible paths and µ is the parame-
ter which governs the follower’s rationality. Thus, we can
view the logit-based dynamic discrete choice formulation as
a soft version of the shortest weighted path problem from the
source so to destination sd. Given the adversary behavior
model, the adversary’s expected utility can be computed as an
expectation over all paths, as follows:

Ef (x) =
X

⌧2⌦
P f (⌧ |x)U(⌧ ; x)

Our Prop. 1 shows that the adversary’s expected utility ap-
proaches the best accumulated utility (smallest path weight)
as µ tends to zero (we drop the fixed strategy x for simplicity).
Proposition 1. Let ⌧⇤= argmax

⌧2⌦U(⌧) (i.e., the best path
for the adversary) and L⇤ = |U(⌧⇤)|. Let ⌦⇤ = {⌧ ; U(⌧) =
L⇤} and ↵=U(⌧⇤)�max⌧2⌦\⌦⇤ U(⌧). We obtain:

|Ef � U(⌧⇤)|  (L⇤ + 1)/(1 + |⌦⇤|/|⌦\⌦⇤|e
↵
/µ).

As a result, limµ!0 Ef = U(⌧⇤).1
1All proofs, if not presented, are included in the appendix.

4 Common Binary Search Framework
Overall, (OPT) is computationally challenging since the ob-
jective not only involves an exponential number of paths in
the network but also is non-convex. To address this compu-
tational challenge, we propose two new different algorithms
which share the common underlying binary search frame-
work. The purpose is to reduce the original fractional (OPT)
to a simpler non-fractional problem. These algorithms then
differ in applying different efficient techniques to solve each
binary search step. We elaborate them in subsequent sections.
Essentially, we write the objective of (OPT) as follows:

F l(x) =
P

⌧2⌦ Rl(⌧ |x) exp
�
U(⌧ ;x)/µ

�
P

⌧2⌦ exp
�
U(⌧ ;x)/µ

�

F l(x) has a fractional non-convex form. A typical way
to simplify this structure is to use the Dinkelbach trans-
form and a binary search algorithm [Dinkelbach, 1967] to
convert the original problem into a sequence of simpler
ones. We use binary search to write (OPT) equivalently as:
max�

n
�
��� 9x s.t. F l(x) � �

o
which is equivalent to finding

a maximum value of � 2 R such that the following sub-
problem:

max
x

nX

⌧2⌦

Rl(⌧ |x) exp
�U(⌧ ; x)

µ

�
� �

X

⌧2⌦

exp
�U(⌧ ; x)

µ

�o
(3)

has a non-negative optimal objective value. Overall, (3) is
still non-convex, but no longer fractional. In addition, the
set ⌦ of all feasible paths can be huge and may not be enu-
merable. Therefore, we propose two different algorithms (as
elaborated next) to tackle these challenges in solving (3).

5 Linearization via Sampling and Discretizing
We describe our first near-optimal method, LiSD, which in-
volves exploring path-sampling with piece-wise linear ap-
proximation (PL) techniques to approximate (3) by a MILP.
Path sampling tackles the computational challenge of expo-
nentially many paths while PL provides a near-optimal de-
fender strategy solution with a guaranteed bound for (3).

5.1 Sample Average Approximation
We first approximate the sum over ⌦ via sample average ap-
proximation. That is, we select a feasible solution x0 to create
a fixed distribution over paths in ⌦. By dividing the objective
of (3) by

P
⌧2⌦ exp(U(⌧ ;x0)/µ), which is a constant, we aim

to maximize the following objective function:

G(x,�) = E⌧⇠D(x0)
⇥
Rl(⌧ |x) exp

�eU(⌧ |x)
�
�� exp

�eU(⌧ |x)
�⇤

(4)

where eU(⌧ |x) = U(⌧ ;x)
µ

� U(⌧ ;x0)
µ

, and D(x0) is the distribu-
tion over paths ⌧ with probabilities P f (⌧ |x0) (Eq. 2).
We now can approximate the objective function g(x,�) by

sample average approximation. Specifically, let ⌧1, . . . , ⌧N
be N samples from D(x0), we approximate g(x,�) by:

bGN (x,�)= 1
N

X

n2[N ]

h
Rl(⌧n|x)e

eU(⌧n|x)
� �e

eU(⌧n|x)
i

(5)
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Essentially, the approximation bGN (x,�) converges to
G(x,�) almost surely as N ! 1 and the approximation er-
rors can be bounded as shown in Proposition 2.
Proposition 2. For any given ⇠ > 0, we have:

P
⇣�� bGN (x,�)�G(x,�)

�� � ⇠
⌘
 2 exp

✓
�2N⇠2

M2

◆

where M = max⌧,x
�
J(⌧, x)

 
�min⌧,x

�
J(⌧, x)

 

J(⌧, x) = Rl(⌧ |x) exp
�eU(⌧ |x)

�
� exp

�eU(⌧ |x)
�

Proposition 2 implies that bGN (x,�) will converge to the
true function G(x,�) in probability with an exponential rate
as the number of samples N increases. This is a direct result
from Hoeffding’s inequality [Hoeffding, 1994].

5.2 Piece-wise Linear (PL) Approximation
We now further approximate bGN (x,�) by a PL function, al-
lowing the subproblem to be solved to near-optimality via a
MILP solver. First, for each ⌧n, we introduce new variables
un = Rl(⌧n|x) and vn =

eU(⌧n|x)
µ

. We now can re-write the
objective function, bGN (x,�) accordingly, as follows:

bGN (x,�) = 1

N

X
n2[N ]

⇣
un exp(vn)� � exp(vn)

⌘

Let Ln and Un be an lower and upper bounds of vn. The
PL approximation can be done by partitioning each interval
[Ln, Un] into K sub-intervals of equal size, and introducing
K binary variables z1

n
, . . . , zn

K
such that z1

n
� z2

n
� ... �

zK
n
, to represent each interval. Intuitively, zk

n
= 1 implies

the kth sub-interval involves in the approximation of exp(vn)
and zk

n
= 0, otherwise. Let �n = (Un�Ln)/K (i.e., the size

of each interval) and �k
n
, k 2 [K] is the slop of function evn

in the interval [Ln +�n(k � 1), Ln +�nk]:

�k
n
=

exp(Ln +�nk)� exp(Ln +�n(k � 1))

�n

Each component exp(vn) can be approximated as follows:

exp(vn) ⇡ exp(Ln) +�n

X
k2[K]

�k
n
zk
n

We then can re-write the sub-problem (3) as follows:

max
x,z,u,v

1

N

X
n2[N ]

(un � �)
⇣
exp(Ln) +�n

X
k2[K]

�k
n
zk
n

⌘

(MINLP)

s.t. zk
n
� zk+1

n
; k 2 [K � 1], n 2 [N ] (6)

un = Rl(⌧n|x) and vn =
eU(⌧n|x)/µ (7)

vn = Ln +�n

X
k2[K]

zk
n
+ n (8)

x 2 X , zn 2 {0, 1}K ,n 2 [0,�n] (9)

which maximizes the piece-wise approximation of bGN (x,�).
The additional variable n captures the gap between vn and
the binary approximation Ln +�n

P
k2[K] z

k

n
.

Finally, there are only some bi-linear terms left to be lin-
earized in the objective function. We do that using Mc-
Cormick inequalities. Specifically, let Lu

n
and Uu

n
be lower

and upper bounds of un, we introduce new variables sk
n
to

present (un��)zk
n
, we can now linearize the bi-linear term

(un��)zk
n
with the following additional constraints:

sk
n
 (Uu

n
� �)zk

n
; sk

n
� (Lu

n
� �)zk

n
(10)

sk
n
 (un � �)� (Lu

n
� �)(1� zk

n
) (11)

sk
n
� (un � �)� (Uu

n
� �)(1� zk

n
) (12)

The above three constraints guarantee that when zk
n
= 1, then

sk
n
= un � �. Conversely, when zk

n
= 0, then sk

n
= 0.

By combining the above new variable sk
n
and constraints

with (MINLP), we obtain the MILP reformulation:

max
x,z,u,v,s

1

N

X
n2[N ]

⇣
(un � �)eLn +�n

X
k2[K]

�k
n
sk
n

⌘

(MILP)

s.t. Constraints (6–12) are satisfied.

We further establish a performance bound for PL approxima-
tion. We first remark, from the definition of bGN (x,�), that:
(
bGN (x,�) � 0 if �  minn,x Rl(⌧n|x) = minn{Lu

n
}

bGN (x,�)  0 otherwise.

So, it is sufficient to consider � 2 [minn{Lu

n
},maxn{Uu

n
}].

This allows us to state Proposition 3 below.
Proposition 3. Assume that � 2

⇥
minn{Lu

n
},maxn{Uu

n
}
⇤
,

let bxNK be an optimal solution to (MILP) and x⇤ be opti-
mal for average approximation sub-problemmaxx bGN (x,�),
then we obtain the following inequality:

��� bGN (bxNK ,�)� bGN (x⇤,�)
��� 

2BN

K

whereB =
�
max
n

{Uu

n
}�min

n

{Lu

n
}
�
max
n

�
eUn(Un�Ln)

 
.

From an intuitive standpoint, augmenting K would dimin-
ish the approximation error of the PL approximation. Con-
versely, augmenting N has a dual effect: while it lessens the
error arising from path sampling, it simultaneously heightens
the cumulative error stemming from all the samples. In fact,
to drive the bound closer to zero, Proposition 3 indicates that
it’s necessary that the rate of increase for K should surpass
that of N . We further investigate this dual effect by look-
ing at the quality of a solution returned from (MILP) w.r.t the
original sub-problemmaxx G(x,�). A performance bound is
provided in Theorem 1, which implies that, under the condi-
tion N  ⇠K

6B , the solution given by the PL approximation
will converge in probability to a true optimal solution, with
an exponential rate.
Theorem 1. Assume that � 2

⇥
minn{Lu

n
},maxn{Uu

n
}
⇤
.

Let bxNK be an optimal solution to (MILP) and x⇤ be opti-
mal for maxx G(x,�), then given any ⇠ > 0, if we choose
N,K such that N

K
 ⇠

6B , then we have:

P(|G(bxNK ,�)�G(x⇤,�)| � ⇠)  4e�
2N⇠2

9M2 .
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This result can be employed to establish (theoretical) esti-
mates for N and K to achieve a desired performance.
Corollary 1. For any given↵,� > 0, � 2 (0, 1), if we choose
N � ln

⇣
4
�

⌘
9M2

2↵2 and K � 6NB

↵
, then

��G(bxNK ,�) �
G(x⇤,�)

��  ↵ occurs with probability 1� �.
The above estimates might shed light on how N,K de-

pends on the performance criteria ↵,�. We note that these
estimates would be conservative, as in practice we may need
much smaller N,K to achieve the desired performance. A
final note is that one can employ an off-the-shelf solver (e.g.
CPLEX or GUROBI) to solve (MILP). Although this pro-
gram would be large in size, SOTA solvers can efficiently
handle very large MILPs, aided by powerful machines.

6 Dynamic Programming Based Solution
The aboveMILP approximation involves binary variables and
would be intractable in large scenarios. We thus propose
an alternative new algorithm, DynP that also follows binary
search, but at each binary step, (i) it presents a non-trivial
compact representation of the objective function based on the
creation of a dynamic program, which handles an exponential
number of paths; and (ii) it applies a gradient ascent-based
method to efficiently solve the resulting compact problem.

6.1 Compact Representation
We can rearrange terms in the objective of sub-problem (3)
according to critical nodes as follows:

g(x,�) =
X

s2L

X
⌧2⌦
⌧3s

rl(s, xs) exp
�
U(⌧ ;x)/µ

�

� �
hX

⌧ 02⌦
exp

�
U(⌧ 0;x)/µ

�i
(13)

Since g(x,�) is differentiable, this maximization prob-
lem can be solved for a local maximum by a gradient-based
method. One of the key challenges is the computation of
g(x,�), which, if done naively, would require enumerating
exponentially many paths on ⌦. We next show that g(x,�)
has a compact form, which allows us to compute g(x,�) and
its gradient efficiently via dynamic programming.
For a compact representation of g(x,�), we introduce the

following new terms for all nodes s, s0 2 S:

Zs =
X

⌧2⌦sd (s)

exp
⇣
U(⌧ ;x)/µ

⌘
and Y s

s0 =
X

⌧2⌦(s0,s)

exp
⇣
U(⌧ ;x)/µ

⌘

where ⌦sd(s) is the set of all paths from s to the destination
sd and ⌦(s0, s) is the set of all paths from s0 to s.
The objective g(x,�) can be now re-formulated as follows:

g(x,�) =
X

s2L
rl(s, xs)Y

s

so
Zs � �Zso , (14)

where so is the origin. Although these new terms still involve
exponentially many paths in ⌦sd(s) and ⌦(s0, s), they can be
computed efficiently via dynamic programming.
Indeed, {Zs}s can be computed recursively as follows:

Zs =

(P
s02N(s) exp

�
v(s;x)/µ

�
Zs0 if s 6= sd

1 if s = sd,

Algorithm 1: Dynamic Programming based algo-
rithm (DynP) to solve Maximizing g(x,�)
Input: � 2 R and an initial value of x
while not converged do

Given x, solve the system H = (I�M)�1B and
JH,j = (I�M)�1JM,jH for all j
Compute g(x,�) and @g(x,�)

@xs
using Eq. 14, 15.

Update x using a projected gradient method
end

where N(s) = {s0 2 S| (s, s0) 2 A}, is the set of possible
next nodes that can be reached in one hop from node s 2 S .

LetM be a matrix of size |S⇥S| with entries defined as:

Mss0 = exp
�
v(s
��x)/µ

�
8 s 2 S, s0 2 N(s)

Then Z = {Zs, s2S} is a solution to the linear system Z =
MZ + b, where b is of size |S| ⇥ 1 with zero entries except
bsd =1. Similarly, we can compute Ys={Y s

s0}s0 recursively:

Y s

s0 =

(P
s002N(s0)

�
exp

�
v(s0;x)/µ

��
Ys00 if s0 6= s

1 if s0 = s.

Clearly, Ys is a solution to the linear systemYs = MYs+bs,
where bs is of size |S| with zeros everywhere except bs

s
= 1.

Since Ys and Z are solutions to the systems Ys = MYs +
bs and Z = MZ + b, respectively, 8s 2 S , the objective
g(x,�) can be computed via solving |L|+ 1 system of linear
equations. Finally, we see that all the above linear systems
rely on the common matrix M. We can group them all into
only one linear system. Let H be a matrix of size (|S|) ⇥
(|L| + 1) in which the 1st to |L|-th columns are vectors Ys,
s 2 L and the last column is Z. Let B be a matrix of size
(|S|)⇥(|L|+1) in which the 1st to |L|-th columns are vectors
bs, s 2 L and the last column is b. We see thatH is a solution
to the linear system (I�M)H = B. Thus, in general, we can
solve only one linear system to obtain all Ys and Z. This way
should be scalable when the size of L increases.

6.2 Gradient Computation
We aim at employing the gradient-based approach to solve the
binary search step: maxx {g(x,�)} (aka. Eq. 3). The core is
to compute the gradient

�
@g(x,�)/@xs

 
. According to Eq. 14,

this gradient computation requires differentiating through the
matrices Z and {Ys} (or equivalently, differentiating through
the matrix H). We first present our Proposition 4:
Proposition 4. (I�M) is invertible in a cycle-free network.
Prop. 4 allows us to compute the matrix H as: H = (I �

M)�1B. By taking the derivatives of both sides w.r.t xj , j 2
L, we obtain the following: for all j 2 L,

JH,j = (I�M)�1JM,j(I�M)�1B = (I�M)�1JM,jH,

where JH,j and JM,j are the gradient matrices of H and M
w.r.t xj , i.e., JH,j is a matrix of size |S|⇥(|L|+1)with entries
JH,j

ss0 = @Hss0/@xj , and JM,j is a matrix of size (|S| ⇥ |S|)
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with entries JM,j

ss0 = @Mss0/@xj , for any j 2 L. Let Rl(x) be
a matrix of size 1 ⇥ |L| with entries rl(s, xs) for s 2 L. We
use AS,T to denotes a sub-matrix of A which uses the rows
in set S and columns in set T . If S or T is a singleton, e.g.,
S = {so} or T = |L|+ 1, then we write it as so or |L|+ 1.

As a result, we now can compute the required gradient as
follows for all s 2 L where � denotes Hadamard product:

@g(x,�)
@xs

=
�
Rl(x) � JH,s

so,L + JR,s �Hso,L
�
⇥HL,|L|+1

+ (Rl(x) �Hso,L)⇥ JH,j

L,|L|+1 � �JH
so,|L|+1 (15)

We summarize the main steps to optimize g(x,�) in Alg. 1.
Remark 1. Alg. 1 only guarantees a local optimum due to
the non-convexity of g(x,�). The complexity is determined by
the matrix inversion which, in worst case, is in O(|S|3). The
gradient descent loop runs O(1/✏) to provide an additive ✏
approximation. Thus, the total complexity is O

�
(1/✏)|S||A|

�
.

In practice, the gradients can be found via auto differentiation
techniques, providing significantly more speed-up.

6.3 A Natural Special Case
Separation of critical resources and/or privileges is an impor-
tant concept in security [Lin et al., 2023]. Following this
principle, we analyze a special yet natural security design
scenario where that the critical nodes L are well separated.
Specifically, we assume that the cost of travelling between
nodes in L is high. More formally, given a critical node
s 2 L, let �+(s) be the set of paths that cross s and at least
another critical node in L. Let �1, �2 > 0 such that:

�1 = max
x

max
s2L

(P
⌧2�+(s) exp

�
U(⌧ ;x)/µ

�
P

⌧2�(s) exp
�
U(⌧ ;x)/µ

�
)

�2 = max
x

(P
⌧2

S
s{�+(s)} exp

�
U(⌧ ;x)/µ

�
P

⌧2
S

s{�(s)} exp
�
U(⌧ ;x)/µ

�
)
,

(16)

Intuitively, �1 and �2 are expected to be small if the cost of
traveling between any two critical nodes in L is large. That
is, �1,�2 ! 0 as

P
⌧2⌦(s,s0) exp

�
U(⌧ ;x)/µ

�
! 0, where

⌦(s, s0) consists of all paths from s to s0, for any s, s0 2 L.
Surprisingly, even though DynP only finds a locally optimal
solution for (OPT) due to its non-convexity, we show that as-
suming small �1 and �2 provides approximation guarantees
for the globally optimal solution value.
For this approximation, we need mild assumptions that

the utilities have a linear form: v(s; x) = wf

s
xs + tf

s

and rl(s; x) = rl(s, xs) = wl

s
xs + tl

s
for some constants

wf

s
, tf

s
, wl

s
, tl

s
. We assume that wf

s
<0 and wl

s
>0, i.e., more

resources xs at s will lower adversary’s utilities, and increase
the defender’s utility. This setting is intuitive for security set-
tings [Yang et al., 2012; Mai and Sinha, 2022].
We first introduce a restricted interdiction problem that can

be solved optimally in a tractable manner using our efficient
gradient descent-based method. We then present an impor-
tant theoretical result showing how the restricted problem’s
solution yields an approximate solution of with the original
problem for well separated critical nodes.

Let�(s) be the set of paths that cross a critical node s and
do not cross any other node in L. We consider the following
restricted interdiction problem:

max
x

eF(x) =
P

s2L,⌧2�(s) r
l(s, xs) exp

�
U(⌧ ;x)/µ

�
P

s2L,⌧2�(s) exp
�
U(⌧ ;x)/µ

�

(Approx-OPT)

s.t.
X

s2Lk

xs  Mk, 8k2 [K]

xs 2 [Lx, Ux], 8s 2 L.

Intuitively, in this restricted problem (Approx-OPT), the ad-
versary’s path choices are restricted to a subspace of paths in
the network which only cross a single critical node in L. We
denote by X , the feasible set of the defender’s interdiction
strategies x that satisfy the constraints in (Approx-OPT).

Solution Relation with Original Problem (OPT)
We now theoretically analyze (Approx-OPT)’s solution in re-
lation to our original problem (OPT). We prove that:
Theorem 2. Let x⇤ be an approx. solution to (Approx-OPT):
maxx2X eF(x) such that eF(x⇤) � (1 � ✏)maxx eF(x) for
given ✏ > 0, let  = maxx2X

P
s2L |rl(s, xs)| be the max-

imal absolute reward that the defender can possibly achieve
at a critical node, then we obtain:

F l(x⇤) �
(1� ✏)maxx

�
F l(x)

 

(1 + �1)(1 + �2)
� 

✏+ �1 + �2 + �1�2

(1 + �1)(1 + �2)
.

Additionally, if x⇤ is an approx. solution with an additive
error ✏ > 0, we obtain the following bound:

F l(x⇤) �
�
1/⌘

�
maxx{F l(x)}� 

�
(⌘�1)/⌘

�
,

where ⌘ = (1 + �1)(1 + �2)
⇣
1 + ✏

+minx2X eF(x)

⌘
.

Note that maxx2X {F l(x)} is the original problem (OPT)
to find an optimal defender strategy. As stated previously,
when the cost of traveling between any two critical nodes is
high, (�1,�2) is close to zero, meaning the RHS of both in-
equalities in Theorem 2 will closely approximate the optimal
solution value of (OPT).
Solving the Restricted Problem: To solve the restricted

problem, we also apply binary search. It can be demonstrated
that each sub-problem of the binary search can be effectively
solved to optimality (or near-optimality) using a gradient-
based method. Due to limited space, the details of this ap-
proach is provided in the appendix along with the sub-results
that lead to the main Theorem 2.

7 Numerical Experiments
To illustrate the efficacy of our proposed algorithms, we per-
form experiments on synthetic data.

7.1 Experimental Settings
Data generation. We generate random graphs (cycle-free)
with |S| vertices and edge probability p. We randomly choose
|L| vertices (except source and destination) as the critical
nodes that can be attacked. We set |L| = 0.8 ⇥ |S|. In
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addition, the defender weights
�
(wl

j
, tl

j
)
�� j 2

⇥
|L|

⇤ 
are

generated uniformly at random from the interval [0, 1] and
the adversary weights

�
(wf

j
, tf

j
)
�� j 2

⇥
|S|

⇤ 
are gener-

ated at random from the interval [�1, 0]. Moreover, we used
p = 0.8, µ = 2.
Baseline. We approximate the sums over exponentially
many paths in Equation 3 by sampling paths from the net-
work and run gradient descent on this expression to estimate
the optimal decision variable. To sample paths for the base-
line, a resource allocation x is assigned to L and the follower
is initially placed at the origin so. Its next node s1 is sampled
from the distribution

⇡f (s|s0, x) =
exp

�
v(s;x)/µ

�
ZsP

s02N(s0)
exp

�
v(s0;x)/µ

�
Zs0

,

where s 2 {nodes having an edge to s0} and N(s0) is the
set of outgoing nodes from s0. Similarly s2, . . . etc. are sam-
pled till the destination sd is reached. This sampling is re-
peated 1000 times per iteration and then average is taken to
get the objective. Based on the gradients, the resource allo-
cation x is updated which changes the transition probabilities
and the process is repeated again until convergence. Ten dif-
ferent values of x were taken and the seed with the lowest
loss was reported. We will compare this baseline against our
near optimal MILP-based algorithm, LiSD and our dynamic
programming based algorithm, DynP. To ensure fairness, all
algorithms were run with the same number of epochs.
ChoosingN andK for the LiSD To justify our choices of
N andK for theLiSP described, we first fixN = 90 and vary
K from 5 to 100. For each value of K, we generate 10 inde-
pendent instances and solve them using the MILP approach.
We then observe that the optimal values given by K = 20
are only 0.3% different from those given by the largest value
of K (i.e., K = 100). Moreover, the optimal values given
by N = 90 are only about 3% different from those from the
largest value of N , i.e., N = 150. The numerical details can
be found in the appendix. We therefore choose N = 90 and
K=20 for the LiSD approach. According to the above anal-
yses, these choices would suffice to guarantee low practical
approximation errors stemming from both path-sampling and
PL approximation. We use GUROBI (a SOTA MILP solver)
to solve (MILP). All our experiments were run on a 2.1 GHz
CPU with 128GB RAM.

7.2 Numerical Comparison
We vary the number of nodes from 20 to 100. For each choice
of number of nodes, we generate 20 independent instances
and solve them by the three methods (Baseline, DynP, and
LiSD). The rates of giving best objective values (over 20
instances) are reported in Table 1. LiSD consistently out-
performs the other methods, by a large margin, in terms
of the number of times it returns the best objective values.
DynP performs better than Baseline for large-size settings,
but worse than Baseline for small-size ones. Note that, among
the four methods, only LiSD can guarantee near-optimal so-
lutions. The computing times are not directly comparable, as
GUROBI ran on several cores while the other gradient-based

# nodes Baseline (Ours) LiSD (Ours) DynP
20 30% 50% 0%
40 20% 65% 15%
60 15% 55% 30%
80 20% 45% 35%
100 15% 45% 15%

Table 1: Rates of giving best objective values. Each measurement is
computed using 20 independent instances.

# nodes Baseline (Ours) LiSD (Ours) DynP
20 253.1% 344.2% 301.9%
40 54.5% 63.2% 55.9%
60 51.7% 57.6% 55.8%
80 25.3% 34.7% 30.4%
100 88.2% 93.0% 89.0%

Table 2: Average percentage improvements w.r.t the lowest objective
values given by the four methods.

methods use only one CPU core. We however observe that,
for instances of 100 nodes, the average computing times for
the Baseline, DynP, and LiSD are approximately 3, 15 and
1.8 minutes.
We further compare the objective values returned by the

four methods by computing the percentage improvement of
each objective w.r.t. the lowest objective value given by the
four approaches. Specifically, we solve each instance to ob-
tain 4 objective values. We then compute the percentage
improvement of each objective value w.r.t the lowest value
among the four values. The average percentage values are re-
ported in Table 2 below, which show that LiSD performs the
best, and DynP outperforms the Baseline.

8 Conclusion
Network interdiction game problems present a set of chal-
lenges that appear intractable to start with. In this work, we
address some of these challenges by providing novel meth-
ods that efficiently solve a class of network interdiction prob-
lems with approximation guarantees. We are the first to study
the dynamic Quantal Response model in the type of net-
work interdiction studied in [Fulkerson and Harding, 1977;
Israeli and Wood, 2002]. We believe this modeling and
methodology contribution provides suggestions for other fu-
ture research directions, such as a variant where the adver-
sary’s objective is to maximize a flow through the network
or a setting where the leader would also need to make dy-
namic and time-dependent decisions. This online nature of
the problem suggests possible future work in online learning
problems such as [Bose et al., 2023a]. It is interesting to anal-
yse scenarios where network structures arise naturally such
as ride pool matching [Bose and Varakantham, 2021] and are
under threat from adversaries such as competing providers.
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and Denis Sauré. Sequential shortest path interdiction with
incomplete information. Decision Analysis, 13(1):68–98,
2016.

[Bose and Varakantham, 2021] Avinandan Bose and
Pradeep Varakantham. Conditional expectation based
value decomposition for scalable on-demand ride pooling.
arXiv preprint arXiv:2112.00579, 2021.

[Bose et al., 2022] Avinandan Bose, Arunesh Sinha, and
Tien Mai. Scalable distributional robustness in a class
of non-convex optimization with guarantees. Advances in
Neural Information Processing Systems, 35:13826–13837,
2022.

[Bose et al., 2023a] Avinandan Bose, Mihaela Curmei,
Daniel L Jiang, Jamie Morgenstern, Sarah Dean, Lillian J
Ratliff, and Maryam Fazel. Initializing services in
interactive ml systems for diverse users. arXiv preprint
arXiv:2312.11846, 2023.

[Bose et al., 2023b] Avinandan Bose, Tracey Li, Arunesh
Sinha, and Tien Mai. A fair incentive scheme for commu-
nity health workers. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 37, pages 14127–
14135, 2023.

[Boyd et al., 2004] Stephen Boyd, Stephen P Boyd, and
Lieven Vandenberghe. Convex optimization. Cambridge
university press, 2004.
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nikov, Gerardo A Pérez-Valdés, and Nataliya Kalash-
nykova. Bilevel programming problems. Energy Systems.
Springer, Berlin, 10:978–3, 2015.

[Dinkelbach, 1967] Werner Dinkelbach. On nonlinear frac-
tional programming. Management science, 13(7):492–
498, 1967.

[Fang et al., 2016] Fei Fang, Thanh Nguyen, Rob Pickles,
Wai Lam, Gopalasamy Clements, Bo An, Amandeep
Singh, Milind Tambe, and Andrew Lemieux. Deploying
paws: Field optimization of the protection assistant for
wildlife security. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 30, pages 3966–3973,
2016.

[Fosgerau et al., 2013] M. Fosgerau, E. Frejinger, and
A. Karlström. A link based network route choice model
with unrestricted choice set. Transportation Research Part
B, 56:70–80, 2013.

[Fulkerson and Harding, 1977] Delbert Ray Fulkerson and
Gary C Harding. Maximizing the minimum source-sink
path subject to a budget constraint. Mathematical Pro-
gramming, 13(1):116–118, 1977.

[Haghtalab et al., 2016] Nika Haghtalab, Fei Fang, Thanh H.
Nguyen, Arunesh Sinha, Ariel D. Procaccia, and Milind
Tambe. Three strategies to success: Learning adversary
models in security games. In 25th International Joint Con-
ference on Artificial Intelligence (IJCAI), 2016.

[Hoeffding, 1994] Wassily Hoeffding. Probability inequali-
ties for sums of bounded random variables. The collected
works of Wassily Hoeffding, pages 409–426, 1994.

[Israeli and Wood, 2002] Eitan Israeli and R Kevin Wood.
Shortest-path network interdiction. Networks: An Inter-
national Journal, 40(2):97–111, 2002.

[Jain et al., 2011] Manish Jain, Dmytro Korzhyk, Ondřej
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