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Abstract
Games with incomplete information model multi-
agent interaction in which players do not have com-
mon knowledge of the game they play. We propose
a minimal generalisation of combinatorial games to
incorporate incomplete information, called combi-
natorial game with incomplete information (CGII).
The most important feature of CGIIs is that all ac-
tions are public, which allows better visualisation
of each player’s knowledge and incomplete infor-
mation. To further motivate the study of this new
formalism, we show that computing optimal strate-
gies for CGIIs has the same computational com-
plexity as for general extensive-form games.

1 Introduction
Game theory is a mathematical framework for studying multi-
agent interactions. We focus on extensive-form games (EFG),
in which the interaction between agents takes place sequen-
tially, i.e. every agent takes turns to make a move. Prominent
examples of such games are Chess and Go.

Of particular interest to us is the notion of games with in-
complete information, which are games in which agents do
not have common knowledge of the game they play. For in-
stance, an agent does not know the number of participants
in an auction, or how much these participants value the ob-
ject to be sold; a Poker player does not see the cards in their
opponent’s hidden hands, hence cannot know for sure the ex-
act consequence (i.e. payoff) of calling and raising bets; a
Bridge or Hearts player does not know the cards that their
opponent can play during a trick since this depends on their
hidden hand; etc.

The notion of (in)complete information is frequently con-
fused with the one of (im)perfect information. Complete in-
formation describes situations in which the whole structure
of a game (the number of players, the game tree, the informa-
tion sets of each player, the owner of each node, the payoff
for each player at each leaf node, etc.) is common knowledge
among all the players of the game. On the other hand, perfect
information is a more stringent requirement than complete

∗A long version with proofs of all claims is available at https:
//hal.science/hal-04568854.

information. Not only the structure of the game is common
knowledge, but all players have full observability and perfect
recall of the history (which is essentially a record of every
decision made by every player so far). In other words, play-
ers always know their exact position in the game tree when
asked to make the next decision. To summarise, incomplete
information is an example of imperfect information; see Fal-
iszewski et al. [2016, Sec. 2.4.2].

We propose a new and minimal formalism for EFGs with
incomplete information that we call combinatorial games
with incomplete information (CGIIs). In such a game, Nature
picks a world from a universe according to some common
prior; each player may have different observability of this
world. Then, the game proceeds sequentially, during which
there is no chance factor and all moves by the players are pub-
licly observable. This formalism is designed to be a minimal
generalisation of the notion of combinatorial games (which
are Boolean games of no chance and with perfect informa-
tion; see Siegel [2013]) and to closely capture the epistemic
aspect of games with incomplete information.

For such games, we are interested in knowing how much
reward an agent or a team of agents can guarantee for them-
selves; this corresponds to the notion of maxmin value, well
known in optimisation under uncertainty, in which we aim to
ensure that the worst possible outcome is not too bad.

By design, our new formalism seems particularly restric-
tive when compared to general EFGs, where hidden ac-
tions and arbitrary chance nodes are allowed. However, we
show that the computational complexity of computing opti-
mal strategies (with respect to the maxmin value) for CGIIs
is as hard as for EFGs, which allows concluding that the
difficulty of playing games comes from incomplete informa-
tion/knowledge alone, not from hidden actions or mid-game
chance factors. This also justifies that restricting algorith-
mic studies to CGIIs is without loss of generality. We also
give a construction to enforce coordination between players
in CGIIs under the constraint of public actions, which allows
modelling situations similar to concurrent actions.

2 Related Work
Game theory. The study of games with incomplete infor-
mation was pioneered by Harsanyi [1967; 1968a; 1968b],
who proposes a formalism to model games of incomplete
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information as EFGs with imperfect information. This for-
malism, called the Harsanyi model of incomplete informa-
tion, introduces types of players, or equivalently, a universe
of worlds for which each player has a potentially different
partial observability (also called the Aumann model of in-
complete information). For detailed and formal definitions,
see textbooks on game theory, e.g. Maschler et al. [2020,
Chapter 9].

Combinatorial games, the inspiration of our formalism of
CGII, are studied in the field of combinatorial game the-
ory, established in the 70s by two books by Conway [2000]
and Berlekamp et al. [2001; 2003a; 2003b; 2004]. For re-
cent advances in this field, see Nowakowski [1996; 2002;
2015], Albert and Nowakowski [2009], and Larsson [2019].

Our formalism is also inspired by Frank and Basin [1998],
who, in order to model the card play phase of the card
game Bridge, propose a game with public actions and one-
sided incomplete information in which the opponent has com-
plete information. Frank and Basin [2001] show that find-
ing optimal pure strategies for these games is NP-complete.
Ginsberg [2001] proposes the first exact algorithm for these
games, and implements it for Bridge robots. Parallelly, Chu
and Halpern [2001] study a model of games with incomplete
information with common payoffs, and only one round of
concurrent interaction after Nature picks the world; they show
that it is NP-complete to play such games optimally.

Like us, Kovarı́k et al. [2022] highlight the distinction be-
tween public and private actions. They also argue that this
distinction, essential for recent search algorithms, is partially
lost when we model sequential multi-agent interaction with
EFGs, which do not explicitly tell whether an action is pub-
lic or not. They propose an alternative model for stochastic
games that makes this distinction prominent, and show how
to transform such models to augmented EFGs and vice versa.

Complexity of games. Most work in the literature on the
computational complexity of games concerns the complex-
ity of finding Nash equilibria, especially for normal-form
games [Gilboa and Zemel, 1989; Daskalakis et al., 2009].
For more references, see Conitzer and Sandholm [2008], who
also show that it is NP-complete to decide whether Nash
Equilibria with certain natural properties exist.

Koller and Megiddo [1992], Koller et al. [1996], and von
Stengel [1996] make seminal contributions to understanding
the complexity of two-player zero-sum EFGs. They also
give polynomial-time algorithms for computing behaviour
maxmin strategies of EFGs with perfect recall, based on lin-
ear programming.

Maxmin for a team of players with common payoffs is
called team maxmin equilibrium (TME) in the literature, and
was first proposed by von Stengel and Koller [1997]. Basilico
et al. [2017] and Celli and Gatti [2018] propose another no-
tion called TMECor (“Cor” stands for “correlation”), which
allows agents in the same team to access a correlation de-
vice in order to coordinate their mixed strategies. Building
on these works, Gimbert et al. [2020] and Zhang et al. [2023]
study the complexity of TME and TMECor, thereby yielding
a relatively complete picture of the complexity of behaviour
and mixed maxmin for two-team EFGs.

The complexity of other models of decision making have
also been extensively studied, e.g. Markov decision pro-
cess [Mundhenk et al., 2000; Bernstein et al., 2002; Gold-
smith and Mundhenk, 2007], propositional planning [Rinta-
nen, 2004], graph games [Chatterjee and Henzinger, 2012;
Chatterjee et al., 2013]. Similar to these works, we confirm
the intuition that partial observability and multi-agent coordi-
nation increases the difficulty of optimal decision making.

3 Combinatorial Games with Incomplete
Information

3.1 Definitions
Combinatorial games are EFGs of no chance and with perfect
information. To generalise this formalism minimally to allow
incomplete information, we propose the following definition.

Definition 3.1 (CGII). A combinatorial game with incom-
plete information (CGII) is a tuple of the following elements:

• An Aumann model ⟨U,A, (Ri)i∈A, ρ⟩, where U is a fi-
nite set of worlds called universe, A is a set of agents,
Ri is an equivalence relation over U for each agent
i ∈ A, and ρ ∈ ∆(U) is a probability distribution over
the universe called common prior;

• A tree T called public tree, the nodes of which (N(T ))
are partitioned into {Ni(T )}i∈A ∪L(T ), where L(T ) is
the set of all leaves;

• A reward function ui : L(T )× U → R for each i ∈ A.

Note that the children of a node (available actions at that
node) do not depend on the real (and partially observable)
world ω; only the rewards depend on ω.

A CGII is said to be Boolean if all its reward functions have
values in B.1 The Aumann model of a CGII defines each
agent’s observability over the universe, which characterises
their incomplete information.

Pure strategies in a CGII. A CGII as an EFG with incom-
plete information proceeds as follows. First, Nature picks the
real world ω ∈ U according to ρ. Then the state game in ω
proceeds from the root of the public tree T ; agents take turns
to pick a child of the current node, depending on their equiv-
alence class of the real world. This continues until a leaf l is
reached, and agent i receives a payoff ui(l, ω).

Definition 3.2 (Pure strategy). A pure strategy of an agent
i ∈ A is a mapping si : Ni(T )×U → N(T ) such that for all
v ∈ Ni(T ):

• For all ω ∈ U , si(v, ω) is a child of v;

• ∀ω, ω′ ∈ U, ωRiω
′ =⇒ si(v, ω) = si(v, ω

′).2

The set of all pure strategies of agent i is denoted by ΣP
i .

From the definition of a strategy, one can see that the ac-
tions of every agent are indeed public: when making a deci-
sion at a node, an agent knows perfectly where the node is in

1In Boolean games, the rewards 0 and 1 are interpreted as a loss
and a win, respectively.

2This means agent i must pick the same child for a node in any
two worlds indistinguishable by them.
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Figure 1: The public tree of a CGII and the game tree of its corre-
sponding EFG, both with rewards omitted.

the public tree, which in particular means they observe and
remember the actions picked by every agent in the past, start-
ing from the root of the public tree. In addition, compared to
general games with incomplete information, the state games
of a CGII have the particularity that they share the same game
tree T , which does not have chance nodes. These three fea-
tures (public actions, unique game tree, and no chance) are
the defining features of our formalism CGII.

Each CGII describes an EFG in which Nature picks the real
world at the root, and information sets are determined by the
players’ observability of the world.

Example. Consider the following CGII: the public tree is
shown in Figure 1 (on the left); the universe reads {ω0, ω1};
agent 2 can distinguish these two worlds while agent 1 can-
not. This CGII models a variant of Matching Pennies with
incomplete information. The game tree of its corresponding
EFG is also shown in Figure 1 (on the right).

On the right, since agent 1 cannot observe the real world,
they must play H in both state games, or T in both. This
constraint is respected by the notion of strategies in a CGII:
on the left, agent 1 only has two pure strategies H and T since
ω0 and ω1 are indistinguishable by agent 1.

Similarly, on the right, agent 2 can pick between heads or
tails, depending on the choices of Nature and agent 1. On the
left, agent 2 can again pick between heads or tails, depending
on agent 1’s choice and the real world, since agent 2 can
distinguish between ω0 and ω1; note that the latter point is
not reflected by the public tree, but by the Aumann model.

Teams and Information in a CGII. In a CGII, agents i and
j are said to be in the same team if ui = uj .

Definition 3.3 (Team). A team is an inclusion-wise maximal
group of agents with the same reward function.

We now define a team’s degree of incomplete information.

• Multi-agent incomplete information (MA-II): an arbi-
trary team.

• Single-agent incomplete information (SA-II): a team of
agents with the same equivalence relation (i.e. Ri = Rj

for all agents i and j in the team).

• Complete information (CI): a team whose agents all have
the finest equivalence relation (i.e. Ri = {(ω, ω) | ω ∈
U} for all agents i in the team).

In particular, CI implies SA-II, which implies MA-II. Intu-
itively, a team is a group of decentralised agents with shared

interests working cooperatively. In a CGII, a team with SA-II
can be regarded as one single agent since every agent in this
team has the same information and all actions are public.
Example. In the CGII in Figure 1, if the two agents have the
same reward function, then they are in a team with MA-II;
otherwise, each is a (single-agent) team with SA-II.3

Due to the public actions property, there is a close link be-
tween the degree of incomplete information of a team in a
CGII and the degree of imperfect information of the corre-
sponding team in the EFG defined by the CGII:

• a team with CI in the CGII is a player with perfect infor-
mation in the EFG;

• a team with SA-II in the CGII can be seen as a single
player with perfect recall in the EFG;

• a team with MA-II in the CGII is a team of players who
all have perfect recall in the EFG.

This correspondence will allow us to establish upper bounds
on the complexity of solving CGIIs.
Team maxmin in a CGII. Let (s1, . . . , sn) ∈ ΣP

1 ×· · ·ΣP
n ,

where n = |A|, be a pure strategy profile. We write
(s1, . . . , sn)(ω) for the unique leaf reached under this profile
when the real world is ω.
Definition 3.4 (Expected utility). The expected utility for an
agent i ∈ A under a pure strategy profile (s1, . . . , sn) is de-
fined to be:

Ui(s1, . . . , sn) =
∑
ω∈U

ρ(ω)ui

(
(s1, . . . , sn)(ω), ω

)
.

Let T ⊆ A be a team. Notice that all agents in a team share
the same expected utility function, which we denote by UT .
A pure strategy of the team is uniquely defined by the pure
strategy of each of its players. In particular, the set of pure
strategies of a team T , denoted by ΣP

T , is in bijection with∏
i∈A ΣP

i . In the following, we also write ΣP
−T =

∏
i/∈T ΣP

i ,
the set of pure strategy profiles of the players not in T .
Definition 3.5 (Pure maxmin for a team). The pure maxmin
value for a team T ⊆ A is defined to be

vT := max
sT ∈ΣP

T

min
s−T ∈ΣP

−T

UT (sT , s−T ).

Intuitively, this value is the largest expected reward that a
team can guarantee to get by playing a pure strategy.

The notion of behaviour/mixed strategy can be defined
similarly to the one for EFGs: a mixed strategy of an agent
i is a probability mixture of pure strategies of i; a behaviour
strategy of i picks, at each node and for each equivalence
class of Ri, a probability mixture of children (instead of
just a child as for pure strategies). Hence, expected util-
ity with respect to behaviour/mixed strategy profiles and be-
haviour/mixed maxmin for a team can be similarly defined.4

In the following, we focus on zero-sum two-team CGIIs.
We call the two teams player MAX and player MIN, and de-
note them by + and −, respectively.

3The team of agent 2 even has CI.
4Behaviour maxmin and mixed maxmin are commonly known

as TME and TMECor in the literature [Celli and Gatti, 2018].
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Figure 2: Two EFGs for Matching Pennies.

3.2 Motivation for CGIIs
Our motivations for introducing CGII as a subclass of games
with incomplete information are multiple. First and foremost,
the formalism of CGII aims to be a minimal generalisation of
combinatorial games to allow incomplete information. In-
deed, it is clear that a CGII with a singleton universe is a
combinatorial game. This new formalism allows modelling a
number of card games, notably Bridge.5

But more importantly, the formalism of CGII also aims to
minimally capture the notion of knowledge and incomplete
information. Due to the public actions property, the only
source of the imperfect (in particular, incomplete) informa-
tion of every agent comes from their partial observability of
the real world, drawn at the beginning of a game.

In contrast, we argue that the distinction between perfect
and imperfect information does not completely capture the
essence of players’ knowledge. For example, in the game
Matching Pennies, MAX and MIN pick a side of a coin
concurrently; this can be modelled by two different EFGs,
shown in Figure 2. In the EFG on the left, MAX has perfect
information while MIN has imperfect information but per-
fect recall; and in the EFG on the right, the situation is re-
versed. However, the roles of MAX and MIN are symmetric
in Matching Pennies; MAX also has exactly the same infor-
mation/knowledge in both EFGs when they need to choose an
action. Hence, considering CGIIs allows one to focus on an
unambiguous notion of knowledge of the players, as captured
by the Aumann model and the initial drawing of a world.

Expressiveness. At first sight, the requirements of public
actions and no chance seem particularly restrictive: many
popular tabletop games with incomplete information allow
private actions (e.g. concealed Kong in Mahjong, pass in
Hearts) or have randomness and chance factors besides the
initial drawing (e.g. dice rolls during a game). One may worry
that, due to these restrictions, CGII is not expressive enough
to be conceptually or algorithmically interesting. However,
we argue that this impression is not correct.

First, an initial drawing over the universe is actually quite
expressive. For example, for the dice rolls we evoke above,
if their number and occasions are fixed in advance, then their
results can be encoded into the initial drawing of worlds.6
Another example is given by video games, which typically
use a random seed as the sole source of randomness for all
procedurally generated levels and random events during a

5The card play of Bridge can be described as a CGII in which
MAX has SA-II and MIN has MA-II.

6This will only enlarge the game tree by a polynomial factor.

MAX
MIN CI SA-II MA-II

CI P NP-c ΣP
2-c

SA-II NP-c NP-c ΣP
2-c

MA-II NP-c NP-c ΣP
2-c

Table 1: Complexity of PURE MAXMIN for CGIIs.

playthrough. Similar ideas have been investigated in auto-
mated planning [Palacios and Geffner, 2009, Sec. 10].

Second, even with only public actions, we show in Sub-
section 4.1 that we can still design a game to force a team of
players to coordinate their actions. This means that we can
essentially encode concurrent actions (as in standard Match-
ing Pennies) using only public actions (and no chance except
the initial drawing).

All in all, we suggest that at least as far as computation of
optimal strategies is concerned, CGII, rather than EFG, be the
right model for studying sequential multi-agent interactions
depending on each player’s knowledge. Moreover, as we will
show, CGIIs are as hard to solve as EFGs, which confirms
our intuition that the difficulty of a game actually comes from
the incomplete information of a player, and not from their
inability to observe the moves made by the other players.

4 Complexity of PURE MAXMIN for CGIIs
The decision problem PURE MAXMIN is defined as follows.
Definition 4.1 (PURE MAXMIN). Let G be a class of zero-
sum CGIIs. Then PURE MAXMIN(G) is the following deci-
sion problem.
INPUT A CGII G ∈ G and a rational number m.
OUTPUT Decide whether the pure maxmin value for team

MAX in G satisfies v+(Σ
P
+,Σ

P
−) ≥ m.

We study the complexity of PURE MAXMIN for CGIIs de-
pending on the degrees of incomplete information for MAX
and MIN: complete information (CI), single-agent incom-
plete information (SA-II), multi-agent incomplete informa-
tion (MA-II). For complexity analyses, we consider the pa-
rameters |T | (number of nodes in the public tree), |U | (num-
ber of worlds), and possibly the number of bits to encode the
utilities, the common prior, and the threshold m.

The complexity of PURE MAXMIN is summarised in Ta-
ble 1. By definition, the complexity of each case is increas-
ingly monotone in both MAX’s and MIN’s degree of incom-
plete information (CI/SA-II/MA-II). Hence, only a few hard-
ness results have to be proved to establish the table. The re-
sults written in bold font are new from this work; the others
can be directly deduced from the literature.

The membership results in Table 1 follow from results by
Koller and Megiddo [1992, Sec. 3.3]; in particular, member-
ships in NP and in ΣP

2 follow from the fact that given a strat-
egy of MAX, computing MIN’s best response is a problem in
coNP, and even linear time when MIN has perfect recall.

Hence, we focus on hardness results. The following result
is by Frank and Basin [2001, Sec. 6].7

7In their setting, there is no prior over the worlds; they are in-
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Proposition 4.2. PURE MAXMIN is NP-hard for Boolean
CGIIs in which MAX has SA-II and MIN has CI.

The symmetric case does not trivially follow from this re-
sult (since the minimax theorem does not hold for pure strate-
gies) and necessitates a proof:
Proposition 4.3. PURE MAXMIN is NP-hard for Boolean
CGIIs in which MAX has CI and MIN has SA-II.

Proof sketch. By a reduction from VERTEX COVER. Given
a graph (V,E), consider the universe U = {ωe | e ∈ E};
the worlds are observable by MAX but not by MIN. During
the game, MAX picks a vertex v ∈ V , then MIN picks an
edge e′ ∈ E. In a world ωe ∈ U , MAX gets a payoff of 1
if v covers e and MIN does not correctly guess this edge (i.e.
e′ ̸= e); otherwise, MAX gets 0. One can verify that the pure
maxmin value of this game is at least 1− k/|E| if and only if
the graph has a vertex cover of size at most k.

4.1 Multi-Agent Coordination in CGIIs
Coordination game. Now we turn our attention to CGIIs
with multi-agent teams. We first show how to construct CGIIs
to impose a perfect coordination between agents from the
same team (à la Matching Pennies).

Consider the following Boolean CGII, which we call coor-
dination game. This game has two agents of MAX, referred
to as MAX 1 and MAX 2, and no agent of MIN; its universe
has 4 worlds and reads U = {(b1, b2) | b1, b2 ∈ B}; its
Aumann model has the uniform common prior and is such
that for i = 1, 2, MAX i only observes bi; its public tree is
shown in Figure 3; the reward for MAX is 1 if and only if
a1 ⊕ b1 = a2 ⊕ b2, where ⊕ is the exclusive or of two bits
and ai is the action chosen by MAX i.

We refer to bi as the hidden bit of MAX i since it is only
observable by MAX i. The coordination game is designed in
such a way that MAX 1 and MAX 2 must perfectly coordinate
their answer in order to win. Intuitively, MAX 1 and MAX 2
need to agree on the same answer A ∈ B, then stick to it
during the game by playing ai = A ⊕ bi. Indeed, if they
employ this strategy, then they guarantee a win since

a1 ⊕ b1 = (A⊕ b1)⊕ b1 = A = (A⊕ b2)⊕ b2 = a2 ⊕ b2.

Remark. Under these two winning strategies (one for each
value of A), both MAX 1 and 2 pick the actions 0 and 1
with equal probability. Indeed, once the common answer A
is fixed, which action to play by MAX i is dictated by their
hidden bit bi. Hence, the bits b1 and b2 act as the keys of a

terested in the strategies that win in the greatest number of worlds.
This is equivalent to finding maxmin strategies with respect to the
uniform prior in our setting.

one-time pad to encrypt/mask the intended answer (i.e. A) of
MAX 1 and 2. This is the key element to ensure that MAX 1
and 2 must cooperate without cheating.

Proposition 4.4. In a coordination game, the only winning
pure strategies of team MAX are of the following form: for
some A ∈ B, MAX 1 plays A⊕ b1 and MAX 2 plays A⊕ b2.

Proof. Notice that the pure strategies of MAX 1 can be writ-
ten in the form (a01, a

1
1), which means they choose a01 if

b1 = 0 and a11 if b1 = 1. As for MAX 2, they have the
right to pick a2 as a function of a1 and b2. If MAX 1 plays
(A,A) (i.e. they play A regardless of b1) for some A ∈ B,
then MAX 2 has no winning strategy, since the winning con-
dition A ⊕ b1 = a2 ⊕ b2 cannot be satisfied for both values
of b1. Now if MAX 1 plays (A,A⊕ 1) for some A ∈ B, then
to satisfy the winning condition, MAX 2 is forced to play
a2 = A⊕ b2; hence ai = A⊕ bi.

The same reasoning also shows that these pure strategies
are also the only winning behaviour strategies, and that the
winning mixed strategies are exactly the mixtures of them.

Remark. From this proof, one can see that if MAX 1 cheats
by using their hidden bit b1 incorrectly (i.e. does not use b1
to encrypt their intended answer and always picks the same
action), then MAX 2 cannot cooperate perfectly since they
cannot observe the value of b1.

In addition, when MAX 1 plays correctly (i.e. chooses a
strategy of the form (A,A ⊕ 1)), then MAX 2 must also pick
A as their intended answer and mask it with their own bit b2
in order to win. Notice that in this case, the action picked by
these two agents are uniformly and independently distributed.
This is an important feature since agents (of MAX or MIN) in
the following part of the game tree cannot deduce any in-
formation about the intended answer of these two agents by
observing only their actions.

Interrogation game. We now generalise the coordination
game to the following situation: we have a finite set of ques-
tions Q, and MAX has a Boolean answer for each question
{Aq ∈ B}q∈Q, or equivalently a mapping from Q to B. We
wish to verify whether MAX’s mapping satisfies some given
binary constraints {Cqq′ ⊆ B2 | q, q′ ∈ Q, q ̸= q′}: MAX’s
mapping is said to be valid if it satisfies all the constraints,
that is, (Aq, A

′
q) ∈ Cqq′ for all Cqq′ .

Example. For cliques of a given graph, the questions are the
vertices of this graph; MAX’s mapping induces a subgraph
(MAX’s answer to a vertex corresponds to whether to include
this vertex in their intended subgraph); the binary constraints
impose the requirement that all vertices in this subgraph be
connected. Then MAX’s mapping is valid if and only if it
describes a clique of the graph.

To model this situation, consider the following Boolean
CGII, which we call interrogation game: two agents of MAX
(MAX 1 and MAX 2), and no agent of MIN; the universe
reads U = {(q1, b1, q2, b2) | q1, q2 ∈ Q, b1, b2 ∈ B}; the
Aumann model is such that for i = 1, 2, MAX i only ob-
serves qi and bi; the common prior is uniform; the public
tree is the same one as for the coordination game (i.e. the one
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in Figure 3); MAX loses if and only if either (1) q1 = q2 but
a1⊕b1 ̸= a2⊕b2 or (2) q1 ̸= q2 but (a1⊕b1, a2⊕b2) /∈ Cq1q2 .

This CGII has size O(|Q|2): the universe has size O(|Q|2),
while the public tree has size O(1). Notice that a coordination
game is just an interrogation game with only one question
(hence no binary constraint). We refer to (qi, bi) as the hidden
information of MAX i. Inspired by the coordination game,
we propose the following definition.
Definition 4.5 (Perfect coordination). In an interrogation
game, a perfect coordination of team MAX is a pure strat-
egy of MAX of this form: there is a set {Aq ∈ B}q∈Q such
that for all i, MAX i will play the action ai = Aqi ⊕ bi in all
worlds in which their hidden information is (qi, bi). For such
a strategy, the set {Aq}q∈Q is called the intended mapping or
intended answer of the perfect coordination.

By a similar argument to the one for the coordination game,
the reward condition (1) ensures that MAX 1 and 2 have an in-
centive to implement a perfect coordination, which is a dom-
inant strategy. In other words, (1) imposes non-adaptivity
of MAX’s answers. As for the reward condition (2), it en-
sures that all binary constraints are satisfied by the intended
mapping of a perfect coordination, since by (1) we have
ai ⊕ bi = Aqi for all i. In summary, we have established
the following result.
Proposition 4.6. In an interrogation game, a pure strategy of
team MAX is winning if and only if it is a perfect coordination
with a valid intended mapping.

It is straightforward to construct interrogation games in-
volving team MIN such that if MIN does not cooperate,
MAX receives a large reward. Similarly, we can also ex-
tend the construction above to allow k-ary constraints with
k ≥ 2. The interrogation game will then involve k agents
of MAX, each with their hidden information (qi, bi), and has
size O(2k|Q|k). Such an interrogation game can be used to
encode problems such as k-SAT.8

4.2 Hardness for Two-Team CGIIs
With the gadgets of interrogation game, it is straightforward
to show that PURE MAXMIN is ΣP

2 -hard for CGIIs in which
both MAX and MIN are multi-agent teams, for instance by
a reduction from the canonical problem ∃∀3SAT. However,
we provide a stronger result: ΣP

2 -hardness holds even when
MAX has complete information.
Proposition 4.7. PURE MAXMIN is ΣP

2 -hard for CGIIs in
which MAX has CI and MIN has MA-II.

Proof sketch. By a reduction from the ΣP
2 -complete problem

SUCCINCT SET COVER [Umans, 1999]: given a collection
of 3-DNF formulae and an integer k, decide whether there
is a subset S of size at most k the disjunction of which is a
tautology.

We design a game in which Nature draws a DNF formula
from the collection, 3 variables, and 4 hidden bits, according
to the uniform common prior. The DNF is known to MAX,
who plays 1 or 0 according to whether it should be in S. This

8Contrastingly, we leave open the problem of constructing an
interrogation game in which MAX’s answers are not binary.

MAX
MIN CI SA-II MA-II

CI P P coNP-c
SA-II P P coNP-c

MA-II NP-c NP-c ΣP
2-c/∆P

2-c

Table 2: Complexity of BEHAVIOUR MAXMIN and of MIXED
MAXMIN for CGIIs.

answer is masked (to MIN) by the hidden bit of MAX, as in
a coordination game. Then MIN chooses either to verify the
size of S or to verify that the disjunction of S is a tautol-
ogy. The other 3 hidden bits are used in the latter verification:
MIN plays an interrogation game over the 3 variables, with
the constraint to falsify the disjunction of S.

Finally, since MAX is designed to have CI, they know the
variables and the hidden bits of MIN. To ensure that MAX
does not play a strategy that depends on MIN’s information,
we introduce one additional agent of MIN whose role is to
punish MAX whenever MAX plays such a strategy.

Remark. The construction shows something stronger: ΣP
2 -

hardness holds even when MIN has joint complete informa-
tion (i.e. if the agents of MIN could pool their information,
then they would have complete information).

5 Complexity of BEHAVIOUR MAXMIN and
MIXED MAXMIN

The decision problems BEHAVIOUR MAXMIN and MIXED
MAXMIN can be defined similarly to PURE MAXMIN, the
only difference being that MAX can use behaviour/mixed
strategies instead of just pure strategies.9

The complexity of BEHAVIOUR MAXMIN and MIXED
MAXMIN is summarised in Table 2. Again, the complexity is
increasingly monotone in both dimensions, and results writ-
ten in bold font are new. The only case where the complexity
differs between behaviour and mixed strategies is the case in
which both MAX and MIN have MA-II; in this case, BE-
HAVIOUR MAXMIN and MIXED MAXMIN are respectively
ΣP

2 - and ∆P
2 -complete.

The membership results follow from those for EFGs,
which are superclasses of CGIIs: the results for P are by
Koller and Megiddo [1992, Sec. 3.5], and the others by Zhang
et al. [2023, Appx. C].

Therefore, we only have to establish the hardness results
when MAX and/or MIN have MA-II. We first adapt a reduc-
tion from 3-SAT by Chu and Halpern [2001].

Proposition 5.1. Both BEHAVIOUR MAXMIN and MIXED
MAXMIN are NP-hard for Boolean CGIIs in which MAX has
MA-II and MIN has CI.

9In our definition for all these decision problems, MIN only uses
pure strategies, which is without loss of generality. Indeed, MIN is
a team of agents with perfect recall, hence every MIN’s behaviour
strategy has an equivalent mixed strategy [Maschler et al., 2020,
Theorem 6.11]. In addition, the best responses in mixed strategies
are no better than the best responses in pure strategies due to the
linearity of expected utility with respect to mixtures of strategies.
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Proof. For a 3-CNF with N clauses, consider the following
CGII. The universe consists of the clauses, which are observ-
able by MAX 1 but not by MAX 2, and with the uniform
prior. During the game, MAX 1 picks a variable, then MAX 2
observes this variable and picks a truth value. They win if and
only if the variable picked by MAX 1 is in the clause picked
by Nature, and the truth value picked by MAX 2 for this vari-
able renders this clause true.

Since there is no agent of MIN in this game, playing be-
haviour or mixed strategies is no better than pure ones. It is
also straightforward to verify that MAX can guarantee an ex-
pected payoff of 1 if the 3-CNF is satisfiable; otherwise, the
maxmin value for MAX is at most 1− 1/N .

Now, coNP-hardness for the symmetric case (when MAX
has CI and MIN has MA-II) essentially follows from this re-
sult. For mixed strategies, the minimax theorem ensures that
when switching the roles of MIN and MAX, and negating the
utilities in the game from the proof of Proposition 5.1, the
maxmin value for MAX is at least −(1− 1/N) if the 3-CNF
is unsatisfiable, and −1 otherwise. The hardness for BE-
HAVIOUR MAXMIN follows from the fact that mixed maxmin
and behaviour maxmin have the same value due to MAX’s
perfect recall.

Proposition 5.2. BEHAVIOUR MAXMIN is ΣP
2 -hard for

CGIIs in which both MAX and MIN have MA-II.

Proof sketch. By a reduction from ∃∀3SAT (for a 3-DNF
formula φ(x, y), decides whether ∃x∀y φ(x, y) holds) which
is known to be ΣP

2 -hard [Schaefer and Umans, 2002]. Given
such a formula, we construct a CGII with 3 agents of MAX
and 3 agents of MIN. The worlds consist of one existential
(resp. universal) variable and one hidden bit for each agent
of MAX (resp. of MIN); the common prior is uniform; each
agent only observes their variable and hidden bit. During the
game, the agents of MAX take turns to choose between 0 and
1, then so do the agents of MIN. The total payoff for MAX is
computed as follows: (1) an inconsistency among the agents
of MAX (in the sense of an interrogation game) yields −N
for MAX, where N is a large real number; (2) an inconsis-
tency among the agents of MIN yields +N for MAX; (3) if at
least one term in φ(x, y) is satisfied by the assignment picked
by the agents of MAX and MIN, then MAX receives +1.

By choosing N large enough, agents of MAX have an in-
centive to perform a perfect coordination, and the same goes
for agents of MIN. In particular, MAX has no incentive to
play non-pure behaviour strategies, which would cause in-
consistency to happen with a non-zero probability. It is then
straightforward to verify that ∃x∀y φ(x, y) holds if and only
if MAX can guarantee an expected utility of at least +1/n3,
where n is the maximum between the number of existential
variables and the number of universal ones.

Proposition 5.3. MIXED MAXMIN is ∆P
2 -hard for CGIIs in

which both MAX and MIN have MA-II.

Proof sketch. By a reduction from LAST SAT (for a 3-CNF,
decide whether the lexicographically maximum satisfying as-
signment has value 1 for the last variable), which is ∆P

2 -hard
[Krentel, 1988]. The construction is very similar to the last

proof. Given a 3-CNF, we write the variables as x1, . . . , xn,
and we construct a CGII with 3 agents of MAX and 3 agents
of MIN. The worlds consist of one variable and one hidden
bit for each agent of MAX or MIN; the common prior is uni-
form; each agent only observes their variable and hidden bit.
During the game, the agents of MAX take turns to choose be-
tween 0 and 1, then so do the agents of MIN. The total payoff
for MAX is computed as follows: (1) an inconsistency among
the agents of MAX or a clause violated by their assignment
yields −2N for MAX, where N is a large real number; (2) an
inconsistency among the agents of MIN or a clause violated
by their assignment yields +N for MAX; (3) for the first
agent of MAX (resp. of MIN), if their hidden variable and
bit are xk and b, and they pick 1 ⊕ b, then MAX receives
+2n−k (resp. −2n−k); (4) MAX receives a bonus +1 if the
variable xn is assigned 1⊕ b+1 by the first agent of MAX.

By choosing N large enough, both MAX and MIN have
an incentive to perform a perfect coordination (which can be
pure or mixed for MAX) with a satisfying assignment. Let
x = (x1, . . . xn) be the lexicographically maximum satisfy-
ing assignment (if there is no such assignment, then MAX is
bound to get a large negative expected utility). If xn = 1, then
MAX can guarantee an expected utility of +1/n by choosing
this assignment for their perfect coordination; the best MIN
can do is to choose this assignment. If xn = 0, MAX has an
expected utility of at most 0 when MIN plays this assignment:
MAX gets 0 by playing the same assignment, and possibly
less when playing other satisfying (hence lexicographically
smaller) assignments with a non-zero probability.

6 Conclusion
We have proposed a new formalism for extensive-form games
with incomplete information that we name combinatorial
games with incomplete information. Compared to EFGs,
CGIIs only have public actions and one chance node at the
beginning of the game, thereby putting better emphasis on the
aspect of incomplete information/knowledge of the players.

Apart from the conceptual simplicity, the interests in this
new formalism are also justified by the complexity results.
Indeed, all the upper bounds for CGIIs are provided by mem-
bership results that also hold for EFGs, while all the lower
bounds, proven by hardness results, coincide with the upper
bounds. In particular, for every degree of observability, CGIIs
have the same complexity as EFGs.

We have also shown how to model binary concurrent ac-
tions to enforce multi-agent coordination in CGIIs. We leave
to future work how to model other types of hidden actions,
in particular non-binary concurrent actions. Future work also
includes tightening the complexity results to show that hard-
ness holds even for Boolean CGIIs with a minimum number
of agents and distributed knowledge of the real world for each
team; designing a generic polynomial transformation from
an arbitrary two-team EFG into a CGII; and extending the
study to general-sum multi-team CGIIs with respect to solu-
tion concepts that generalise maxmin (e.g. strategies to com-
mit to [Letchford and Conitzer, 2010]). Algorithmic studies
adapted to CGIIs will also be of interest, with the long-term
goal to implement better AIs for games such as Bridge.
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