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Abstract
We study matching settings in which a set of agents
have private utilities over a set of items. Each agent
reports a partition of the items into approval sets
of different threshold utility levels. Given this lim-
ited information on input, the goal is to compute
an assignment of the items to the agents (subject
to cardinality constraints depending on the appli-
cation) that (approximately) maximizes the social
welfare (the total utility of the agents for their as-
signed items). We first consider the well-known,
simple one-sided matching problem in which each
of a set of agents is to be assigned exactly one item.
We show tight bounds on distortion of determin-
istic and randomized matching algorithms that are
functions of the number of threshold utility levels.
We further show that our distortion bounds extend
to a more general setting in which there are multi-
ple copies of the items, each agent can be assigned
a number of items (even copies of the same one) up
to a capacity, and the utility of an agent for an item
depends on the number of its copies that the agent
is given.

1 Introduction
The assignment of papers to reviewers in conference man-
agement systems like CMT, HotCRP, EasyChair and Open-
Review is computed using bidding information that classifies
the papers into sets based on whether the reviewers are, for
example, eager, willing, or not willing to handle them. In a
sense, this process defines a collection of threshold levels that
the reviewers (or, more generally, agents) can use to partition
the papers (or, more generally, items) into associated approval
sets based on their preferences (which can be dependent on
their experience, their interests, and so on).

Eliciting only threshold approvals rather than more de-
tailed information about the underlying utility preferences of
the agents for the items inevitably leads to inefficiency in
terms of natural, cardinal objectives such as the well-known
social welfare (the total utility). Typically, the loss of effi-
ciency of decision-making methods that have access only to
incomplete information is captured by the notion of distor-
tion, which is defined as the worst-case ratio of the maximum

possible social welfare over that of the computed solution.
The distortion was originally used for social choice settings
(such as voting) where decisions are made only based on
ordinal information (rankings) [Procaccia and Rosenschein,
2006; Boutilier et al., 2015], but has recently been studied for
settings in which different types of information is available
or can be elicited (e.g., see [Amanatidis et al., 2021; Amana-
tidis et al., 2022; Mandal et al., 2019; Mandal et al., 2020;
Ma et al., 2021]).

In the matching setting we study in this work, which cap-
tures various interesting applications (such as the paper as-
signment problem in peer-reviewing that we briefly intro-
duced above, as well as general constrained resource alloca-
tion), the threshold approvals reported by the agents is a type
of information that lies in-between fully cardinal and fully or-
dinal. Hence, while we cannot hope to achieve full efficiency,
we can hope to achieve distortion better than what is possible
just with ordinal preferences, depending on how detailed the
threshold approvals are. In particular, we are interested in the
possible tradeoffs between the distortion and the number of
threshold levels both for when allocations are computed de-
terministically (which is the most natural way of doing so in
social choice problems), as well as when randomization can
be exploited.

1.1 Our Contribution
We start by considering the fundamental one-sided matching
problem (also known as house allocation) to introduce the
main ideas of our techniques, before turning to a more gen-
eral setting. In one-sided matching, there is a set of n agents
with utilities for a set of n items; we assume that the util-
ities satisfy the standard unit-sum assumption [Aziz, 2019].
The utilities are private and are not explicitly reported by the
agents. Instead, for a number t of decreasing threshold val-
ues, each agent reports a collection of t approval sets con-
sisting of items of different utility level; in particular, each
approval set is associated with a threshold value and includes
all items for which the agent has utility that is at least this
threshold. Given the approval sets as input, our goal is to
determine a one-to-one matching between agents and items
so that the social welfare (total utility of the agents for their
assigned items) is maximized.

We show tight bounds on the best possible distortion
achieved by matching mechanisms for any number t of
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thresholds. In particular, we show a bound of Θ( t
√
n) for

deterministic mechanisms, and a bound of Θ( t+1
√
n) for ran-

domized ones. The lower bounds are presented in Section 3
and the upper bounds in Section 4. To put the bounds into
perspective, we note that just one threshold is sufficient to
obtain distortion Θ(n) for deterministic algorithms, beating
the best possible distortion of Θ(n2) that can be achieved us-
ing ordinal information [Amanatidis et al., 2022]. Similarly,
a distortion of Θ(

√
n) can be achieved with randomization,

matching the best possible distortion achieved by ordinal ran-
domized algorithms [Filos-Ratsikas et al., 2014].

In Section 5, we turn our attention to a more general set-
ting where the agents have capacities, indicating the maxi-
mum number of items they can receive, and the items have
supplies, indicating the number of copies of them that are
available. We make a budget-balance assumption that the
total capacity is asymptotically of the same order of the to-
tal supply; for example, in the paper assignment problem, all
papers must receive a number of reviews, and so the total ca-
pacity must be sufficiently larger than the total supply. We
also assume that, when agents can receive multiple copies of
an item, their utility depends on the number of these copies,
and thus the copies are not treated as independent items. Our
goal is to compute an allocation of items to agents, such that
the capacity and the supply constraints are satisfied, and the
social welfare is maximized.

As this setting is a generalization of the one-sided match-
ing (in which the number of agents is equal to the number of
items, and there are unit capacities and supplies), our lower
bounds from Section 3 extend directly. For the upper bounds,
we show that, for t thresholds, the best possible distortion
achieved by deterministic mechanisms is O(c · t

√
T ), while

the best distortion achieved by randomized mechanisms is
O(c · t+1

√
T ), where T is the total available supply (or capac-

ity) and c is a parameter that depends either on the maximum
capacity or the ratio between the number of items and agents.
From this, we get bounds Θ( t

√
n) and Θ( t+1

√
n) when the ca-

pacities and the supplies are constant.

1.2 Related Work
The distortion was originally defined by Procaccia and
Rosenschein [2006] to measure the worst-case loss in social
welfare when voting decisions are made using only ordinal
information. Since then, the distortion has been studied for
several different voting problems, including utilitarian vot-
ing [Procaccia and Rosenschein, 2006; Boutilier et al., 2015;
Caragiannis and Procaccia, 2011; Caragiannis et al., 2017;
Ebadian et al., 2022], metric voting [Anshelevich et al., 2018;
Caragiannis et al., 2022; Charikar and Ramakrishnan, 2022;
Charikar et al., 2024; Gkatzelis et al., 2020; Kizilkaya and
Kempe, 2022], and combinations of the two [Gkatzelis et al.,
2023]. It has also been studied for social choice problems
beyond voting, such as one-sided matching that we also con-
sider in this paper [Filos-Ratsikas et al., 2014; Amanatidis et
al., 2022; Amanatidis et al., 2024], as well as other cluster-
ing and graph problems [Abramowitz and Anshelevich, 2018;
Anshelevich and Sekar, 2016; Burkhardt et al., 2024]. See the
survey of Anshelevich et al. [2021] for an introduction to the
distortion framework.

Our paper follows a relatively recent stream of papers
within the distortion literature that have considered elicita-
tion methods beyond ordinal information. In this direction,
Mandal et al.; Mandal et al. [2019; 2020] showed tradeoffs
between the best possible distortion and a communication
complexity measure (the number of bits the agents can use to
report information) for utilitarian voting. Results of similar
flavour for metric voting have also been shown, for example,
by Kempe [2020].

More related to our work, in a series of papers, Ama-
natidis et al.; Amanatidis et al.; Amanatidis et al. [2021;
2022; 2024] studied voting and matching settings in which
the agents provide ordinal information and, on top of that, are
capable of answering value queries about their utilities for
specific alternatives. They showed lower and upper bounds
on the distortion of deterministic mechanisms that are func-
tions of the number of queries per agent that are of similar to
ours in the sense that the distortion decreases with the number
of queries; some of their lower bounds (related to the num-
ber of queries required to achieve constant distortion) were
recently improved by Caragiannis and Fehrs [2023]. An-
other related paper is that of Ma et al. [2021] who considered
the one-sided matching problem when the agents can answer
binary threshold queries about whether their utility for spe-
cific alternatives is larger than appropriately chosen thresh-
olds. Using an approach similar to that of Amanatidis et al.,
they showed bounds on the distortion of deterministic mech-
anisms that is a function of the number of queries in terms
of the social welfare among matchings that satisfy properties
such as Pareto or rank-maximality. Ignoring differences in
the models, the elicitation methods in these papers are related
to the one we consider since the threshold approval sets can
be computed using a number of (value or binary threshold)
queries. Hence, our elicitation method is in a sense a bit more
demanding. However, for the setting we focus here, we are
able to show asymptotically tight bounds not only for deter-
ministic mechanisms, but also for randomized ones, which
have not been studied before.

Threshold approvals have also been recently explored in
various other works on the distortion of voting mechanisms,
most notably by Ebadian et al. [2023] who showed that a sin-
gle, appropriately chosen threshold is sufficient to achieve a
distortion of O(

√
m) in utilitarian single-winner voting with

m alternatives. In metric voting, Anshelevich et al. [2024]
showed improved distortion bounds using an approval set per
agent computed by a threshold value that is relative (rather
than absolute) to the distance from the top-ranked alternative.
Threshold approvals have also been considered in the context
of participatory budgeting by Benadè et al. [2021], and vot-
ing under truthfulness constraints by Bhaskar et al. [2018].
All these works use just a single threshold, whereas we here
explore the full potential of this elicitation method (for match-
ing problems, rather than voting) using multiple thresholds
and show tight bounds on the possible distortion.

2 The One-Sided Matching Problem
We start with the simple one-sided matching setting to ex-
press the core idea; in Section 5, we show that our results
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extend to a more general setting that more accurately cap-
tures applications such as paper assignment in peer review-
ing. Let N be a set of n agents and M be a set of n
items. Agent i has a utility function ui : M → [0, 1] over
the items. We assume that these utility functions satisfy the
unit-sum assumption, which means for each agent i ∈ N ,∑

j∈M ui(j) = 1. Together, these utility functions form the
utility profile u⃗. A matching of the items to the agents is a
bijection A : N → M. With a slight abuse of notation, we
use Ai = A(i) to refer to the item matched to agent i, and
also A(a) to refer to the agent matched to item a. We define
the social welfare of a matching A under utility profile u⃗ to
be the total utility of the agents for the items they are matched
to, i.e.,

sw(A, u⃗) =
∑
i∈N

ui(Ai) =
∑
a∈M

uA(a)(a).

The goal is to compute a matching with high social welfare
in the worst case. For ease of notation, we will drop u⃗ from
sw(A, u⃗) whenever it is clear from context.
Elicitation Method. In this paper, we focus on elicit-
ing threshold approval votes. A threshold vector τ⃗ =
(τ1, . . . , τt), we ask each agent i to submit t disjoint thresh-
old approval subsets of M, denoted by Si,1, . . . , Si,t, where
Si,k includes the items for which the agent has utility in
[τk−1, τk), with τ0 := 1. In other words, Si,k = {j ∈
M : τk−1 ≥ ui(j) > τk}. All these n × t threshold ap-
proval sets form the input profile S. Note that different utility
profiles might induce the same input profile. We say that a
utility profile u⃗ is consistent with an input profile S (in which
say we write u⃗ ▷ S) if for each agent i ∈ N , k ∈ [t], and
j ∈ Si,k, τk−1 ≥ ui(j) > τk.
Mechanisms and Distortion. A mechanism f defines a
threshold vector τ⃗ , takes an input profile S based on τ⃗ , and
then outputs a matching f(S) of the items to the agents. The
distortion of a matching A on input profile S is defined as:

dist(A,S) = sup
u⃗▷S

sw(A∗, u⃗)

sw(A, u⃗)
,

where A∗ is the matching with the maximum social welfare
with respect to u⃗. The distortion of a matching mechanism
f is defined as the worst case distortion of f on any input
profile:

dist(f) = sup
S

dist(f(S),S).

3 Lower Bounds
In this section we show lower bounds on the best possible
distortion achievable by deterministic and randomized mech-
anisms for the one-sided matching problem. In particular,
for mechanisms that use t ≥ 1 thresholds, we show a lower
bound of Ω( t

√
n) for deterministic mechanisms and a lower

bound of Ω( t+1
√
n) for randomized mechanisms. We start by

showing a technical lemma that holds for randomized mech-
anisms that will be useful in establishing the lower bounds
in several cases. For a randomized mechanism f , denote by
p(i, a) the probability that item a is assigned to agent i ac-
cording to f . Due to lack of space, the proof of the following

statement, as well as that of some other ones, can be found in
the technical appendix.
Lemma 1. For any subset of items M ⊆ M, let AM be the
matching of the items in M to the agents with minimum sum of
probabilities with respect to f . Then,

∑
a∈M p(AM (a), a) ≤

1.

We are now ready to show the lower bounds via a sequence
of lemmas capturing different cases. The first lower bound
depends on the ratio of consecutive threshold levels and holds
for any mechanism (randomized or deterministic).
Lemma 2. Consider a threshold vector τ⃗ = (τ1, . . . , τt),
and let k ∈ [t] be such that δ = τk−1/τk is the largest multi-
plicative gap between two consecutive thresholds (assuming
τ0 = 1). Then, the distortion of any matching mechanism f
that uses τ⃗ is Ω(δ).

Our next two lemmas provide lower bounds for determin-
istic and randomized mechanisms, respectively, for when the
last threshold level is sufficiently small.
Lemma 3. Consider a threshold vector τ⃗ = (τ1, . . . , τt) such
that τt ≥ 1/(n− 1). Then, the distortion of any deterministic
matching mechanism f that uses τ⃗ is unbounded.

Proof. Consider the input profile S where the threshold ap-
proval sets of any agent are empty, and thus the utility of any
agent for any item is at most τt. Let A = f(S) be the match-
ing computed by the deterministic matching mechanism f ,
and let B be another matching such that A(a) ̸= B(a) for ev-
ery item a ∈ M. Consider the utility profile u⃗ where agents
have utility 0 for their matched item in A, utility τt for their
matched item in B, and (1 − τt)/(n − 2) for each of the
remaining n − 2 items. Note that τt ≥ 1/(n − 1) =⇒
(1− τt)/(n− 2) ≤ τt, and hence u⃗▷S. Since sw(A, u⃗) = 0
and sw(B, u⃗) = n · τt > 0, the distortion is unbounded.

Lemma 4. Consider a threshold vector τ⃗ = (τ1, . . . , τt) such
that τt > 1/n. Then, the distortion of any randomized match-
ing mechanism f that uses τ⃗ is Ω(n · τt).

Proof. Consider the input profile S where the threshold ap-
proval sets of any agent are empty, and thus the utility of any
agent for any item is at most τt. Let AM be the matching
over M with minimum sum of probabilities; by Lemma 1,∑

a∈M p(AM(a), a) ≤ 1. Now, consider the utility profile u⃗
where each agent has utility τt for the item she is matched to
according to AM and utility (1− τt)/(n− 1) for each of the
remaining items. Note that τt ≥ 1/n =⇒ (1−τt)/(n−1) ≤
τt, and hence u⃗▷S. The expected social welfare of the mech-
anism is

EA∼f(S)

[∑
a∈M

uA(a)(a)

]
=

∑
a∈M

(
p(AM(a), a) · τt+

(1− p(AM(a), a) · 1− τt
n− 1

)
=

(
τt −

1− τt
n− 1

) ∑
a∈M

p(AM(a), a) + n · (1− τt)

n− 1

≤ τt −
1− τt
n− 1

+ n· (1− τt)

n− 1
= 1.
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Since sw(AM, u⃗) = n · τt, the distortion is Ω(n · τt).

By appropriately combining Lemmas 2, 3, and 4, we can
establish the desired lower bounds on the distortion of the
different types of mechanisms.

Theorem 1. The distortion of any deterministic matching
mechanism f that uses a threshold vector τ⃗ of length t is
Ω( t

√
n).

Proof. If τt ≥ 1/(n − 1), by Lemma 3, the distortion
is unbounded. Otherwise, if τt ≤ 1/(n − 1), let k ∈
argmaxj∈[t] τj−1/τj with τ0 = 1. Clearly,(

τk−1

τk

)t

≥
∏
j∈[t]

τj−1

τj
=

1

τt

=⇒ δ =
τk−1

τk
≥ τ

−1/t
t ≥ t

√
n,

and thus, by Lemma 2, the distortion is Ω( t
√
n).

Theorem 2. The distortion of any matching mechanism f
that uses a threshold vector τ⃗ of length t is Ω( t+1

√
n).

Proof. Suppose that the threshold vector τ⃗ is such that τt >
n−t/(t+1). Since n−t/(t+1) ≥ n−1, by Lemma 4, the distor-
tion of f is Ω(n · τt) = Ω( t+1

√
n). So, we can now assume

that τt ≤ n−t/(t+1). As in the proof of Theorem 1, we have
that δ = τk−1/τk ≥ τ

−1/t
t ≥ t+1

√
n, and thus, by Lemma 2,

the distortion of f is Ω(δ) = Ω( t+1
√
n).

4 Upper Bounds
In this section we present asymptotically tight upper bounds
for deterministic and randomized matching mechanisms.
Our deterministic mechanism (described below) computes a
maximum-weight matching by assuming that each agent has
the minimum possible utility (according to the thresholds) for
all the items in the different approval set given as input.

Definition 1. For δ > 1 and t ∈ [n], consider the threshold
vector τ⃗ = (δ−1, δ−2, . . . , δ−t). The deterministic matching
mechanism ft uses the threshold vector τ⃗ and, given an input
profile S, constructs the following weighted bipartite graph
GS: There are 2n nodes in total, consisting of a node vi for
each agent i ∈ N on the left side and a node za for each
item a ∈ M on the right side. For i ∈ N , k ∈ [t] and a ∈
Si,k, there is an edge from vi to za with weight w(vi, za) =
τk. The mechanism ft finds the maximum weighted matching
in GS and, for each matched pair (vi, za), assigns item a to
agent i. If there are unmatched pairs remaining, ft completes
the allocation arbitrarily.

Example 1. Let t = 2 and τ⃗ = (τ1, τ2). Suppose that
S1,1 = {a, c}, S2,1 = {d}, S2,2 = {c}, S3,2 = {a, c, d},
while the remaining approval sets are empty. Mechanism
ft constructs the graph GS shown in Figure 1, computes a
maximum-weight matching, and then assigns any unmatched
items arbitrarily.

v1

v2

v3

v4

za

zb

zc

zd

τ1

τ1

τ1

τ2

τ2

τ2

τ2

Figure 1: The graph GS that is used by ft in Example 1.

Before we bound the distortion of the mechanism, we
prove two very useful technical lemmas. The first one pro-
vides us with a lower bound on the weight of the maximum-
weight matching in a bipartite graph whose nodes satisfy cer-
tain properties; this will be used extensively to lower bound
the social welfare of the matching computed by ft, and also
by the deterministic mechanism in Section 5.

Lemma 5. Consider a weighted bipartite graph G with
n nodes on the left side {v1, . . . , vn} and m nodes
{z1, . . . , zm} on the right side. If

∑
a∈[m] w(vi, za) ≥ W

for each vi, and w(vi, za) ≥ L for each edge (vi, za), then
there is matching in G with weight at least min{W,nL}.

The second lemma shows that GS admits a matching with
weight that is relatively close to the social welfare of the op-
timal matching allocation for any utility profile consistent to
the input profile S. We will use this relation in the analysis of
the distortion of ft, as well as in the analysis of our random-
ized matching mechanism later on.

Lemma 6. Let s∗ be the social welfare of the optimal match-
ing allocation. There exists a matching of GS with weight at
least δ−1(s∗ − nτt).

Proof. For any agent i, let a∗i be the item that i is given in
the optimal matching allocation. Clearly, either there exists
j ∈ [t] such that a∗i ∈ Si,j , or a∗i ̸∈

⋃
j∈[t] Si,j . The total

utility accumulated by the agents of the second type is at most
nτt. For the agents of the first type, since a∗i ∈ Si,j , there is
an edge between vi and za∗

i
in GS of weight

τj = δ−j = δ−1 · δ−j+1 = δ−1 · τj−1 ≥ δ−1 · ui(a
∗
i ).

Hence, the intersection of A∗ and GS gives us a matching of
weight at least δ−1(s∗ − nτt).

Theorem 3. For t ∈ [n] and δ = t
√
2n, the distortion of the

deterministic matching mechanism ft is O( t
√
n).

Proof. Let A = ft(S) be the matching computed by the
mechanism ft when given as input an arbitrary input pro-
file S that is induced by some consistent utility profile u⃗.
First, observe that if GS admits a matching of weight W then
sw(A, u⃗) ≥ W . This follows by the fact that if node vi is
matched to node za in GS, then agent i has utility at least
w(v1, za) for item a.

Second, we argue that the weight of the maximum weight
matching of GS is at least δ−1/2. The total utility of an agent
for the items in

⋃
j∈[t] Si,j is at least 1/2 since the utility for
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each of the remaining items is at most τt = δ−t = 1/(2n).
Since τj−1 = τj · δ with τ0 = 1, and vi(a) ≤ τj−1 and
w(vi, za) = τj for every a ∈ Si,j , we have

1

2
≤

∑
j∈[t]

∑
a∈Si,j

vi(a) ≤
∑
j∈[t]

|Si,j |τj−1 = δ ·
∑
j∈[t]

|Si,j |τj

=⇒
∑
j∈[t]

∑
a∈Si,j

w(vi, za) ≥
δ−1

2
.

Since the edge (vi, za) exists in GS only if a ∈
⋃

j∈[t] Si,j ,
we have that

∑
a∈M w(vi, za) ≥ δ−1/2 and w(vi, za) ≥

τt = 1/(2n), and thus, by Lemma 5, we have that GS ad-
mits a matching of weight at least min{δ−1/2, 1/2}, which is
equal to δ−1/2 since δ > 1. By Lemma 6, since nτt = 1/2,
we also have that GS admits a matching of weight at least
δ−1(s∗ − 1/2), where s∗ is the optimal social welfare. Con-
sequently, we overall have established that the social welfare
of the allocation A computed by the mechanism is

sw(A) ≥ max

{
1

2
· δ−1, δ−1(s∗ − 1/2)

}
.

Hence, the distortion is at most

δ · s∗

max{1/2, s∗ − 1/2}

If s∗ ≤ 1, then the distortion is at most 2δs∗ ≤ 2δ. Otherwise,
if s∗ ≥ 1, then s∗ − 1/2 ≥ s∗/2 and the distortion is at
most δ · s∗

s∗/2 = 2δ. In any case, the distortion is at most
2δ ∈ O( t

√
n).

Due to Theorem 3, we can achieve linear distortion using
a single threshold level (which is a significant improvement
compared to the O(n2) distortion that can be achieved with
ordinal information) and constant distortion using a logarith-
mic number of threshold levels.
Corollary 1. We can achieve distortion O(n) by using one
threshold level and distortion O(1) by using t = O(log n)
threshold levels.

We now turn our attention to randomization. We design
a mechanism that is a convex combination of the naive rule
which chooses a random matching equiprobably among all
possible ones, and the deterministic matching mechanism ft
that was analyzed above.
Definition 2. The randomized matching mechanism Rt with
probability 1/2 chooses a matching uniformly at random,
and with probability 1/2 runs the deterministic mechanism
ft with threshold vector τ⃗ = (δ−1, δ−2, . . . , δ−t) for t ∈ [n]
and some δ > 1.
Theorem 4. For t ∈ [n] and δ = t+1

√
n, the distortion of the

randomized matching mechanism Rt is O( t+1
√
n).

Proof. Let A∗ be an optimal matching with social welfare
s∗, and A2 the matching computed by the second part of the
mechanism (the outcome of ft). In the first part of the mech-
anism (where a random matching is chosen with probability
1/2), since each possible matching has probability at least

1/(n!), each agent is matched to each item with probability
at least 1/n. Since the sum of the utilities of each agent for
all items is 1, the expected social welfare from the first part is
at least

1

2

∑
i∈N

∑
a∈M

1

n
· ui(a) =

1

2
· n · 1

n
=

1

2
.

For the second part of the mechanism (where the determin-
istic mechanism ft using τ⃗ is employed), since s := nτt =
nδ−t = t+1

√
n, by Lemma 6, there is a matching in GS of

weight at least δ−1(s∗ − s), and thus the expected social
welfare of the mechanism from the second part is at least
1
2 · δ−1(s∗ − s). Overall, we have established that

EA∼Rt(S)[sw(A)] ≥ 1

2
+

1

2
· δ−1(s∗ − s)

≥ 1

2
·max

{
1, δ−1(s∗ − s)

}
,

and thus the distortion is at most
2 · s∗

max{1, δ−1(s∗ − s)}
.

If s∗ ≥ 2s, then s∗ − s ≥ s∗/2 and the distortion is at most
2·s∗

δ−1s∗/2 = 4δ = 4 t+1
√
n. Otherwise, if s∗ < 2s, the distortion

is at most 2s∗ ≤ 4s = 4 t+1
√
n. In any case, the distortion

O( t+1
√
n).

5 Generalized Setting
In this section we consider a generalized setting. Similarly to
before, N represents a set of n ≥ 1 agents. However, here it
is not necessarily the case that we have an equal number of
items; we define M to be a set of m ≥ 1 items. Each item
a ∈ M has a supply ma ≥ 1, and each agent i ∈ N has
a capacity ci ≥ 1. For simplicity, we assume that the total
supply is equal to the total capacity, that is, T :=

∑
i∈N ci =∑

a∈M ma.1
Agents are allowed to receive copies of the same item, in

which case their utility depends on the number of copies they
receive; in other words, copies of an item are not considered
independent. For each agent i, item a and j ∈ [min{ci,ma}],
we denote by ui(a, j) the marginal utility that agent i gets
when receiving his j-th copy of item a ∈ M, and by u+

i (a, j)
his total utility when receiving j ≤ min{ci,ma} copies of
item a ∈ M, i.e., u+

i (a, j) =
∑

k∈[j] ui(a, j).
An allocation X = (xi(a))i∈N ,a∈M determines the num-

ber xi(a) of copies of item a that agent i is assigned to, such
that

∑
a∈M xi(a) ≤ ci for every i ∈ N and

∑
i∈N xi(a) ≤

ma for every a ∈ M. Given an allocation X , the utility of
i for X is ui(X) =

∑
a∈M u+

i (a, xi(a)). We assume that
the utility function of each agent i satisfies the unit-sum as-
sumption, that is,

∑
a∈M u+

i (a,min{ci,ma}) = 1.2 The

1Our results hold even when
∑

i∈N ci = Θ(
∑

a∈M ma), in
which case we would need to define T as the maximum between
these two quantities.

2Our results hold even if we replace the unit-sum assumption by
the assumption that the total utilities of the agents (as if each of them
is given all items he can hold) are not equal, but known.
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definition of the social welfare of an allocation is the same as
before, that is, it is the total utility of the agents for the alloca-
tion. We aim to compute allocations with high social welfare
that maximally assign the items to the agents; observe that the
maximum possible number of items that can be allocated is
T (or min

{∑
i∈N ci,

∑
a∈M ma

}
in the more general case),

and that any allocation Y that assigns less than T items is
dominated in terms of social welfare by any allocation X that
assigns the items allocated by Y in the same way, but also
somehow assigns the remaining items. So, in the following,
we focus on such maximal allocations only.

Since the utility functions depend on the number of item
copies that the agents receive, we need to appropriately re-
define the elicitation method. For a threshold vector τ⃗ =
(τ1, . . . , τt), each agent i reports t disjoint threshold ap-
proval sets Si,1, . . . , Si,t, where Si,k includes pairs of items
and indices for which i has marginal utility in [τk−1, τk),
where τ0 := 1. In other words, Si,k = {a ∈ M, j ∈
[min{ci,ma}] : τk−1 ≥ ui(a, j) > τk}. The input profile
S now consists of these threshold approval sets reported by
all agents. The definition of distortion can also be appropri-
ately refined by taking the worst case over utility profiles and
input profiles consistent with them.

We now define a parametric min-cost flow instance that
will be used by our algorithms later.

Definition 3 (Min-cost Flow Instance). Let C = (Ci)i∈N
be a capacity vector of the n agents with maximum value
c, M = (Ma)a∈M be a supply vector of the m items, and
Vn×m×c a value matrix in which V (i, a, j) is the value of
agent i when receiving j copies of item a. Let G(C,M, V )
be the following min-cost flow instance: G has a source node
s and a destination node t. Furthermore, there is a node vi
for each agent i and a node za for each item a. For every
i, there is an edge (s, vi) with capacity Ci and cost 0. For
every a, there is an edge (za, t) with with capacity Ma and
cost 0. For each agent i and item a, we add a component to
the graph as shown in Figure 2. Nodes s and t have supply
and demand equal to min

(∑
i∈[n] Ci,

∑
a∈[m] Ma

)
, respec-

tively. The goal is to find the minimum cost for satisfying this
flow.

It is well-known that the minimum-cost flow problem can
be solved in polynomial time via linear programming (and
also using various other algorithms), and we thus have the
following property.

Lemma 7. For capacity vector C, supply vector M and value
matrix V , the min-cost flow instance defined in Definition 3
has an integral solution which we can find in polynomial time.

Our next lemma provides a connection between the solu-
tion of the min-cost flow instance of Definition 3 and the so-
cial welfare of the corresponding allocation for the instance
of our problem.

Lemma 8. The absolute value of the minimum-cost flow in
G(C,M, V ) is equal to the maximum social welfare of an
allocation of items to agents with respect to values in V .

Proof Sketch. Let X∗ be the allocation with the maximum
social welfare w.r.t. V , and F be the min-cost flow in

G(C,M, V ). We will show that sw(X∗, V ) = −Cost(F ) by
bounding Cost(F ) from above and below by −sw(X∗, V ).
To do so we explain how to construct a flow solution from an
allocation and vice versa. Then, we compute the cost of the
constructed solution and finally show the bound.

We are now ready to present our deterministic mechanism
gt, which is a generalization of the deterministic mechanism
ft that we used for the one-sided matching setting.

Definition 4. For δ > 1 and t ∈ [n], consider the thresh-
old vector τ⃗ = (δ−1, δ−2, . . . , δ−t). The deterministic
generalized matching mechanism gt uses the threshold vec-
tor τ⃗ and gets as input a profile S, constant agent capaci-
ties {c1, . . . , cn}, and constant item supplies {m1, . . . ,mm}.
The mechanism defines the vector C = ⟨c1, . . . , cn⟩, the vec-
tor M = ⟨m1, . . . ,mm⟩, and the matrix V as follows: For
every i ∈ N , a ∈ M and j ∈ [min{ci,ma}], if (a, j) ∈ Si,k

for some k ∈ [t], then the mechanism defines Vi,a,j = τk;
otherwise, if (a, j) ̸∈

⋃t
k=1 Si,k, then it defines Vi,a,j = 0.

The mechanism computes the solution of the min-cost flow
instance defined in Definition 3 with input C, M and V . For
each agent i ∈ N and item a ∈ M the flow from vi to vi,a,1
in the computed solution is the number of copies of item a
that agent i receives.

Before we bound the distortion of the mechanism, we
prove a technical lemma similar to Lemma 6 which provides
us with a lower bound on the social welfare of the allocation
computed by the mechanism in relation to the optimal social
welfare.

Lemma 9. If there is an allocation with social welfare s∗,
then gt outputs an allocation with social welfare at least
δ−1(s∗ − T · τt).

Proof. Let X∗ be an optimal allocation. We have

sw(X∗) ≤
∑
i∈N

∑
k∈[t]

∑
(a,j)∈Si,k

ui(a, j) + T · τt.

Recall that, if (a, j) ∈ Si,k for some k, then ui(a, j) ≤ δ ·
Vi,a,j . This implies

sw(X∗) ≤ δ ·
∑
i∈N

∑
k∈[t]

∑
(a,j)∈Si,k

Vi,a,j + T · τt.

Consequently, with respect to V , X∗ has a social welfare of
at least δ−1(sw(X∗) − T · τt). This is a lower bound on
the social welfare of the allocation computed by gt, since, by
Lemma 8, this is at least the social welfare of the allocation
with maximum social welfare with respect to V .

We are now ready to show the upper bound on the distor-
tion of gt.

Theorem 5. For t ∈ [T ] and δ = t
√
2T , the distortion of

the deterministic generalized matching mechanism gt is O(c ·
t
√
T ), where c = maxi∈N {ci}.

Proof Sketch. The structure of the proof is very similar to that
of Theorem 3. Let X be the allocation computed by gt when
given as input an arbitrary input profile. For any i ∈ N ,
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Figure 2: Graph component between each pair (i, a) ∈ N ×M.

a ∈ M, and j ∈ [min{ci,ma}], ui(a, j) ≥ Vi,a,j since
Vi,a,j is defined as a lower bound on this utility. By this and
Lemma 8, if the graph G(C,M, V ) admits a flow of cost W ,
then the social welfare of the corresponding allocation is at
least |W |. We next argue that the social welfare of X is at
least δ−1/(2c) by appropriately using Lemma 5, and at least
δ−1(s∗ − 1/2), where s∗ is the optimal social welfare, by
appropriately using Lemma 9. So, the distortion is at most

2δ · s∗

max {1/c, 2s∗ − 1}
.

If s∗ ≥ 1, then 2s∗ − 1 ≥ s∗, and hence the distortion is at
most 2δ ∈ O( t

√
T ). Otherwise, if s∗ < 1, then the distortion

is at most 2δc ∈ O(c · t
√
T ).

In many applications, the capacities and the supplies are
constants. In this case, we have that T = Θ(n) = Θ(m) and
the following result, which is tight given the corresponding
lower bound in Section 3.
Corollary 2. When the capacities and supplies are constant,
for any t ∈ [T ], there is a deterministic mechanism with dis-
tortion O( t

√
n).

We also generalize our randomized mechanism to achieve
a slightly better distortion bound.
Definition 5. The generalized randomized matching mecha-
nism GRt works as follows: With probability 1/2, it bundles
the copies of each item together and selects a matching of the
items to the agents uniformly at random; once the matching
has been chosen, it assigns all copies of an item to its matched
agent, subject to capacity and supply constraints. With the re-
maining 1/2 probability, it runs the deterministic mechanism
gt with threshold vector τ⃗ = (δ−1, δ−2, . . . , δ−t) for t ∈ [n]
and some δ > 1.

The proof of the next theorem follows along the lines of
the proof of Theorem 4.

Theorem 6. For t ∈ [T ] and δ = t+1
√
2T , the distortion

of the generalized randomized matching mechanism GRt is
O(c · t+1

√
T ), where c = max{n,m}/n.

Again, when the capacities and the supplies are constant,
since the total capacity is of the same magnitude as the total
supply, it follows that n and m are also of the same mag-
nitude. Hence, the parameter c = max{n,m}/n is a con-
stant and T = Θ(n) = Θ(m), giving us the following result,

which is again tight due to the corresponding lower bound
from Section 3.

Corollary 3. When the capacities and supplies are constant,
for any t ∈ [T ], there is a randomized mechanism with dis-
tortion O( t+1

√
n).

Remark 1. In the generalized setting that we considered in
this section, the agents are allowed to receive potentially all
available copies of the items, up to their capacity. However, in
several applications, we might want to disallow this and set a
limit ℓi,a on the number of copies of a ∈ M that agent i ∈ N
can get. For example, in the paper assignment problem, each
agent must be given at most one copy of each item since it
does not make sense for someone to review a paper more than
once. Such constraints can be handled in several ways. One
of them is via the utility functions of the agents which, for
scenarios like these, would simply assign a marginal value of
0 for any extra copy that exceeds the limit, that is, ui(a, j) =
0 for every j > ℓi,a. If the utility function is not naturally
defined this way, we can modify the min-cost flow instance
by setting Vi,a,j = −∞ for j > ℓi,a, or by removing the
corresponding edges in the graph.

6 Conclusion and Open Problems
In this paper, we showed tight bounds on the best possi-
ble distortion of (both deterministic and randomized) mech-
anisms for matching settings (that capture important applica-
tions, including the one-sided matching problem and the pa-
per assignment problem) when the elicited information about
the preferences of the agents is of the form of threshold ap-
provals. Going forward, it would be interesting to explore
whether improved tradeoffs can be achieved by using ran-
domization not only for the decision phase but also for the
definition of the threshold values, similarly to the works of
Benadè et al.; Bhaskar et al. [2021; 2018]. In addition, it
makes sense to consider the metric version of the problem
which captures the case where the items represent chores. Fi-
nally, one could explore other settings in which the same type
of elicitation method can be applied, including voting settings
(both utilitarian and metric) in which the full potential of us-
ing multiple threshold approvals has not been considered be-
fore, as well as other resource allocation settings, potentially
also in combination with other constraints, such as truthful-
ness or fairness.
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