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Abstract

We initiate the study of fair distribution of deliv-
ery tasks among a set of agents wherein delivery
jobs are placed along the vertices of a graph. Our
goal is to fairly distribute delivery costs (modeled
as a submodular function) among a fixed set of
agents while satisfying some desirable notions of
economic efficiency. We adopt well-established
fairness concepts—such as envy-freeness up to one
item (EF1) and minimax share (MMS)—to our set-
ting and show that fairness is often incompatible
with the efficiency notion of social optimality. Yet,
we characterize instances that admit fair and so-
cially optimal solutions by exploiting graph struc-
tures. We further show that achieving fairness
along with Pareto optimality is computationally in-
tractable. Nonetheless, we design an XP algorithm
(parameterized by the number of agents) for finding
MMS and Pareto optimal solutions on every tree
instance, and show that the same algorithm can be
modified to find efficient solutions along with EF1,
when such solutions exist. We complement these
results by theoretically and experimentally analyz-
ing the price of fairness.

1 Introduction
With the rise of digital marketplaces and the gig econ-
omy, package delivery services have become crucial compo-
nents of e-commerce platforms like Amazon, AliExpress, and
eBay. In addition to these novel platforms, traditional postal
and courier services also require swift turnarounds for dis-
tributing packages. Prior work has extensively investigated
the optimal partitioning of tasks among the delivery agents
under the guise of vehicle routing problems (see [Toth and
Vigo, 2002] for an overview). However, these solutions are
primarily focused on optimizing the efficiency (often mea-
sured by delivery time or distance travelled [Kleinberg et al.,
1999; Pioro, 2007]), and do not consider fairness towards
the delivery agents. This is particularly important in the set-
tings where agents do not receive monetary compensation,
e.g., in volunteer-based social programs such as Meals on
Wheels [O’Dwyer and Timonen, 2009].
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Figure 1: An example graph with the hub, h, marked.

We consider fair distribution of delivery orders that are lo-
cated on the vertices of a connected graph, containing a ware-
house (the hub). Agents are tasked with picking up delivery
packages (or items) from the fixed hub, deliver them to the
vertices, and return to the hub. In this setting, the cost in-
curred by an agent i is the total distance traveled, that is, the
total number of the edges traversed by i in the graph. Let us
illustrate this through an example.

Example 1. Consider seven delivery orders {a, b, . . . , g} and
a hub (h) that are located on a graph as depicted in Figure 1.
An agent’s cost depends on the graph structure and is sub-
modular. For instance, the cost of delivering an order to ver-
tex f is the distance from the hub h to f , which is 41; but the
cost of delivering to f and g is only 5 since they can both be
serviced in the same trip.

Let there be two (delivery) agents. If the objective were
to simply minimize the total distance travelled (social opti-
mality), then there are two solutions with the total cost of 7:
either one agent delivers all the items or one agent services a
while the other services the rest. However, these solutions do
not distribute the delivery orders fairly among the agents.

One plausible fair solution may assign {a, b, f} to the first
agent and {c, d, e, g} to the other, minimizing the cost dis-
crepancy. However, since both agents benefit from exchang-
ing f for c, this allocation is not efficient or, more precisely,
it is not Pareto optimal. After the exchange, the first agent
services {a, b, c} and the second agent {d, e, f, g}, which in
fact is a Pareto optimal allocation.

The above example captures the challenges in satisfying
fairness in conjunction with efficiency, and consequently, mo-
tivates the study of fair distribution of delivery orders. The
literature on fair division has long been concerned with the
fair allocation of goods (or resources) [Lipton et al., 2004;

1Formally, there is also the cost of returning to h, but since, on
trees, each edge must be traversed by an agent twice (once in each
direction), we do not count the return cost for simplicity.
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Budish, 2011; Barman et al., 2019; Freeman et al., 2019],
chores (or tasks) [Chen and Liu, 2020; Ebadian et al., 2022;
Huang and Lu, 2021; Hosseini et al., 2022], and mixtures
thereof [Bhaskar et al., 2021; Aziz et al., 2022; Caragiannis
and Narang, 2023; Hosseini et al., 2023b]. It has resulted
in a variety of fairness concepts and their relaxations. Most
notably, envy-freeness and its relaxation—envy-freeness up to
one item (EF1) [Lipton et al., 2004]—have been widely stud-
ied in the context of fair division. Another well-studied fair-
ness notion, minimax share (MMS) [Budish, 2011], requires
that agents receive cost no more than what they would have
received if they were to create (almost) equal partitions. A
key question is how to adopt these fairness concepts to the
delivery problems, and whether these fairness concepts are
compatible with natural efficiency requirements.

1.1 Contributions
We initiate the study of fair distribution of delivery tasks
among a set of agents. The tasks are placed on the vertices of
an acyclic or tree graph and have submodular service costs.
The primary objective is to find a fair partition of m delivery
orders (represented by vertices of a graph), starting from a
fixed hub, among n agents. We consider two well-established
fairness concepts of EF1 and MMS and explore their exis-
tence and computation along with efficiency notions of social
optimality (SO) and Pareto optimality (PO).

Table 1 summarizes our results on the coexistence of fair-
ness and efficiency in arbitrary graphs. We first show that an
EF1 allocation always exists and can be computed in poly-
nomial time on trees (Proposition 1). In contrast, an MMS
allocation is guaranteed to exist, but its computation remains
NP-hard (Theorem 1). Of the combinations of fairness and
efficiency, only MMS and PO allocations are guaranteed to
exist. Finding a fair and efficient allocation remains NP-hard.

We note that our intractability results hold even for the re-
stricted case of unweighted tree graphs. Thus, while our ex-
istence and hardness results hold for cyclic and/or weighted
graphs (see the full version of the paper [Hosseini et al.,
2023a] for details on how our results extend beyond un-
weighted trees), in order to establish a solid baseline for fur-
ther work on fair delivery, in this paper we focus on un-
weighted tree instances.

Indeed, a popular technique to deal with computation-
ally difficult problems on graphs is to provide algorithms
with complexity parameterized by some measure of tree-
resemblance [Cygan et al., 2015]. Trees can be also mo-
tivated in practice. Many suburban neighborhoods in the
United States, among other countries, are designed with a cul-
de-sac layout, with houses/mailboxes typically located at uni-
form distances. Then, a group of agents distributing a news-
paper or a leaflet to every house in such neighborhood, will
face an unweighted tree instance of our problem.

For this setting, we characterize the conditions for the ex-
istence of fair (EF1 and MMS) and efficient (PO and SO) al-
locations in tree instances. In particular, we find a necessary
condition for an allocation to be EF1 and PO (Proposition 5),
which helps us prove that such an allocation must be leximin
optimal. This leads us to an intriguing result that an EF1 and
PO allocation always satisfies MMS as well (Theorem 3). We

– PO SO

EF1 existence ✓ ✗ (Prop. 5a) ✗ (Thm. 2)
computation P (Prop. 1) NP-h (Prop. 7) NP-h (Prop. 3)

MMS existence ✓ ✓ (Prop. 5b) ✗ (Thm. 2)
computation NP-h (Thm. 1) NP-h (Prop. 7) NP-h (Prop. 3)

Table 1: The summary of our results on EF1 and MMS in conjunc-
tion with efficiency requirements of PO and SO. ✓ denotes that the
allocation always exists, and ✗ that it may not exist. We note that
every NP-hard problem here can be solved with an XP algorithm
parameterized by the number of agents (Thm. 5).

use these observations to circumvent our hardness results by
designing an XP algorithm (Algorithm 1), parameterized by
the number of agents, that allows us to find an MMS and PO
solution and check whether an instance admits an EF1 and
PO allocation as well (Theorem 5).

Subsequently, we study the price of fairness in our setting
by establishing its worst case bounds and typical values in a
theoretical and experimental analysis, respectively.

All missing proofs can be found in the full version of the
paper [Hosseini et al., 2023a]. There, we also present addi-
tional results on a stronger fairness notion of envy-freeness
up to any item (EFX). We note that an EFX allocation always
exists in this setting, however EFX combined with some ef-
ficiency requirement, for large classes of graphs, becomes as
restrictive as envy-freeness. We also discus how our results
extend to graphs with weighted edges and/or cycles and pro-
vide additional experiments.

1.2 Related Work
Fair division of indivisible items has garnered much at-
tention in recent years. Several notions of fairness have
been explored in this space, with EF1 [Lipton et al., 2004;
Budish, 2011; Barman et al., 2019; Caragiannis and Narang,
2023] and MMS [Ghodsi et al., 2018; Barman and Krishna-
murthy, 2020; Hosseini and Searns, 2021] being among the
most prominent ones. An important result is from Caragian-
nis et al. [2019] showing that an EF1 and PO allocation is
guaranteed to exist for items with non-negative additive val-
uations. Some prior work has also looked at fair division on
graphs [Bouveret et al., 2017; Truszczynski and Lonc, 2020;
Misra et al., 2021; Bilò et al., 2022; Misra and Nayak, 2022],
but in the settings that are very different from assigning deliv-
ery orders. The majority of these works identified the vertices
of a graph with goods and analyzed how to fairly partition the
graph into contiguous pieces.

Recent works have explored fairness in delivery settings
[Gupta et al., 2022; Nair et al., 2022] or ride-hailing plat-
forms [Esmaeili et al., 2023; Sánchez et al., 2022]. How-
ever, these studies are mainly experimental and do not pro-
vide any positive theoretical guarantees. While fairness has
been studied in routing problems, the aim has been to balance
the amount of traffic on each edge [Kleinberg et al., 1999;
Pioro, 2007], which does not capture the type of delivery in-
stances that we investigate in this paper. In the full version
of the paper [Hosseini et al., 2023a], we provide an extended
review of the literature.
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2 Our Model
We denote a delivery instance by an ordered triple I =
⟨[n], G, h⟩, where [n] is a set of agents, G = (V,E) is an
undirected acyclic graph (or a tree) of delivery orders rooted
in h ∈ V . The special vertex, i.e., the root, h is called the
hub. The goal is to assign each vertex in graph G, except
for the hub, to a unique agent that will service it. Formally,
an allocation A = (A1, . . . , An) is an n-partition of vertices
in V \ {h}. We are interested in complete allocations such
that ∪i∈[n]Ai = V \ {h}, and denote the set of all complete
allocations by Πn.

An agent’s cost for servicing a vertex v ∈ V , denoted by
c(v), is the length of the shortest path from the hub h to v.
An agent’s cost for servicing a set of vertices S ⊆ V \ {h}
is equal to the minimum length of a walk that starts and ends
in h and contains all vertices in S divided by two.2 A walk to
serve vertices in S may pass through vertices in some super-
set of S, i.e., S′ ⊇ S. Thus, the cost function c is submodular
and belongs to the class of coverage functions. We use G|S
to denote the minimal connected subgraph containing all ver-
tices in S ∪ {h}. Thus, we have c(S) = |E(G|S)|. We say
that an agent servicing S, visits all vertices in G|S .

Fairness Concepts. The most plausible fairness notion is
envy-freeness (EF), which requires that no agent (strictly)
prefers the allocation of another agent. An EF allocation
may not exist; consider one delivery order and two agents.
A prominent relaxation of EF is envy-freeness up to one or-
der (EF1) [Lipton et al., 2004; Budish, 2011], which requires
that every pairwise envy can be eliminated by a removal of a
single order served by the envious agent.

Definition 1 (Envy-Freeness up to One Order (EF1)). An al-
location A is EF1 if for every pair i, j ∈ [n], either Ai = ∅
or there exists x ∈ Ai such that c(Ai \ {x}) ≤ c(Aj).

Another well-studied notion is minimax share (MMS),
which ensures that each agent gets at most as much cost as
they would if they were to create an n-partition of the deliv-
ery orders but then receive their least preferred bundle. This
notion is an adaptation of maximin share fairness—that deals
with positive valuations [Budish, 2011]—to the settings that
deals with negative valuations and has been recently studied
in fair allocation of chores (see e.g., Huang and Lu [2021]).

Definition 2 (Minimax Share (MMS)). An agent’s minimax
share cost is given by

MMSi(I) = min
A∈Πn

max
i∈[n]

c(Ai),

An allocation A is MMS if c(Ai)≤MMSi(I) for all i∈ [n].

Under additive non-negative identical valuations, MMS
implies EF1 (for completeness, we give a formal proof in the
full version of the paper). However, since in our case the costs
are submodular, EF1 and MMS do not imply each other, even
though the cost functions are identical (see Example 2).

2On trees, in each such walk, each edge is traversed by an agent
two times (once in both directions). For simplicity, we drop the
return cost, hence the division by 2.

Economic Efficiency. Our first notion of efficiency is social
optimality that requires that the aggregate cost of the agents
is minimum, i.e., equal to the number of edges in the graph.
In such a case, each vertex (except for the hub) is visited by
only one agent.

Definition 3 (Social Optimality (SO)). An allocation A is
socially optimal if

∑n
i=1 c(Ai) = |E(G)|. In other words,

for every pair of agents i ̸= j ∈ [n], the only vertex they both
visit is the hub, i.e., V (G|Ai

) ∩ V (G|Aj
) = {h}.

Here, V (·) takes as an input a subgraph and returns the
set of vertices in it. An allocation that assigns all vertices to
a single agent is vacuously SO. However, as we discussed in
Example 1 it may result in a very unfair distribution of orders.
Therefore, we consider a weaker efficiency notion that allows
for some overlap in vertices visited by the agents.

Definition 4 (Pareto Optimality (PO)). An allocation A
Pareto dominates A′ if c(Ai) ≤ c(A′

i), for every agent
i ∈ [n], and there exists some agent j ∈ [n] such that
c(Aj) < c(A′

j). An allocation is Pareto optimal if it is not
Pareto dominated by any other allocation.

In other words, an allocation is PO if we cannot reduce the
cost of one agent without increasing it for some other agent.
Let us now follow up on Example 1 and analyze allocations
satisfying our notions.

Example 2. Consider the instance with 2 agents and the
graph from Figure 1. As previously noted, there are only two
SO allocations and neither is EF1 or MMS.

PO allocation ({d, e, f, g}, {a, b, c}) satisfies MMS (ver-
tex g must be serviced by some agent, hence the MMS cost
cannot be smaller than 5), but it is not EF1. In fact, there is
no EF1 and PO allocation in this instance, as an agent servic-
ing g has to service f, e and d as well (otherwise giving them
to this agent would be a Pareto improvement). But then, even
when we assign the remaining vertices, a, b, c, to the second
agent, the allocation would violate EF1.

Finally, observe that allocation ({a, b, f}, {c, d, e, g}) is
EF1, but not MMS.

In order to study the (co-)existence of these fairness and ef-
ficiency notions, we use leximin optimality. Let us first set up
some notation before defining it. Given an allocation A, we
can sort it in non-increasing cost order to obtain allocation
B = sort(A) such that c(B1) ≥ c(B2) ≥ · · · ≥ c(Bn) and
Bi = Aπ(i) for every agent i ∈ [n] and some permutation of
agents π.

Definition 5 (Leximin Optimality). An allocation A leximin
dominates an allocation A′ if there is agent i ∈ [n] such that
c(Bi) < c(B′

i) and c(Bj) = c(B′
j) for every j ∈ [i − 1],

where B = sort(A) and B′ = sort(A′). An allocation is
leximin optimal if it is not leximin dominated by any other
allocation.

In other words, a leximin optimal allocation first minimizes
the cost of the worst-off agent, then minimizes the cost of the
second worst-off agent, and so on. We note that a leximin
optimal allocation is always Pareto optimal as well.
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3 Existence of Fair Allocations
In this section, we consider the existence and computation of
EF1 and MMS allocations.

Recall that our cost functions are submodular and mono-
tone. Thus, an EF1 allocation can be obtained by adapting
an envy-graph algorithm from Lipton et al. [2004]: start with
each agent having an empty set, pick an agent who currently
has minimum cost (i.e., a sink of the envy-graph) and out of
the unassigned vertices give them the one that results in a
minimal increase of the cost. Repeat this till all vertices in
V \ {h} are allocated. This algorithm always returns an EF1
solution as long as valuations are identical and monotone.

Proposition 1. Given a delivery instance I = ⟨[n], G, h⟩, an
EF1 allocation always exists and can be computed in polyno-
mial time.

An MMS allocation in our setting always exists. It follows
from the fact that agents have identical cost functions (an allo-
cation that minimizes the maximum cost will satisfy MMS).
However, finding such an allocation is NP-hard. To establish
this, we first show the hardness of finding the MMS cost.

Proposition 2. Given a delivery instance I = ⟨[n], G, h⟩,
finding the MMS cost is NP-hard.

Theorem 1. Given a delivery instance I = ⟨[n], G, h⟩, an
MMS allocation always exists, however, finding such an al-
location is NP-hard.
Proof. The existence of MMS allocations follows from the
cost functions being identical. The same allocation will give
the MMS threshold for all agents, hence would satisfy MMS
for all. Further, for each instance I and MMS allocation A the
cost of the agent that is the worst off, must be equal to MMS
cost, i.e., maxi∈[n] c(Ai) = MMSi(I). Hence, if we had
a polynomial time algorithm for finding an MMS allocation,
we would be able to find MMS cost by looking at the maximal
cost of an agent. Since by Proposition 2 the latter is NP-hard,
there is no such algorithm unless P = NP .

4 Characterizing Fair and Efficient Solutions
Example 2 established the possible incompatibility of fair-
ness and efficiency in our setting. In this section, we exploit
the structure provided by trees to characterize the space of de-
livery instances for which fair and efficient allocations exist.
We first discuss social optimality and then turn our attention
to Pareto optimality.

4.1 Social Optimality
In every socially optimal allocation, each edge is traversed
by a unique agent, thus the sum of all agents costs is m (the
number of edges in a tree with m + 1 vertices). This is a
very demanding condition, hence it is not surprising that it
may be impossible to satisfy it together with some fairness
requirement. We show that checking if there exists a social
optimal and fair allocation is computationally hard.

Proposition 3. Given a delivery instance I = ⟨[n], G, h⟩,
an SO allocation that satisfies EF1 or MMS need not exist.
Moreover, checking whether an instance admits such an allo-
cation is NP-hard.

Despite the computational hardness result, we exploit the
tree structure to characterize instances with such allocations.
Theorem 2. Given a delivery instance I = ⟨[n], G, h⟩:

a. An EF1 and SO allocation exists if and only if there is
a partition (P1, . . . , Pn) of branches out of h such that∑

B∈Pi
|B| −

∑
B∈Pj

|B| ≤ 1, for every i, j ∈ [n],

b. An MMS and SO allocation exists if and only if there
is a partition (P1, . . . , Pn) of branches outgoing from h
such that

∑
B∈Pi

|B| ≤ MMSi(I) for every i ∈ [n].

By Proposition 3, checking the condition in point a of
the above theorem is NP-hard. However, we develop a
polynomial-time verifiable necessary condition for EF1 and
SO existence using the notion of the center of the graph
(which was studied in computational social choice [Skibski,
2023] and in theoretical computer science in general [Gold-
man, 1971]).
Definition 6. The center of a tree G = (V,E) is a set of
vertices C = argminv∈V

∑
u∈V dist(u, v), where dist(x, y)

is the length of a shortest path from x to y.

Proposition 4. Given a delivery instance I = ⟨[n], G, h⟩,
there exists an EF1 and SO allocation only if the hub is in the
center of the tree.

4.2 Pareto Optimality
Given the challenges in satisfying SO, we now focus on
Pareto optimality. Recall that all SO allocations are PO, but
not vice versa. We begin by noting that an MMS and PO al-
location always exists, but the same is not true for an EF1 and
PO allocation.
Proposition 5. Given a delivery instance I = ⟨[n], G, h⟩,

a. an EF1 and PO allocation need not exist,

b. an MMS and PO allocation always exists.

The central result of this section is the proof that every EF1
and PO allocation will satisfy MMS as well. This comes in
contrast to typical fair chore division settings, where under
additive preferences EF1 and MMS are independent notions
even in the presence of efficiency requirements. To this end,
we first prove an insightful necessary condition for EF1 and
PO allocations: in every such allocation, the pairwise differ-
ence in the costs of agents cannot be greater than 1.
Proposition 6. Given a delivery instance I = ⟨[n], G, h⟩ and
an EF1 allocation A, if |c(Ai)− c(Aj)| > 1 for some agents
i, j ∈ [n], then A is not PO.

Proof. Without loss of generality, assume that A is sorted
in non-increasing cost order, i.e., c(A1) ≥ · · · ≥ c(An)
(otherwise we can relabel the agents). We will show that if
c(An) < c(A1)− 1, then A is not PO, i.e., it is Pareto domi-
nated by some allocation A′ (not necessarily EF1).

For every vertex x ∈ V \ {h}, by p(x) let us denote the
parent of x in a tree G rooted in h. Also, for every agent
i ∈ [n], let w(i) be the worst vertex in i’s bundle, i.e., the
vertex which on removal gives the largest decrease in cost (if
there is more than one we take an arbitrary one). Formally,
w(i) = argmaxx∈Ai

c(Ai) − c(Ai \ {x}). Since A is EF1,
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w(ik)

A

Case 1
w(ik)

A′

w(i2)w(i1) w(i3)

A

Case 2
w(i2)w(i1) w(i3)

A′

Figure 2: Illustrating the proof of Prop. 6. In Case 1, ik (red
squares) exchanges its bundle with i∗ (blue circles) except for w(ik).
In Case 2, i1, i2, and i3 (pentagons, squares, and circles, resp.) swap
their worst vertices along the cycle.

for every agent i with maximal cost, i.e., such that c(Ai) =
c(A1), we have

c(Ai \ {w(i)}) ≤ c(An) < c(Ai)− 1. (1)

Observe that this is only possible if the parent of w(i) is not
serviced by i, i.e., p(w(i)) ̸∈ Ai. To construct allocation
A′ which Pareto dominates A, we look at the agent servic-
ing the parent of the worst vertex of agent 1, call this agent
i1 . If i1 incurs maximum cost, we look at the agent servic-
ing the parent of the worst vertex of i1. We continue in this
manner and obtain a maximal sequence of pairwise disjoint
agents 1 = i0, i1, . . . , ik such that p(w(is−1)) ∈ Ais and
c(Ais) = c(A1) for every s ∈ [k]. The cost incurred by the
agent servicing the parent of the worst vertex of ik, which we
denote by i∗ (i.e., p(w(ik)) ∈ Ai∗ ) can create two cases. Ei-
ther i∗ does not incur maximum cost, i.e., c(Ai∗) < c(A1)
(Case 1), or it already appears in the sequence, i.e., i∗ = ij
for some j < k (Case 2).

Case 1. Consider allocation A′ obtained from A by ex-
changing the bundles of agent ik and agent i∗ with the ex-
ception of w(ik) (which continues to be serviced by ik). See
Figure 2 for an illustration. Formally, A′

i∗ = Aik \ {w(ik)},
A′

ik
=Ai∗ ∪{w(ik)}, and A′

t=At, for every t ∈ [n]\{i∗, ik}.
Since costs of agents in [n] \ {i∗, ik} are not affected, it suf-
fices to prove that the cost of either ik or i∗ decreases without
increasing the other’s cost. To this end, observe that since
parent of w(ik) belongs to Ai∗ , adding this vertex to Ai∗ in-
creases the cost by 1, i.e.,

c(A′
ik
) = c(Ai∗) + 1. (2)

Now, let us consider two subcases based on the original dif-
ference in costs of agents ik and i∗.

If it is greater than one, i.e., c(Aik) > c(Ai∗) + 1, then
from Equation (2) we get that c(A′

ik
) = c(Ai∗)+1 < c(Aik).

Hence, the cost of ik decreases. On the other hand, by Equa-
tion (1), c(A′

i∗) = c(Aik \ {w(ik)}) ≤ c(An) ≤ c(A′
i∗), so

agent i∗ does not suffer from the exchange.
Otherwise, the difference in costs is exactly one, i.e.,

c(Aik) = c(Ai∗) + 1. Now, the cost of ik stays the same
by Equation (2). However, since c(An) < c(A1)− 1, it must
be that c(An) < c(Ai∗). Thus, from Equation (1) we have
c(A′

i∗) ≤ c(An) < c(Ai∗), i.e., the cost of i∗ decreases.
Case 2. When i∗ = ij for some j < k, we have a cycle

of agents i∗ = ij , ij+1, . . . , ik such that c(Ais) = c(A1) and

p(w(is)) ∈ Ais+1
for every s ∈ {j, . . . , k} (we denote ij as

ik+1 as well for notational convenience). Here, we consider
two subcases, based on whether it happens somewhere in the
cycle that the parent of the worst vertex of one agent is the
worst vertex of the next agent, i.e., p(w(is)) = w(is+1) for
some s ∈ {j, . . . , k}.

Case 2a. If this is the case, consider A′ obtained from A
by giving w(is+1) to agent is. Formally, A′

is+1
= Ais+1

\
{w(is+1)}, A′

is
= Ais ∪ {w(is+1)}, and A′

t = At, for every
t ∈ [n] \ {is, is+1}. Now, the cost of agent is+1 decreases
as it no longer services its worst vertex. Since agent is was
servicing a child of w(is+1), it was visiting w(is+1) on the
way. Hence, the cost of is stays the same. As the bundles of
the remaining agents did not change, A′ Pareto dominates A.

Case 2b. Finally, if in the cycle there is no agent for which
the parent of its worst vertex is the worst vertex of the next
agent, we swap the worst vertices along the cycle (e.g. in
Figure 2). Formally, A′

is
= Ais \ {w(is)} ∪ {w(is−1)}

for every s ∈ {j + 1, . . . , k + 1} and A′
i = Ai for every

i ∈ [n] \ {ij+1, . . . , ik+1}. As each is is servicing the par-
ent of the worst vertex of the previous agent in the cycle, i.e.,
p(w(is−1)) ∈ A′

is
, servicing w(is−1) incurs an additional

cost of 1. However, from Equation (1) giving away the worst
vertex decreases the cost by more than 1. Hence, the cost of
each agent in the cycle decreases. The other agents’ costs stay
the same, thus A′ Pareto dominates A.

We can now show that EF1 and PO imply MMS.

Theorem 3. Given a delivery instance I = ⟨[n], G, h⟩, every
EF1 and PO allocation satisfies MMS.

Proof. We show a stronger result that an EF1 and PO alloca-
tion A is necessarily leximin optimal (thus, also MMS). With-
out loss of generality, let A be s.t. c(A1) ≥ · · · ≥ c(An).
By contradiction, suppose that there exists A′ (also sorted)
that leximin dominates A, i.e., there exists i ∈ [n] such that
c(A′

i) < c(Ai) and c(A′
j) = c(Aj) for every j ∈ [i− 1]. Fix

an agent j ∈ [n] such that j > i. From Proposition 6 we know
that its cost is either c(Aj) = c(Ai) or c(Aj) = c(Ai) − 1.
On the other hand, we assumed that c(A′

j) ≤ c(A′
i) < c(Ai).

Hence, c(A′
j) ≤ c(Ai) − 1 ≤ c(Aj). Thus, A′ also Pareto

dominates A, which is a contradiction.

From the proof of the above theorem we obtain the follow-
ing characterization.

Corollary 1. Given a delivery instance I = ⟨[n], G, h⟩, an
EF1 and PO allocation exists if and only if for every leximin
optimal allocation A, maxi,j∈[n] |c(Ai)− c(Aj)| ≤ 1.

Finally, by modifying the proof of Proposition 2 we show
that deciding if there exists a PO allocation that is EF1 is also
NP-hard. Also, we note that hardness for MMS and PO is
directly implied by Proposition 2.

Proposition 7. Given a delivery instance I = ⟨[n], G, h⟩,
checking whether there exists an EF1 and PO or finding an
MMS and PO allocation is NP-hard.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2829



Algorithm 1 FindParetoFrontier(n, G,h)

1: F ← [(∅, . . . ,∅)]
2: for u ∈ children of h do
3: Tu ← a subtree rooted in u
4: F ′ ← FindParetoFrontier(n, Tu, u)
5: for A ∈ F ′ do add u to A1

6: F ←maximal set of sorted combinations of allocations from
F and F ′ such that none is weakly Pareto dominated by an-
other within the set

7: end for
8: return F

5 Computing Fair and Efficient Solutions
We have shown that finding a fair and efficient allocation (or
deciding if it exists) is computationally hard. In this section,
we develop a recursive algorithm for computing each com-
bination of the fairness-efficiency notions that is XP with re-
spect to the number of agents, i.e., when the number of agents
is bounded, the running time of our algorithm is polynomial.
Let us start by defining a notion of Pareto frontier as a set of
Pareto optimal solutions and introduce Algorithm 1 that finds
such set for every delivery instance.
Definition 7. Given a delivery instance I = ⟨[n], G, h⟩, its
Pareto frontier is a minimal set of allocations F such that for
every PO allocation A there exists B ∈ F and permutation
of agents π such that c(Ai) = c(Bπ(i)), for every i ∈ [n].

Algorithm. Throughout the algorithm, we keep allocations
in the list F , each allocation sorted in non-increasing cost
order. First, we initialize it with just one empty allocation.
Then, we look at vertices directly connected to the hub. For
each, say u, we run our algorithm on a smaller instance where
the graph is just the branch outgoing from h that u is on, and
u is the hub. In each allocation in the output, F ′, we add u
to the bundle of the first agent. Finally, we combine these
allocations, by looking at all possible sorted combinations of
allocations in both lists, and keeping only the ones that are not
weakly Pareto dominated by any other (where an allocation
weakly Pareto dominates another allocation if it Pareto dom-
inates it, or all agents have equal costs in both allocations).
Example 3. We run our algorithm on the instance with
2 agents from Figure 1. First, we run it on two smaller
graphs: the vertex a as one and one on the branch con-
taining vertices b, c, d, e, f and g. Vertex a is a leaf, so
we get one allocation, i.e., F = {({a},∅)}. When b
is the hub, we obtain two allocations: either one agent
services g along with all its ancestors and the other
agent services c, or one agent services everything. Thus,
F ′ = {({b, d, e, f, g}, {c}), ({b, c, d, e, f, g},∅)}. Finally,
we combine F with F ′. We consider all four possible com-
binations. However, one of them, ({a, b, d, e, f, g}, {c}) is
Pareto dominated by another, ({b, c, d, e, f, g}, {a}) (the cost
of the first agent is the same, but for the second agent
it decreases by 1). In conclusion, we return three allo-
cations: ({b, d, e, f, g}, {a, c}), ({b, c, d, e, f, g}, {a}), and
({a, b, c, d, e, f, g},∅). We note that the first one is in fact
MMS and PO allocation.

Now, let us prove the correctness of our algorithm.

Theorem 4. Given a delivery instance I = ⟨[n], G, h⟩,
Algorithm 1 computes its Pareto frontier and runs in time
O((n+ 2)!m3n+2), where m = |E(G)|.

Proof (sketch). Here, we note two key observations.
For the first, consider an arbitrary instance ⟨[n], G, h⟩, and

a smaller one obtained by taking a subtree rooted in some
vertex u ∈ V , i.e., ⟨[n], Tu, u⟩. Then, every PO allocation
A in the original instance, must be still PO when we cut it
to the smaller instance (i.e., we remove vertices not in Tu).
Otherwise, a Pareto improvement on the cut allocation, would
also be a Pareto improvement for A. Hence, by looking at
all combinations of PO allocations on the branches outgoing
from h, we obtain all PO allocations in the original instance.

The second observation is that we do not need to keep two
allocations that give the same cost for each agent. The maxi-
mum cost of each agent is m. Hence, we will never have more
than (m + 1)n different allocations in the list (in fact, since
we keep all allocations sorted in non-increasing cost order,
this number will be much smaller). Thus, we can combine
two frontiers efficiently.

We can use Algorithm 1 to obtain the desired allocations.
Theorem 5. There exists an XP algorithm parameterized by
n, that given a delivery instance I = ⟨[n], G, h⟩, computes
an MMS and PO allocation, and decides whether there exist
MMS and SO, EF1 and PO, and EF1 and SO allocations.

Proof (sketch). Here, we focus on MMS and PO allocations
(see the full version of the paper for the other notions). By
Theorem 4, we can obtain a Pareto frontier for every instance.
Also, from the proof of Theorem 4, we know that a Pareto
frontier contains at most (m+ 1)n allocations. Thus, we can
search through them to find the leximin optimal one, which
will be MMS and PO as well.

We note that the proof for EF1 and PO here relies on Cor. 1.

6 Price of Fairness
In this section, we study the price of fairness, i.e., the loss to
a total cost incurred by requiring EF1 or MMS while delivery
tasks located on the vertices of an weighted tree. Specifi-
cally, we show tight bounds for the relative amount of such
additional cost. The price of fairness has been well studied
in the fair division literature and merits exploration in deliv-
ery settings as well [Barman et al., 2020; Sun et al., 2023;
Bhaskar et al., 2023]. Formally, it is defined as the ratio of
the minimum total cost of allocation satisfying given notion
to the minimum total cost of any allocation.
Definition 8 (Price of Fairness). Given a fairness concept F
and an instance I = ⟨[n], G, h⟩, the price of F is given as:

PoF(I) =
minA∈Πn:A satisfies F

∑
i∈[n] c(Ai)

minA∈Πn

∑
i∈[n] c(Ai)

In the following proposition we identify the tight bounds
for the price of EF1 and MMS.
Proposition 8. Given a delivery instance I = ⟨[n], G, h⟩,
it holds that PoMMS(I) ≤ n(m−n+1)

m and PoEF1(I) ≤
n(2m−n+1)

2m . Both these bounds are tight.
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Figure 3: Figure 3a shows the fraction of instances admitting EF1 and PO for different number of agents and sizes of graphs. Figure 3b
presents the boxplots with the price of MMS for 2 agents and different graph sizes. In Figure 3c we analyze the trade-off between fairness
and the total cost of agents in singular Pareto frontiers for 2 agents and graphs with 400 vertices.

We note that the bound for the price of MMS is lower,
which matches our intuition that MMS is more compatible
with efficiency in our setting. In the full version of the paper,
we also show the hardness of finding cost minimizing alloca-
tions satisfying MMS or EF1 and prove that for MMS such
allocation has to be PO (which is not the case for EF1). This
allows us to use Algorithm 1 to calculate the price of MMS
and study it in numerical experiments.

7 Experiments
We now present our experimental results concerning the exis-
tence of EF1 and PO allocations and investigate the efficiency
loss of fair solutions through their price of fairness. We also
check the running time of our algorithm, which we report in
the full version of the paper [Hosseini et al., 2023a]. In each
experiment, we generated trees, uniformly at random, based
on Prüfer sequences [Prüfer, 1918] using NetworkX Python
library [Hagberg et al., 2008].3 For each experiment and a
graph size, we sampled 1,000 trees.

Experiment 1. EF1 and PO existence. First, we checked
how often there exists an EF1 and PO allocation. To this end,
we generated trees of sizes 10, 20, . . . , 100 and for each tree
we run Algorithm 1 for each number of agents from 2 to 6.
Based on the output, we checked the number of trees that
admit an EF1 and PO allocation. As shown in Figure 3a,
the probability of finding an EF1 and PO allocation increases
steadily when we increase the size of the graph, but drops
sharply when we increase the number of agents. Intuitively,
on larger graphs we have more flexibility in how we fairly and
efficiently split the vertices. However, when there are more
agents, it may still be difficult to satisfy fairness for each of
them. We repeat a similar experiment for EF1 and SO as well
as MMS and SO allocations in the full version of the paper.

Experiment 2. Price of Fairness. Next, we analyze the
price of MMS. To this end, we generated trees of sizes
100, 200, 300, 400 and we run Algorithm 1 for two agents (we
also consider larger instances in the full version). Figure 3b
illustrates that the median price is around 1.15 for the graphs

3The code for our experiments is available at: https://doi.org/10.
5281/zenodo.11149658.

of size 100 and it steadily decreases for the larger graphs.
These results suggest that as the size of the instance grows,
the efficiency loss due to MMS becomes negligible in most
cases (at least for a small number of agents).

Experiment 3. Pareto Frontiers. In our final experiment,
we analyze the trade-off between fairness and the total cost
of agents in singular Pareto frontiers. To this end, we focus
on a single size of a graph, 400, and two agents. For each
one of 1000 trees generated, we look at each allocation in the
Pareto frontier and report the total cost of both agents on y-
axis and the difference in costs of agents on x-axis. Then, we
connect all such points for allocations in one Pareto frontier
to form a partially transparent blue line. By superimposition
of all 1000 of such blue lines, we obtain a general view on
the distribution of Pareto frontiers. With the thick red line we
denote the average total cost, for each difference in costs. We
see that particular Pareto frontiers can behave very differently,
but the general pattern is quite strong: The total cost does
not vary much when the difference in costs is between 0 and
250, however it is much steeper for the larger differences.
These findings imply that it is usually not effective to focus
on partial fairness as the additional total cost that we incur
by guarantying complete fairness instead of partial is not that
big. We present a similar experiment for different graph sizes
and numbers of agents in the full version of the paper.

8 Conclusions and Future Work
We introduced a novel problem of fair distribution of deliv-
ery orders on graphs. We provided a comprehensive char-
acterization of the space of instances that admit fair (EF1
or MMS) and efficient (SO or PO) allocations and—despite
proving their hardness—developed an XP algorithm param-
eterized by the number of agents for each combination of
fairness-efficiency notions.

Our work paves the way for future research on developing
approximation schemes or perhaps algorithms parameterized
by graph characteristics (e.g., maximum degree or diameter)
in this domain. Another natural direction is extending our
results to cycled and weighted graphs. The model can also
be generalized to account for heterogeneous cost functions,
capacity constraints of agents, or multiple hubs.
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