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Abstract
Ranked choice voting (RCV) is a voting rule that
iteratively eliminates least-popular candidates until
there is a single winner with a majority of all re-
maining votes. In this work, we explore three cen-
tral questions about predicting the outcome of RCV
on an election given a uniform sample of votes.
First, in theory, how poorly can RCV sampling pre-
dict RCV outcomes? Second, can we use insights
from the recently-proposed map of elections to bet-
ter predict RCV outcomes? Third, is RCV the best
rule to use on a sample to predict the outcome of
RCV in real-world elections? We find that although
RCV can do quite poorly in the worst case and it
may be better to use other rules to predict RCV
winners on synthetic data from the map of elec-
tions, RCV generally predicts itself well on real-
world data, further contributing to its appeal as a
theoretically-flawed but practicable voting process.
We further supplement our work by exploring the
effect of margin of victory (MoV) on sampling ac-
curacy.

1 Introduction
Democratic systems elicit and aggregate opinions from citi-
zens in order to make collective decisions. The most common
way in which they do this is through voting, in which citizens
provide structured feedback via ballots, which are then aggre-
gated via a social choice function, also called a voting rule, in
order to determine a winner.

One such rule is ranked choice voting (RCV), also known
as instant-runoff voting (IRV), single transferable vote (STV),
or preferential voting [Spencer et al., 2015]. RCV, or vari-
ants thereof, is used in political elections around the world,
including Australia, Ireland, New Zealand, and the United
States, for a mixture of federal, parliamentary, and local elec-
tions. In the United States in particular, RCV is championed
by activist groups like FairVote to replace the use of first-past-
the-post voting systems and is currently used by 11 million
residents: Alaska and Maine use RCV for federal and/or lo-
cal elections, and an additional 53 cities use RCV for local
elections, including New York City’s Democractic primary
for the mayoral election in 2021 [Horton and Thomas, 2023].

Despite significant activist support for RCV and increasing
adoption worldwide, RCV is known to have significant the-
oretical flaws, notably for being susceptible to monotonicity
paradoxes [Felsenthal and Tideman, 2013]. However, in prac-
tice, real-world elections do not often resemble worst-case
constructions or even synthetic elections generated from sta-
tistical cultures [Boehmer and Schaar, 2023], and RCV gen-
erally performs well [Graham-Squire and McCune, 2023].

One major concern expressed by activists pushing for more
widespread adoption of RCV is that of predicting the out-
comes of RCV elections from sampled votes, especially be-
cause RCV outcomes can change so drastically as new votes
are counted. Our goal is to study how to predict outcomes in
RCV elections from samples.

In this work, we aim to explore three central questions
about predicting RCV outcomes in sampled elections. First,
in the worst case over voting profiles, how poorly can RCV
on a sample predict the outcome of RCV on the entire elec-
tion? Second, can we use insights from elections generated
from well-studied statistical cultures to better predict RCV
outcomes? And third, how well does RCV predict itself on
samples from real-world elections?

1.1 Our Contributions
We begin by examining the worst-case predictive perfor-
mance of RCV in theory. Surprisingly, we show that, in the-
ory, this performance seems to decrease as the sample size
grows: For samples of size 1, we obtain a tight bound of prob-
ability at least 1/2m−1 of making the correct decision,1 but
for samples consisting of all but a constant number of votes in
the election, we are able to create worst-case instances such
that the predictive performance of RCV drops to 0, i.e., using
RCV on the sample never yields the same result as evaluating
RCV on the entire profile. Additionally, we provide upper
bounds on the minimum sample size necessary to guarantee
a correct prediction in terms of the margin of victory of the
original election, where the margin of victory is defined as the
total number of votes that must be changed in order to change
the winner of the election.

Next, we examine the performance of a collection of nine
voting rules predicting RCV outcomes on synthetic elections
generated from a diverse set of statistical cultures from the

1Following convention, m is the number of alternatives.
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map of elections [Szufa et al., 2020; Boehmer et al., 2021].
We observe that, especially on small sample sizes, RCV is
often not the best predictor of itself and that other rules are
more reliable.

However, this observation does not hold as strongly for
real-world elections. On a range of elections sourced from
PrefLib, we find that, on average, RCV is generally the best
predictor of itself even on small sample sizes. This does not
hold for every individual election, but RCV is even compara-
ble to two ensemble predictors that use the map of elections
to boost performance.

1.2 Related Work
The paper most closely related to ours is that of Micha and
Shah [2020], which studies the worst- and average-case pre-
dictability of social welfare functions (SWFs), which return
rankings over candidates instead of winner(s). The authors
focus on positional scoring rules (PSRs) and demonstrate that
all PSRs except plurality and veto have zero worst-case pre-
dictability even with access to a sample of as many as n − 1
out of n votes. They also include an empirical section that
evaluates how well various SWFs can predict each other on
two synthetic vote distributions. In our work, we focus on
predicting social choice functions (SCFs), in particular RCV;
we also consider a significantly more diverse collection of
both synthetic and real-world data.

The synthetic data we use is directly inspired (and gen-
erated) by the map of elections [Faliszewski et al., 2019;
Szufa et al., 2020; Boehmer et al., 2021], which is a prin-
cipled approach to generating, organizing, and visualizing a
diverse set of statistical cultures from which to generate real-
istic election data.

Another related theoretical paper is that of Bhattacharyya
and Dey [2021], where the authors focus on predicting the
output of a SCF on an unknown profile through sampling
votes. However, the authors assume that votes are sampled
with replacement and that there is a margin of victory of at
least αn for some constant α. We do not make such assump-
tions in our worst-case results, and indeed our negative results
come in borderline cases. We do consider the margin of vic-
tory in RCV elections in our work on bounding the number of
samples necessary to make perfect predictions, which draws
on work by Cary [2011] and Dey and Narahari [2015].

Further afield, there is also significant theoretical and em-
pirical work on paradoxes in STV [Graham-Squire and Mc-
Cune, 2023; Tolbert and Kuznetsova, 2021; Donovan et al.,
2019], but this work does not focus on sampling.

2 Preliminaries
Let [n] := {1, . . . , n}. Let A = {a1, . . . , am} be a set of
m alternatives and N = [n] be a set of n voters. Let L(A)
be the set of all complete and incomplete rankings over A,
i.e., (partial) permutations of all alternatives. Each voter i ∈
N casts a vote σi ∈ L(A). The collection of all n votes is
the profile σ⃗ = (σ1, . . . , σn). We use the notation aj ≻i

ak to denote that voter i prefers aj to ak and drop the voter
subscript when the voter identity is clear.

We focus on social choice functions (SCFs) (here inter-
changeably referred to as voting rules), which are functions

f : L(A)n → A that, given an input profile, output a winner
of the election.2 Let sg(n) denote a sample taken uniformly
at random and without replacement from a complete profile
σ⃗ such that |sg(n)| = g(n) for a function g : N → N which,
given a number of voters n, returns a sample size in [n]. We
use sg(n) ∼ σ⃗ to denote this process of uniformly selecting
a sample sg(n) without replacement from σ⃗. When g(n) is
clear, we let s := sg(n) for brevity.

We also define the worst-case accuracy of a rule f predict-
ing a rule f ′ given a sampling function g and a maximum
number of alternatives m as

Af,f ′(g,m0) = inf p

s.t. ∀n0 ∈ N, ∃σ⃗ with |σ⃗| ≥ n0,m = m0

s.t. Pr
sg(n)∼σ⃗

(f(s) = f ′(σ⃗)) ≤ p.

Intuitively, this is the minimum probability of f correctly pre-
dicting f ′ on a sample for profiles that consist of exactly
m0 alternatives as n becomes large. When f = f ′, we let
Af (g,m0) := Af,f ′(g,m0) for brevity.

2.1 Voting Rules
We define the voting rules in this paper, namely RCV, plu-
rality, Borda, harmonic, Copeland, Minimax, Bucklin, Plu-
rality Veto, and veto, which are discussed in greater detail in
[Brandt et al., 2016; Kizilkaya and Kempe, 2022].

RCV proceeds in rounds as follows. In each of m − 1
rounds, each candidate counts the total number of first-place
votes they have, and the candidate with the fewest first-place
votes is eliminated.3 All voters who selected the eliminated
candidate as their most-preferred candidate move on to their
next most preferred candidate. If, in the course of candidate
eliminations, a particular vote has no active candidates re-
maining, the vote is removed from the election.4 This process
terminates with a single winner. Additionally, it is easy to see
that if any candidate has a majority of all first-place votes at
any stage of the process, that candidate will win the election.

Plurality, Borda, harmonic, and Veto are all instances of
positional scoring rules (PSRs). PSRs are characterized by a
scoring vector c⃗ = (c1, . . . , cm) ∈ Rm, where cj ≥ cj+1 for
all j ∈ {1, . . . ,m−1} and c1 > cm. Given a profile σ⃗, a PSR
with scoring vector c⃗ assigns a score sc(aj) =

∑n
i=1 cσi(aj),

where σi(aj) is the position of aj in voter i’s ranking, σi. The
alternative with the highest score is the winner.

The scoring vectors of the four rules are as follows: Plu-
rality uses c⃗ = (1, 0, . . . , 0), Borda uses c⃗ = (m − 1,m −
2, . . . , 0), harmonic uses c⃗ = (1, 1/2, . . . , 1/m), and veto
uses c⃗ = (0, . . . , 0,−1).

The Copeland rule and Minimax both consider pair-
wise comparisons between alternatives. The Copeland rule
chooses the alternative that beats the greatest number of
other alternatives in head-to-head comparisons5, and Mini-

2Although SCFs may return sets of winners, we use tiebreaking
procedures to choose a single winner. In our theoretical results, we
use lexicographic tiebreaking. In our empirical results, we break ties
uniformly at random due to our method of vote completion.

3Tiebreaking occurs in each round of RCV.
4This occurs when voters submit incomplete preferences.
5Head-to-head ties count as half a win.
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max chooses the alternative that has the smallest maximum
margin of defeat in all head-to-head comparisons.

Bucklin starts with all first-place votes and iteratively adds
second-place votes, third-place votes, and so on until an alter-
native reaches a majority of all votes counted so far; that alter-
native is returned as the winner. Plurality Veto [Kizilkaya and
Kempe, 2022] decrements each alternative’s plurality score
through n rounds of a veto process, taken in a randomly per-
muted order, and the last remaining candidate wins.

3 Worst-Case Accuracy of RCV
Somewhat paradoxically, we find that the worst-case accu-
racy of RCV seems to decrease as we increase the size of the
sample we take. However, as we will see in the empirical
section, this trend is reversed in practice.

Throughout this section, we will analyze RCV with lexi-
cographic (i.e., alphabetical) tiebreaking where, for instance,
a1 defeats a2 if they are tied. All missing proofs are included
in the full version.6

3.1 Sampling a Single Vote
We begin our analysis in the case of |s| = 1, i.e., with sam-
ples consisting of only a single vote from the profile. In this
case, we can show a tight bound on the probability that RCV
predicts itself correctly.
Theorem 1. For g(n) = 1 and m ≥ 2, AR(g,m) = 1

2m−1 .

Proof. We first show the upper bound: AR(g,m) ≤ 1
2m−1 .

Consider the following profile:

2m−2 : am ≻ . . .
...

2m−3 : am−1 ≻ a1 ≻ . . . 2 : a3 ≻ a1 ≻ . . .

2m−4 : am−2 ≻ a1 ≻ . . . 1 : a2 ≻ a1 ≻ . . .

... 1 : a1 ≻ . . .

Here, the notation c : σi means that c voters have the pref-
erence σi. In this scenario, a1 wins the election and starts
with only 1 vote, which is 1

2m−1 of the votes in the elec-
tion. Therefore, RCV predicts itself correctly with probability

1
2m−1 . This profile can be multiplied to create arbitrarily large
elections in which this holds.

Now, we show the matching lower bound: AR(g,m) ≥
1

2m−1 . Note that this proof works for profiles in which all
ballots have complete rankings, but it is possible to modify
it to work with incomplete rankings as well; see the full ver-
sion of the paper. Running RCV on a single ballot selects that
ballot’s first choice as the winner, so the question of finding
the worst case probability of RCV predicting itself correctly
on a single randomly selected ballot is exactly the same as
determining how small we can make the portion of ballots
that select the true RCV winner, a∗, as the first choice. Let
vk(ai) represent the number of first choice votes that alterna-
tive ai receives in round k. For all k ∈ [2,m − 1], we know
that vk(ai) ≤ 2vk−1(ai) for all ai not eliminated by round k
because the losing candidate of round k − 1 always has the

6The full version is available at https://ansonkahng.com/.

fewest first choice votes in that round, so any other candi-
date cannot more than double their first place vote share from
one round to the next. We also know that by the final round,
i.e., round m− 1, the RCV winner a∗ must have at least half
of all votes. Therefore, vm−1(a

∗) ≥ n/2. Now, applying
the relation above, we see that v1(a∗) ≥ 1

2v2(a
∗) ≥ · · · ≥

1
2m−3 vm−2(a

∗) ≥ 1
2m−2 vm−1(a

∗) ≥ n
2m−1 , as desired.

3.2 Sampling All but k Votes
We now move to the other end of the sample size spectrum
and ask how well RCV can predict itself given access to al-
most all of the votes in a profile. Intuitively, it seems like
having access to more votes should only help the accuracy of
RCV when predicting itself, but we will see that this is not
necessarily the case.

Our next theorem states that, even with all but one sample
from a profile, RCV’s worst-case predictive accuracy is 0, i.e.,
there exist profiles such that running RCV on any sample of
all but one vote returns a different winner than running RCV
on the entire profile.
Theorem 2. For g(n) = n − 1 and all m ≥ 4, we have
AR(g,m) = 0.

Proof. For as few as four candidates, it is possible to con-
struct arbitrarily large profiles in which sampling every ballot
but one always yields the incorrect result. Consider the fol-
lowing election:

2 : a4 ≻ a1 ≻ a3 ≻ a2 2 : a1 ≻ a4 ≻ a3 ≻ a2

2 : a3 ≻ a4 ≻ a2 ≻ a1 2 : a2 ≻ a4 ≻ a3 ≻ a1

One can verify that a1 wins in this profile. Despite this,
when we sample all but one vote, if the missing vote has a
first choice other than a4, a4 ends up winning, and otherwise
when we remove a ballot with a4 as a first choice, a2 ends
up winning. When we scale up this profile to larger sizes
by multiplying the number of each ballot by some constant,
this property remains, so we can construct arbitrarily large
elections in which sampling all but one vote and performing
RCV never yields the true winner of the election.

Lastly, in order to extend this construction to m > 4, we
can add additional candidates in an arbitrary order at the end
of each of the votes.

In fact, we can show a more general statement: Even with
all but k samples from a profile for some constant k, we can
construct profiles such that RCV’s worst-case predictive ac-
curacy is 0. However, m must depend linearly on k.
Theorem 3. For g(n) = n − k for constant k and all m ≥
2(k + 1), we have AR(g,m) = 0.

Proof. For ease of exposition, we will show an explicit con-
struction for m = 2(k + 1), but we can add additional can-
didates at the end of each vote in the construction without af-
fecting any of the calculations, so the same argument applies
for all m ≥ 2(k + 1).

Let there be m = 2(k + 1) candidates in our construction.
We will build a profile such that sampling all but k ballots
and running RCV always fails to select the true RCV winner
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on the entire profile. Our profile contains m different types
of ballots, each with a different first choice candidate. For
ballots with a first choice ai where 1 ≤ i ≤ m

2 , the ballot
order is ai ≻ am ≻ am−1 ≻ · · · ≻ ai+1. For ballots with a
first choice ai where m

2 + 1 ≤ i ≤ m, the ballot order is ai,
followed by am ≻ am−1 ≻ · · · ≻ ai+1 (if i ̸= m), followed
by am−i+1, followed by ai−1 ≻ ai−2 ≻ · · · ≻ am−i+2 (if
i ̸= m

2 + 1). Finally, there are m copies of each ballot for a
total of n = m2 votes.

An example of our construction for m = 6 is as follows:
6 : a6 ≻ a1 ≻ a5 ≻ a4 ≻ a3 ≻ a2
6 : a5 ≻ a6 ≻ a2 ≻ a4 ≻ a3
6 : a4 ≻ a6 ≻ a5 ≻ a3
6 : a3 ≻ a6 ≻ a5 ≻ a4
6 : a2 ≻ a6 ≻ a5 ≻ a4 ≻ a3
6 : a1 ≻ a6 ≻ a5 ≻ a4 ≻ a3 ≻ a2

Note that these ballots utilize incomplete rankings. Ballots
whose last remaining choice is eliminated are simply re-
moved from the election.

We can verify that a1 wins in these profiles. The impor-
tant thing to notice is that there are two halves—the ballots
whose first choice is am

2 +1 through am, which we will call
the first half, and those with a first choice a1 through am

2
, the

second half. As we eliminate votes from the first half due to
lexicographic tie breaking one by one, candidates in the sec-
ond half gain entire piles of votes from eliminated candidates
from the first half. For example, the ballots choosing am go
to a1, the ballots choosing am−1 go to a2, and so on until the
ballots choosing am

2 +1 go to am
2

. During the second half of
eliminations, when candidates are eliminated one by one due
to lexicographic tie breaking, the votes are simply removed
due to the incomplete rankings.

Now, consider sampling all but k = m
2 − 1 votes from this

profile. We will talk about which votes are “removed” from
the sample, i.e., the ones not included in the sample. Since
each pile of identical votes contains m votes, it is impossible
to remove an entire pile, so every round during the first half
of eliminations will inevitably result in one candidate gaining
votes. We must remove a vote from the ballots that chose am
as the first choice, because if we don’t, am will not lose in
the first round, and since am is the second choice of all of
the other kinds of ballots, am will gain enough first choice
votes from this round to go on to win. In fact, any deviation
from the true elimination order will end up giving the highest
number candidate remaining a decisive lead and they will go
on to win the election, so we must eliminate in the same order
as in the complete profile. Eventually we will arrive at the
second half of eliminations when am

2 +1 is eliminated. Since
it is necessary to remove one of the ballots ranking am first,
and since these ballots go to a1, a1 will have lost at least one
first choice ballot going into the second half of eliminations.
Since there are m

2 candidates remaining when we arrive to the
second half of eliminations and we removed m

2 − 1 ballots, it
must follow that at least one candidate, let us say ai, has not
lost any first choice votes. This means it is impossible for a1
to win, as even if we arrive at ai by eliminating alternatives
in the correct order, a1 will be eliminated before ai.

These profiles can be scaled up and the above argument
still holds, so we can construct arbitrarily large profiles with
m = 2(k + 1) candidates in which sampling all but k votes
will always fail to predict the correct winner.

We also consider the worst-case performance of RCV on
samples that are a constant fraction of the number of voters.
In this case, we obtain an upper bound on the worst-case ac-
curacy for RCV of 1

m! .
7

Theorem 4. For g(n) = αn for constant α ∈ (0, 1) and
m ≥ 2, AR(g,m) ≤ 1

m! .

4 Margin of Victory and Sampling Bounds
One additional aspect of sampling we are interested in is the
number of samples above which we are guaranteed to pick
the correct winner. The results in the previous section demon-
strate that there exist worst-case profiles that provide no such
guarantee until the sample consists of the entire profile. How-
ever, all of the worst-case results are balanced on a knife’s
edge, and changing even one vote can change the winner of
the overall election.

Therefore, we analyze these thresholds in terms of the mar-
gin of victory of the winning candidate in the entire election,
where the margin of victory for profile σ⃗, M(σ⃗), is defined
as the total number of votes that have to be modified in order
to change the winner of the election. Note that this definition
is the same as in [Bhattacharyya and Dey, 2021]. It is also
closely related to another definition proposed by Cary [2011]
in the context of RCV, MC(σ⃗), which is the total number of
votes that must be added or removed to change the winner.

We first show that our definition of margin of victory,
M(·), is related to Cary’s definition, MC(·).
Proposition 1. For all σ⃗, 1

2MC(σ⃗) ≤ M(σ⃗) ≤ MC(σ⃗).
For any profile σ⃗ with margin of victory M(σ⃗), we can also

develop upper bounds on the minimum sample size required
for RCV to always be correct on any sufficiently large sample;
these bounds are illustrated in Figure 1.
Proposition 2. For a profile σ⃗ consisting of n votes and m
candidates, let x be the number of first choice votes for the
RCV winner. All samples of size at least min(2(n − x) +
1, (m − 1)(n − 2M(σ⃗)) + 1) are guaranteed to return the
correct winner.

Along the lines of Cary [2011], we may also derive upper
and lower bounds on M(σ⃗) that depend on the sequence of
eliminations taken by RCV.
Proposition 3. For a profile σ⃗, M(σ⃗) ∈[⌈

1

2
min

k∈[m−1]

(
v
(−2)
k − v

(−1)
k

)⌉
, min
k∈[m−1]

(⌊n
2

⌋
+ 1− v

(2)
k

)]
,

where v
(j)
k for all j ∈ [1,m − k + 1] is the vote share for

the jth most popular alternative in that round, and v
(−1)
k and

v
(−2)
k are the vote shares of the alternatives that receive the

fewest and second-fewest votes in round k, respectively.

7In the full version, we describe another setup that, in mathemat-
ical simulations, does even worse than 1

m!
.
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RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.5
ACC 73.60 68.97 72.23 70.37 74.56 74.43 70.10 97.46 38.63
MPW 2.36e-2 1.05e-2 1.50e-2 1.07e-2 2.74e-2 2.67e-2 1.03e-2 8.76e-1 2.59e-5

M, ϕ = 0.75
ACC 44.15 41.44 46.70 43.86 45.96 44.69 43.30 78.18 33.49
MPW 6.83e-3 4.26e-3 8.60e-3 5.88e-3 7.46e-3 7.75e-3 5.26e-3 9.53e-1 9.98e-4

Urn, α = 0.05
ACC 40.13 39.50 38.56 39.00 39.34 39.21 37.30 28.86 24.71
MPW 1.48e-1 1.52e-1 1.12e-1 1.20e-1 1.33e-1 1.37e-1 1.24e-1 4.25e-2 3.13e-2

Conitzer SPOC ACC 27.91 27.18 27.74 27.81 27.50 26.75 26.67 25.18 23.25
MPW 1.11e-1 1.22e-1 1.14e-1 1.17e-1 9.88e-2 1.02e-1 1.10e-1 1.13e-1 1.12e-1

Walsh SP ACC 55.44 46.67 65.73 56.53 61.13 61.53 47.60 43.94 32.86
MPW 8.40e-2 1.92e-2 3.55e-1 7.13e-2 2.13e-1 2.13e-1 1.83e-2 2.48e-2 1.48e-3

3D Cube ACC 47.64 41.84 56.38 48.67 51.72 52.61 47.35 35.60 37.60
MPW 1.09e-1 4.06e-2 3.04e-1 9.79e-2 1.67e-1 1.67e-1 7.61e-2 2.03e-2 1.81e-2

5D Sphere ACC 31.08 32.19 27.99 30.10 28.81 28.91 29.11 26.38 17.11
MPW 1.31e-1 1.58e-1 8.70e-2 1.36e-1 9.61e-2 1.02e-1 1.15e-1 1.15e-1 6.10e-2

Table 1: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 5% sample sizes. Rows
marked “ACC” are accuracies in percents, and rows marked “MPW” are the learnt multiplicative weights.

RCV Plurality Borda Harm. Cope. MM Bucklin Pl. Veto Veto

M, ϕ = 0.5
ACC 99.49 98.50 99.09 99.06 99.32 99.31 79.11 1.000 77.98
MPW 1.47e-1 1.31e-1 1.34e-1 1.38e-1 1.46e-1 1.46e-1 3.53e-3 1.52e-1 1.76e-3

M, ϕ = 0.75
ACC 82.30 75.00 79.64 79.41 83.01 82.33 69.85 88.00 62.25
MPW 1.50e-1 2.15e-2 1.20e-1 6.38e-2 1.54e-1 1.73e-1 1.23e-2 3.02e-1 2.74e-3

Urn, α = 0.05
ACC 70.85 64.05 63.02 69.64 66.65 69.04 45.57 16.07 33.42
MPW 2.73e-1 7.34e-2 1.03e-1 1.65e-1 1.67e-1 2.09e-1 9.43e-3 4.88e-5 7.97e-4

Conitzer SPOC ACC 49.46 44.92 44.08 47.31 43.11 42.64 29.48 19.00 29.92
MPW 2.17e-1 1.49e-1 1.42e-1 1.92e-1 1.32e-1 1.21e-1 1.72e-2 8.06e-3 2.15e-2

Walsh SP ACC 83.55 79.78 88.01 86.17 85.84 87.87 53.33 3.770 33.16
MPW 7.62e-2 4.16e-2 2.22e-1 2.11e-1 2.24e-1 2.26e-1 2.78e-4 8.95e-8 6.89e-6

3D Cube ACC 77.78 60.42 74.82 74.48 75.16 77.57 66.05 23.22 53.99
MPW 2.16e-1 1.14e-2 1.49e-1 1.49e-1 2.20e-1 2.34e-1 1.90e-2 5.40e-6 2.49e-3

5D Sphere ACC 82.15 74.15 81.43 82.57 82.52 82.95 72.38 25.95 10.41
MPW 2.40e-1 3.10e-1 4.11e-2 2.68e-1 5.67e-2 6.64e-2 1.35e-2 3.69e-3 1.30e-3

Table 2: Accuracy of various rules predicting the RCV winner along with normalized multiplicative weights for 50% sample sizes. Rows
marked “ACC” are accuracies in percents, and rows marked “MPW” are the learnt multiplicative weights.

5 Experiments
In our experiments, we explore two main questions on a mix
of synthetic elections generated from statistical cultures in the
map of elections [Szufa et al., 2020; Boehmer et al., 2021]
and real-world election data sourced from PrefLib [Mattei
and Walsh, 2013] and the Harvard Dataverse [Harvard, 2020].
First, on synthetic elections, we examine the prediction accu-
racy of various voting rules when predicting the RCV winner
on uniform samples of varying sizes. Second, on real-world
elections, we examine the accuracy with which the RCV win-
ner can be correctly predicted by each of the voting rules we
consider, as well as two additional “ensemble” rules informed
by results on the map of elections. Our code is available at
https://github.com/miceland2/STV sampling.

5.1 Synthetic Elections
Informed by prior work on the map of elections, we use the
mapel Python library to generate votes from the diverse set
of statistical cultures included in the original map. These
include the Mallows model (with dispersion parameter ϕ ∈

{0.001, 0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.95, 0.99, 0.999}),
Polya-Eggenberger urn models (with α ∈ {0.01, 0.02, 0.05,
0.1, 0.2, 0.5}), the Conitzer and Walsh single-peaked models,
the Conitzer single-peaked on a circle (SPOC) model, single-
crossing models, the Impartial Culture model, 1D, 2D, 3D,
5D, 10D, and 20D hypercube models, and finally 2D, 3D, and
5D hypersphere models. In the interest of space, for further
discussion of the specific statistical cultures in these models,
see Section 2.2 in [Szufa et al., 2020].

In our experiments, we vary the sample size from 10% to
100% in steps of 10%, with the addition of a 5% sample size;
omitted results can be found in the full version.

In Tables 1 and 2, we present the average prediction accu-
racy (“ACC”) of each of our nine voting rules when predict-
ing the RCV winner for profiles generated according to the
statistical cultures we consider for samples consisting of 5%
and 50% of the voters, respectively. The average prediction
accuracy is taken over 100 samples on each of 100 different
profiles generated according to the statistical cultures in con-
sideration. These profiles each consist of 100 votes over 5
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Figure 1: Bounds on the minimum sample size needed to ensure that
evaluating RCV on any sample will identify the correct winner. For
each m, running RCV with any sample size above the corresponding
line is guaranteed to return the correct winner.

alternatives, which is roughly the average number of candi-
dates over all our real-world data.

For each statistical culture, we also treat each voting rule
as an expert and learn normalized weights for each voting
rule via the classic multiplicative weights (“MPW”) algo-
rithm [Littlestone and Warmuth, 1994; Arora et al., 2012].

Overall, we find that RCV exhibits uneven performance
across different statistical vote cultures, but its accuracy in-
creases with sample size. Plurality Veto is unexpectedly ac-
curate for Mallows models, as evinced by its remarkably high
MPW score in these settings. On the whole, we observe that
more “centered” distributions like Mallows are generally eas-
ier to predict than other families, most likely due to RCV’s
sensitivity to the order of eliminations in scenarios without a
clear majority winner.

5.2 Real-World Elections
One of our main empirical questions is whether we can lever-
age results from synthetic vote profiles to achieve greater
prediction accuracy on real-world elections. To this end,
we build two ensemble methods that leverage the pseudo-
distance metric underlying the map of elections in order to
predict the RCV winner of real-world elections.

The central idea behind these ensemble methods is to use
good predictors of RCV on “nearby” elections on the map
of elections in order to predict RCV outcomes on real-world
data. Given a sample s, both ensemble methods first identify
the closest statistical culture according to positionwise dis-
tance as defined in Section 3.2 in [Szufa et al., 2020]. We call
the closest statistical culture C, and use our empirical results
on C to create scores for each alternative. Throughout, let R
represent the set of rules we define in Section 2.1.

The first ensemble method, which we term “Summation,”
uses our experiments on synthetic data and adds accf (C),
which we define as the empirical accuracy of rule f predict-

ing RCV on culture C, to the score of the winner f(s) for
each rule f ∈ R. The alternative with the highest overall
score after this process is the Summation winner.

The second ensemble method, which we call “MPW,” se-
lects a predictive rule to use according to a probability distri-
bution based on the normalized weights learned on C through
the multiplicative weights process. The alternative returned
by the predictive rule is the MPW winner.

We run experiments to measure the performance of the nine
rules in Section 2.1, as well as these two ensemble rules,
on a total of 12 collections of different real-world elections
from PrefLib [Mattei and Walsh, 2013] and Harvard Data-
verse [Harvard, 2020], amounting to a total of 275 individual
elections. Each collection consists of between 8 and 46 sepa-
rate elections, each of which contain between 143 and 39,401
votes on 2 to 15 candidates. Full descriptions can be found in
the full version.

Preprocessing
For each dataset in the Harvard database, we take all available
profiles of the locality and government position. We exclude
elections that consist of a single candidate. For each pro-
file, we (1) discard blank rows, (2) remove table cells labeled
“write-in,” “overvote,” or “skipped,” and (3) keep only the
higher-ranked position for each vote if the voter gave two or
more rankings of the same alternatives. Generally, the final
preprocessing step applied to less than 10% of all votes for
each profile. In contrast, datasets from Preflib did not require
the preprocessing steps described above.

All real-world elections give strict-order-incomplete rank-
ings over the candidates, where unranked candidates in a
given vote are assumed to be tied for last place. We complete
each of these incomplete rankings using the same method
proposed by Boehmer et al. [2021] in order to (1) run each of
our voting rules without modifications or additional assump-
tions and (2) compute the positionwise distances between
each real election and those from the map of elections using
the mapel library. For each vote v that gives an incomplete
ranking for their top t candidates, we first draw uniformly at
random another vote that ranks at least the top (t+ 1) candi-
dates and agrees with v on the top t candidates, and we then
extend v with this other vote’s (t+ 1)st-ranked candidate. If
no such vote exists, we extend v with one of their unranked
candidates uniformly at random. The process is repeated until
all votes are strict-order complete.

Real-World Results
We present the average RCV sampling accuracies for each of
our rules for three collections of elections in Figure 2. For
each sample size (5%, 10%, 30%, 50%, 70%, and 100%)
and each election, we estimate the sampling accuracy with
1,000 samples. The right-most column contains average ac-
curacies for all elections in each group, and the other two
columns show results from individual elections in each group.
The center column contains plots that are more typical of the
dataset, while those on the left are more extraneous and typi-
cally have lower bounds on the margin of victory.

We observe that, in contrast to the theoretical results and
results on synthetic data, RCV is on average one of the best
predictors of itself even on low sample sizes. While this does
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Figure 2: Summary and individual plots for the APA, Berkeley City Council, and Alaska House of Representatives datasets. We show the
closest statistical culture and bounds on the MoV for individual elections. EMD is the positionwise distance [Szufa et al., 2020].

not mean that RCV is the best predictor of itself on every in-
dividual election, on average, this trend persists over all our
real-world data. Only among the Glasgow City Council elec-
tions, though, is RCV decisively the best predictor. Summa-
tion performs almost as well as RCV on average. This is
likely because the ensemble rules tend to agree with RCV on
high sample sizes for all the real-world data we considered,
whereas other voting rules sometimes diverged from the RCV
winner as sample size increases. The Condorcet-consistent
rules, namely Copeland and Minimax, are also among the
best predictors of RCV and only rarely diverge from the true
winner. On the other hand, MPW often suffers from poor per-
formance on low sample sizes before catching up at higher
sample sizes. This is because, as seen in Tables 1 and 2, Plu-
rality Veto has a very high weight in small samples for Mal-
lows elections; its weight decreases as sample size increases.
However, Plurality Veto often does poorly in predicting the
overall RCV winner in practice. Although on some profiles,
such as in the top-left and bottom-left of Figure 2, Plurality
Veto is an exceptional predictor of RCV even on 5% sample
sizes, such profiles are not common, and Plurality Veto often
does not increase in accuracy as sample size increases.

We also note that, in direct contrast to our worst-case re-
sults, the average predictive performance of RCV increases
with sample size, corroborating prior observations that real-
world elections are far from the worst-case profiles we study
[Boehmer and Schaar, 2023].

Finally, we conclude that the positionwise distance is lim-
ited in its ability to extrapolate sampling behavior from one
election to a nearby election in terms of positionwise dis-
tance. The most obvious evidence comes from the disparity in
performance of Plurality Veto between the synthetic Mallows
profiles and the real-world elections. As seen in Figure 2,
Plurality Veto is by far the worst, on average, at predicting
RCV for all three datasets, yet most of their profiles are clos-
est to one of the Mallows cultures. This disparity in perfor-
mance can be explained by the fact that a given positionwise
frequency matrix can map to several different profiles, as ex-
plored in [Boehmer et al., 2023].

6 Discussion
This paper presents a theoretical and empirical exploration of
using RCV on samples to predict the outcome of applying
RCV on the entire election. We establish that, while RCV
exhibits bad worst-case theoretical accuracy, it is generally
the most trustworthy predictor of itself in practice.

As for future work, there are two main avenues to pur-
sue. With respect to theoretical results, it would be interest-
ing to fully characterize the conjectured monotonicity of the
worst-case prediction accuracy of RCV. We present some ini-
tial results toward this goal in the full version. We also will
study average-case predictability of RCV on samples instead
of worst-case predictability.
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