
Weighted EF1 and PO Allocations with
Few Types of Agents or Chores

Jugal Garg , Aniket Murhekar , John Qin
University of Illinois at Urbana-Champaign
{jugal, aniket2, johnqin2}@illinois.edu

Abstract
We investigate the existence of fair and efficient al-
locations of indivisible chores to asymmetric agents
who have unequal entitlements or weights. We con-
sider the fairness notion of weighted envy-freeness
up to one chore (wEF1) and the efficiency notion of
Pareto-optimality (PO). The existence of EF1 and
PO allocations of chores to symmetric agents is a
major open problem in discrete fair division, and
positive results are known only for certain struc-
tured instances. In this paper, we study this prob-
lem for a more general setting of asymmetric agents
and show that an allocation that is wEF1 and PO
exists and can be computed in polynomial time for
instances with:
• Three types of agents where agents with the same

type have identical preferences but can have dif-
ferent weights.

• Two types of chores.
For symmetric agents, our results establish that EF1
and PO allocations exist for three types of agents
and also generalize known results for three agents,
two types of agents, and two types of chores. Our
algorithms use a weighted picking sequence algo-
rithm as a subroutine; we expect this idea and our
analysis to be of independent interest.

1 Introduction
Fair division is a ubiquitous problem in many disciplines,
such as computer science, economics, social choice, and
multi-agent systems. While the formal study began with
the cake-cutting problem proposed by Steinhaus [Steinhaus,
1949], which concerned the fair division of a divisible good,
the fair division of indivisible items has received consider-
able attention in recent times (see excellent surveys [Aziz et
al., 2022; Amanatidis et al., 2023]). Although fairness of
an allocation is inherently subjective, envy-freeness (EF) is
a quintessential and well-established notion of fairness [Fo-
ley, 1967]. Envy-freeness requires that every agent (weakly-
)prefers the items allocated to her to those allocated to oth-
ers. Unfortunately, EF allocations need not exist when items
are indivisible, as can be seen from the simple example of

assigning one task to two agents. Hence, relaxations of EF
have been defined to qualify fairness in the discrete case, with
envy-free up one item (EF1) being one such popular relax-
ation. When agent preferences are monotone, EF1 allocations
always exist and can be computed in polynomial time [Lipton
et al., 2004; Bhaskar et al., 2021].

A fair allocation can be quite sub-optimal in terms of
overall efficiency: a set of tasks could be allocated so that
every agent is assigned tasks they are bad at; as a result,
agents may not envy each other by much, but the alloca-
tion is inefficient. It is, therefore, natural to seek alloca-
tions that are both fair as well as efficient. The classic notion
of economic efficiency is Pareto-optimality (PO): an alloca-
tion is PO if there is no re-allocation such that every agent
weakly prefers the re-allocation while some agents strictly
prefer it. Allocations that are simultaneously EF1 and PO
are thus highly desirable, and many works have investigated
the existence and fast computation of such allocations in
various settings, e.g., [Caragiannis et al., 2016; Barman et
al., 2018; Garg and Murhekar, 2021; Ebadian et al., 2022;
Garg et al., 2022; Garg et al., 2023; Aziz et al., 2019;
Aziz et al., 2023]. A common assumption in these works,
including ours, is that agent preferences are additive, i.e., the
value to an agent from a set of items is the sum of the values of
items in the set. Under additive preferences, merely checking
if an allocation is PO is a co-NP-hard problem. This adds to
the challenge of investigating the existence and computation
of EF1 and PO allocations.

Further, the difficulty of the problem is significantly influ-
enced by the nature of the items, as is the definition of EF1.
When items are goods and provide value to the agents receiv-
ing them, in an EF1 allocation, every agent prefers her bun-
dle to that of another after the removal of one good from the
other agent’s bundle. For goods, an EF1 and PO allocation
is known to exist and can be computed in pseudo-polynomial
time. In a pivotal paper, [Caragiannis et al., 2016] proved
that an allocation with the highest Nash welfare — product
of the agents’ utilities — is both EF1 and PO. This approach
does not lead to fast computation since computing an alloca-
tion with maximum Nash welfare is APX-hard. Remarkably,
[Barman et al., 2018] designed a pseudo-polynomial time al-
gorithm for this problem using the idea of a competitive equi-
librium. In this approach, agents are endowed with a fictitious
amount of money, the goods are assigned prices, and each

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2799



Instance EF1 + fPO wEF1 + fPO
General Additive ? ?

Two agents ✓[Aziz et al., 2019] ✓[Wu et al., 2023]
Three agents ✓[Garg et al., 2023] ✓Theorem 1

Two-agent-types ✓[Garg et al., 2023] ✓Theorem 1
Three-agent-types ✓Theorem 1 ✓Theorem 1
Two-chore-types ✓[Aziz et al., 2023] ✓Theorem 2

Bivalued ✓[Garg et al., 2022; Ebadian et al., 2022] ✓[Wu et al., 2023]

Table 1: State-of-the-art for EF1/wEF1+fPO allocation of indivisible chores. ✓ denotes existence/polynomial-time algorithm, ? denotes
(non-)existence is unknown. Colored cells highlight our results.

agent is allocated goods that give them ‘maximum value-for-
money’. The latter ensures that the allocation is fractionally
PO (fPO), an efficiency property stronger than PO. While the
allocation is not EF1, they transfer goods between agents to
reduce envy and make appropriate price changes to maintain
PO. Using involved potential function arguments, they prove
their algorithm terminates with an EF1 and PO allocation.
Later, [Garg and Murhekar, 2021] showed an EF1 and fPO
allocation can be computed in pseudo-polynomial time and
in polynomial time when agents have a constant number of
different values for the goods. Despite these results, design-
ing a polynomial time algorithm remains an open problem.

On the other hand, when items are chores and impose a
cost on agents receiving them, in an EF1 allocation every
agent prefers her bundle to that of another after the removal
of one chore from her bundle. For chores, even the exis-
tence of an EF1 and PO allocation is unclear, let alone com-
putation. At first sight, it may seem that the case of goods
and chores are similar, and techniques from the goods set-
ting should be directly adaptable to chores. However, this
does not seem to be the case. Firstly, a welfare function like
Nash welfare guaranteeing EF1 is not known for chores. Sec-
ondly, while the competitive equilibrium approach is promis-
ing since it guarantees PO, showing that algorithms using this
approach terminate has proved to be challenging. As a result,
the existence and computation of an EF1 and PO allocation
of chores remains a challenging open problem in discrete fair
division. To understand the ‘source of hardness’ of this prob-
lem, a series of works have focused on identifying structured
instances where the problem becomes tractable, i.e., where
EF1 and PO allocations exist. These classes include instances
with (i) identical agents (folklore), (ii) two agents [Aziz
et al., 2019], (iii) bivalued disutilities [Garg et al., 2022;
Ebadian et al., 2022], (iv) three agents [Garg et al., 2023],
(v) two types of agents [Garg et al., 2023], and (vi) two types
of chores [Aziz et al., 2023]. While the computation of EF1
and PO allocations is fairly straightforward for (i) and (ii) us-
ing ideas for goods, that for classes (iii) - (vi) is non-trivial.
These results follow from carefully designed algorithms, all
of which use the competitive equilibrium framework but re-
quire involved potential function arguments to prove termina-
tion. Table 1 lists these results.

All of the above works assume that agents have equal enti-
tlements, capacities, or stakes. This is a limiting assumption,
as practical scenarios may involve agents with different ca-
pacities for handling workload. For example, Alice, a teach-

ing faculty at a university, may agree to teach twice as many
courses as Bob, a research faculty. Thus, Alice will only envy
Bob if she feels the workload from the courses assigned to her
is more than twice that of Bob. Likewise, the dissolution of
a partnership poses the problem of fairly dividing liabilities;
in this context, it is only natural that they be divided accord-
ing to the entitlements/shares of the partners. These scenarios
motivate the definition of weighted envy-freeness (wEF) and
its relaxation weighted envy-freeness up to one item (wEF1)
in the discrete case. Naturally, like the unweighted case,
one seeks fair and efficient allocations, which leads us to the
existence and computation of a wEF1 and PO allocation of
chores. This question is interesting not only because it gen-
eralizes an important open problem in discrete fair division
but also because it naturally models practical chore division
scenarios.

For goods, [Chakraborty et al., 2020] showed that a wEF1
(without PO) allocation can be computed via a weighted pick-
ing sequence algorithm. This algorithm proceeds in m rounds
until all m goods are allocated. In each round, a particular
agent is chosen who picks her favorite good among the re-
maining goods. For chores, the existence of wEF1 allocations
was only recently shown [Wu et al., 2023] via a modification
of the weighted picking sequence algorithm, and develops a
novel analysis technique. [Chakraborty et al., 2020] showed
that wEF1 and PO allocation exists and can be computed in
pseudo-polynomial time for goods by adapting the algorithm
of [Barman et al., 2018] to the weighted case. For chores,
[Wu et al., 2023] also showed that wEF1 and PO alloca-
tion can be computed for two agents and for bivalued chores
(classes (ii), (iii) above). The existence of wEF1 and PO al-
locations for chores remained an open problem, including for
the subclasses (iv)-(vi).

1.1 Our Contributions
In this work, we study the existence and computation of
wEF1 and PO allocations of chores to agents with unequal
entitlements. We prove that a wEF1 and fPO allocation exists
and can be computed in polynomial time for instances with

• Three types of agents (Theorem 1). In a three-agent-type
instance, the disutility function of an agent is one of three
given functions.

• Two types of chores (Theorem 2). In a two-chore-type in-
stance, the chores can be partitioned into two sets, each
containing copies of the same chore.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2800



Significance. Theorem 1 establishes another class for
which EF1 and PO allocations exist, namely three-agent-type
instances. Theorem 1 also subsumes previous works show-
ing the existence of EF1 and PO allocations for (i) two agents
[Aziz et al., 2019], (ii) three agents [Garg et al., 2023], and
(iii) two-agent-types [Garg et al., 2023]. We note that im-
proving the existence from three agents to three types of
agents in the symmetric setting is itself significant, e.g., for
another popular fairness notion of maximin share (MMS),
MMS allocations exist for two agents but not for two types
of agents [Feige et al., 2021]. Theorem 2 subsumes previous
work showing EF1 and PO allocations exist for two-chore-
type instances [Aziz et al., 2023], and also provides an alter-
native algorithm for the symmetric case. Moreover, our ideas
can also be applied to the goods setting to show that wEF1
and PO allocations can be computed in polynomial time for
these classes. We record our results in Table 1.

Our results can also be of practical significance in cer-
tain settings. For instance, a cluster may have machines
with three types of processing power, e.g., CPUs, GPUs, and
TPUs (three types of agents). Likewise, allocation problems
may involve jobs that are either heavy or light (two types of
chores).

Techniques. We first remark that simply replacing an agent
with as many copies of the agent as their weight, computing
an EF1 and PO allocation, and combining the allocation of
all the copies does not guarantee a wEF1 and PO allocation;
see our full paper [Garg et al., 2024] for an example. Our
algorithms use the competitive equilibrium framework to en-
sure fPO (hence PO). To obtain wEF1, chores are transferred
from one set of agents to another while performing appropri-
ate changes to the chore payments1 to maintain a competitive
allocation. However, these transfers and payment changes are
carefully and selectively performed so that we can guarantee
the termination of our algorithms.

We first design Algorithm 1 to compute a wEF1 and fPO
allocation for three-agent-type instances using a novel combi-
nation of weighted picking sequence and competitive equilib-
rium framework. We group agents according to their type and
allocate chores to agents in a group using a ‘weighted picking
sequence’ algorithm. We begin by allocating all chores to one
group and transferring chores away from this group while en-
suring that agents in the other two groups do not wEF1-envy
each other. For fPO, we carefully maintain the allocation at a
competitive equilibrium throughout the algorithm.

We next design Algorithm 3 to compute a wEF1 and fPO
allocation for two-chore-type instances. We first observe that
fPO allocations in two-chore-type instances follow a certain
‘ordered’ structure [Aziz et al., 2023]. Leveraging this idea,
we initially allocate all chores to one agent called the pivot
and repeatedly transfer a chore away from the pivot. These
transfers respect the ordered structure ensuring fPO and are
performed until we eventually obtain a wEF1 allocation, or
conclude that the initial choice of the pivot is incorrect. We
argue that there exists some choice of the pivot for which the
algorithm results in a wEF1 and fPO allocation.

The correctness and termination of our algorithms rely on

1Chores have attached payments while goods have prices.

several involved and novel potential function arguments. In
particular, both our results crucially utilize novel properties of
a weighted picking sequence algorithm for chores (e.g. Lem-
mas 3 and 4). We believe this may be of independent inter-
est, and may find use in algorithm design for fair division to
asymmetric agents in the future.

2 Preliminaries
An instance (N,W,M,D) of the fair division problem with
chores consists of a set N = [n] of n agents, a list W =
{wi}i∈N with wi > 0 denoting the weight of agent i, a set
M = [m] of m indivisible chores, and a list D = {di}i∈N ,
where di : 2M → R≥0 is agent i’s disutility function over the
chores. We let di(j) denote the disutility of chore j for agent
i. We assume disutility functions are additive, so that for ev-
ery i ∈ N and S ⊆ M , di(S) =

∑
j∈S di(j). We consider

the following structured classes. An instance (N,W,M,D)
is said to be a:

• k-agent-type instance if there are k types of agents. That is,
there is a set C = {c1, . . . , ck} of k ∈ N disutility functions
s.t. for all i ∈ N , di ∈ C.

• k-chore-type instance if there are k types of chores. That
is, the set of chores can be partitioned as M =

⋃
ℓ∈[k] Mℓ,

where each set Mℓ consists of copies of the same chore.

An integral allocation x = (x1,x2, . . . ,xn) is a partition
of the chores into n bundles, where agent i receives bundle
xi ⊆ M and gets disutility di(xi). In a fractional alloca-
tion x ∈ [0, 1]n×m, chores are divisible and xij ∈ [0, 1] de-
notes the fraction of chore j given to agent i. Here di(xi) =∑

j∈M di(j)·xij . We will assume that allocations are integral
unless explicitly stated otherwise.

Fairness and efficiency notions. An allocation x satisfies:

1. Envy-free up to one chore (EF1) for symmetric agents if
for all i, h ∈ N , di(xi \ j) ≤ di(xh) for some j ∈ xi.

2. Weighted envy-free up to one chore (wEF1) if for all i, h ∈
N , di(xi\j)

wi
≤ di(xh)

wh
for some j ∈ xi.

3. Pareto-optimal if there is no allocation y that dominates
x. An allocation y dominates an allocation x if for all
i ∈ N , di(yi) ≤ di(xi), and there exists h ∈ N such that
dh(yh) < dh(xh).

4. Fractionally Pareto-optimal if there is no fractional allo-
cation that dominates x. An fPO allocation is clearly PO,
but not vice-versa.

Competitive equilibrium of chores. In the Fisher market
model for chores, we associate payments p = (p1, . . . , pm)
with the chores. Each agent i aims to earn a desired mini-
mum payment of ei ≥ 0 by performing chores in exchange
for payment. In a (fractional) allocation x with payments p,
the earning of agent i is p(xi) =

∑
j∈M pj · xij . For each

agent i, we define the pain-per-buck ratio αij of chore j as
αij = di(j)/pj and the minimum-pain-per-buck (MPB) ratio
as αi = minj∈M αij . Further, we let MPBi = {j ∈ M |
di(j)/pj = αi} denote the set of chores which are MPB for
agent i under payments p.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2801



We say that (x,p) is a competitive equilibrium (CE) if (i)
for all j ∈ M ,

∑
i∈N xij = 1, i.e., all chores are completely

allocated, (ii) for all i ∈ N , p(xi) = ei, i.e., each agent
receives her minimum payment, and (iii) for all i ∈ N , xi ⊆
MPBi, i.e., agents receive only chores which are MPB for
them. The First Welfare Theorem [Mas-Colell et al., 1995]
shows that competitive equilibria are efficient, i.e., for a CE
(x,p), the allocation x is fPO.

For a CE (x,p) where x is integral, we let p−1(xi) :=
minj∈xi p(xi \ j) denote the payment agent i receives from
xi excluding her highest paying chore.
Definition 1. (Weighted payment EF1) An allocation (x,p)
is said to be weighted payment envy-free up to one chore
(wpEF1) if for all i, h ∈ N we have p−1(xi)

wi
≤ p(xh)

wh
. Agent

i wpEF1-envies h if p−1(xi)
wi

> p(xh)
wh

.
The following lemma shows a sufficient condition for com-

puting a wEF1 and PO allocation.
Lemma 1. Let (x,p) be a CE with x integral. If (x,p) is
wpEF1, then x is wEF1 and fPO.

Proof. Let αi be the MPB ratio of agent i in (x,p). Consider
any pair of agents i, h ∈ N . We have:

min
j∈xi

di(xi \ j)
wi

=
αi · p−1(xi)

wi
≤ αi · p(xh)

wh
≤ di(xh)

wh
,

where the first and last transitions use that (x,p) is on MPB,
and the middle inequality uses Definition 1. This shows that
x is wEF1. Moreover, the First Welfare Theorem [Mas-Colell
et al., 1995] implies that the allocation x is fPO since (x,p)
is a CE.

An agent ℓ is called a weighted least earner (wLE) among
agent set A if ℓ ∈ argmini∈A

p(xi)
wi

. An agent b is called
a weighted big earner (wBE) among agent set A if b ∈
argmaxi∈A

p−1(xi)
wi

. The next lemma shows the importance
of the wBE and wLE agents.
Lemma 2. An integral CE (x,p) is wpEF1 if and only if a
wBE b does not wpEF1-envy a wLE ℓ.

Proof. (⇒) If (x,p) is wpEF1 then clearly b does not
wpEF1-envy ℓ.
(⇐) Suppose b does not wpEF1-envy ℓ. Then the following
shows that no agent i wpEF1-envies any agent h, implying
that (x,p) must be wpEF1.

p−1(xi)

wi
≤ p−1(xb)

wb
≤ p(xℓ)

wℓ
≤ p(xh)

wh
,

where the first and last inequalities use the definitions of wBE
and wLE, and the middle inequality uses that b does not
wpEF1-envy ℓ.

3 wEF1 and fPO Allocations in
Three-Agent-Types Instances

We now study the existence and computation of wEF1 and
fPO allocations in instance with three agent types. We devise
a polynomial time algorithm, Algorithm 2, and show that it
computes a wEF1 and fPO allocation for such instances. We
therefore have the following theorem.

Algorithm 1 Weighted Picking Sequence (WPS) Algorithm
Input: Agents N with identical disutility function d(·), set of
chores M s.t. d1 ≥ · · · ≥ dm
Output: An wEF1 allocation x

1: For each i ∈ N , xi ← ∅, si ← 0
2: for j = 1 to m do
3: i← argmink∈N

sk
wk

; ties broken in favour of smaller
index agent

4: xi ← xi ∪ {j}, si ← si + 1

5: return x

Theorem 1. In any three-agent-types instance, a wEF1 and
fPO allocation exists, and can be computed in polynomial
time.

We remark that our result generalizes the following pre-
viously known results regarding the polynomial time com-
putability of allocations that are: (i) EF1+fPO for three
unweighted agents [Garg et al., 2023], (ii) EF1+fPO for
two types of unweighted agents [Garg et al., 2023], (iii)
wEF1+fPO for two agents [Wu et al., 2023].

Let N = N1 ⊔N2 ⊔N3 be a partition of the set of agents
into three sets, called agent groups, each containing agents of
the same type. Let di(·) be the disutility function of agents
in group Ni, for i ∈ {1, 2, 3}. Note that agents in the same
group can have different entitlements.

3.1 Algorithm Description
Through the execution of Algorithm 2 we let Mi denote the
set of chores allocated to group Ni. Initially, all chores are
allocated to a single group, N1, i.e., M1 = M , and M2 =
M3 = ∅. At each point, the set of chores Mi is allocated to
the group Ni by using the weighted picking sequence (WPS)
procedure, Algorithm 1, described below.
Weighted Picking Sequence (WPS) Algorithm. The WPS
algorithm (Algorithm 1) takes as input a set of agents N of
the same type, i.e., with identical disutility function d(·),
and a set of chores M . The algorithm first sorts and re-
labels the m chores in non-increasing order of disutility, i.e.,
d1 ≥ d2 ≥ · · · ≥ dm. The algorithm then performs m it-
erations, allocating one chore in each iteration. In iteration
j, chore j is allocated to an agent with the least value of si

wi
,

where si denotes the number of chores allocated to agent i
so far. It is known that the WPS procedure returns a wEF1
allocation for identical agents [Chakraborty et al., 2020;
Wu et al., 2023]. Recently, [Wu et al., 2023] showed that by
allocating the chores in reverse order with each agent pick-
ing their least disutility chore in their turn results in a wEF1
allocation, even for non-identical agents. Since our algo-
rithm uses the WPS algorithm to assign chores to agents of
the same type, we do not require this generalization. Using
the WPS algorithm to allocate chores Mi to group Ni ensures
that agents within a group do not ever wEF1-envy each other,
and any wEF1-envy is between agents belonging to differ-
ent groups. To reduce wEF1-envy across groups, we transfer
chores from one group to another. After each chore trans-
fer the set of chores Mi gets updated and is re-allocated to
the group Ni by using the WPS algorithm. We denote by

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2802



WPS(N1,M1)∪WPS(N2,M2)∪WPS(N3,M3) the alloca-
tion resulting from allocating Mi to Ni using WPS for each
i ∈ [3].

Chore transfers and Payment drops: High-level Ideas.
To ensure that the resulting allocation is fPO, we attach pay-
ments to the chores and maintain that all allocations in the
run of Algorithm 2 are on MPB, i.e., are competitive. Algo-
rithm 2 performs two kinds of steps: (i) chore transfers and
(ii) payment drops. Chore transfers involve the transfer of a
chore from one group to another, and payment drops involve
decreasing the payments of all chores belonging to one or two
agent groups.

Initially we set the payment of chore j as pj = d1(j). At
some point in the algorithm let the weighted big earner group
Nβ be the group containing the weighted big earner (wBE) at
the time. Likewise, let the weighted least earner group Nλ

be the group containing the weighted least earner (wLE) at
the time. We will call the group Nµ which contains neither
as the weighted middle earner (wME) group. If β = λ then
the allocation must already be wpEF1 by Lemma 2. Initially
Nβ = N1. We maintain that for the majority of the algo-
rithm Nβ = N1, i.e., the wBE is in N1, and transfer chores
unilaterally from N1 to N2 and N3. We also aim to maintain
that agents in N2 and N3 do not wpEF1-envy each other, and
perform chore transfers between N2 and N3 to eliminate any
arising wpEF1-envy.

Since N1 only loses chores, in at most m chore transfers
from N1 it must be that either the allocation becomes wpEF1
(hence wEF1), or the wBE ceases to be in N1. In the lat-
ter case we show that in one additional chore transfer step
the allocation is wEF1. To ensure fPO and facilitate chore
transfers, we perform payment drops of chores when appro-
priate, and maintain the MPB condition during chore trans-
fers. That is, a chore j is transferred from group Ni to Nh

only if j belongs to the MPB set MPBh of agents in Nh, i.e.,
j ∈Mi ∩MPBh.

Chore transfers and Payment drops: Details. We per-
form payment drops and chore transfers across groups in a
careful and specific manner, as described below.

(Lines 12-14) Since we desire a wpEF1 allocation if possi-
ble we first check if there exists a chore j ∈ Mβ ∩MPBλ

which can be transferred directly from the wBE group to
the wLE group. If so we make this transfer.

(Lines 15-18) If no chore can be transferred from Nβ to
Nλ, we check if a chore in Mµ ∩MPBλ can be potentially
transferred from Nµ to Nλ. If there is a chore j ∈ Mµ ∩
MPBλ s.t. after losing j the least weighted earning of an
agent in Nµ is strictly larger than the weighted earning of
the current wLE, then we transfer j from Nµ to Nλ (Line
17-18). Line 16 performs this check. If not, an Nµ to Nλ

transfer is not allowed.

(Lines 19-21) If an Nµ to Nλ transfer is not allowed, we
check if an Nβ to Nµ transfer is possible, i.e., there is a
chore j′ ∈Mβ ∩MPBµ. If so, we make such a transfer.

(Lines 22-25) Otherwise, no chore can be transferred from
Nβ to either Nµ or Nλ. In this case we lower the payments

Algorithm 2 wEF1+fPO for three agent types instances
Input: Three agent types instance (N,W,M,D)
Output: A wEF1 and fPO integral allocation x

1: Let N = N1 ⊔ N2 ⊔ N3 be the partition of the agents
according to their type

2: Let di(·) denote the disutility function of agents in group
Ni, for i ∈ {1, 2, 3}

3: M1 ←M,M2 ← ∅,M3 ← ∅
4: x←WPS(N1,M1) ∪WPS(N2,M2) ∪WPS(N3,M3)
5: For each j ∈M , set pj ← d1(j)
6: while x is not wpEF1 do
7: b← argmaxk∈Np−1(xk)/wk ▷ Weighted big earner
8: ℓ← argmink∈Np(xk)/wk ▷ Weighted least earner
9: β ← i ∈ [3] s.t. b ∈ Ni, ▷ Index of wBE group

10: λ← i ∈ [3] s.t. ℓ ∈ Ni ▷ Index of wLE group
11: µ← i ∈ [3] \ {β, λ} ▷ Index of wME group

▷ Check for Nβ to Nλ chore transfer
12: if ∃j ∈Mβ ∩MPBλ then
13: Mβ ←Mβ \ j, Mλ ←Mλ ∪ j
14: x←

⋃
i∈[3] WPS(Ni,Mi)

▷ Check for potential Nµ to Nλ chore transfer
15: else if |Mµ ∩MPBλ| > 0 then

▷ Check if Nµ to Nλ chore transfer is allowed
16: if ∃j ∈Mµ ∩MPBλ s.t. min

k∈Nµ

p(yk)
wk

> p(xℓ)
wℓ

for

y = WPS(Nµ,Mµ \ j) then
17: Mµ ←Mµ \ j, Mλ ←Mλ ∪ j
18: x←

⋃
i∈[3] WPS(Ni,Mi)

▷ Nβ to Nµ chore transfer
19: else if ∃j′ ∈Mβ ∩MPBµ then
20: Mβ ←Mβ \ j′, Mµ ←Mµ ∪ j′

21: x←
⋃

i∈[3] WPS(Ni,Mi)

22: else ▷ No chore can be transferred from Nβ

▷ Lower payments of chores in Mµ ∪Mλ

23: γ ← maxi∈{λ,µ},j∈Mβ

αi

di(j)/pj
; αi is the

MPB ratio of an agent in group Ni

24: for j ∈Mµ ∪Mλ do
25: pj ← γ · pj
26: else ▷ No chore can be transferred from Nβ or Nµ

▷ Lower payments of chores in Mλ

27: γ ← maxj∈Mβ∪Mµ

αℓ

dℓ(j)/pj

28: for j ∈Mλ do
29: pj ← γ · pj
30: return x

of chores in Mµ and Mλ until a chore in Mβ becomes MPB
for agents in Nµ or Nλ.

(Lines 26-29) Finally if there is no chore that can be trans-
ferred from Nβ or Nµ to Nλ, we lower the payments of
chores in Mλ until a chore in Mβ or Mµ becomes MPB for
agents in Nλ.

3.2 Analysis of Algorithm 2: Overview
We begin the analysis of Algorithm 2 by proving some impor-
tant properties of the WPS algorithm (Alg. 1). The following
lemmas compare the disutilities of agents before and after a

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2803



chore transfer.
Lemma 3. Let N be a set of agents with the same disutility
function p(·) and M be a set of chores. Let x = WPS(N,M)
be an allocation of M to N using the WPS algorithm, and
y = WPS(N,M \ j), for a chore j ∈M . Then we have:

(i) For all i ∈ N , p(yi) ≤ p(xi).

(ii) For all i ∈ N , p−1(yi) ≤ p−1(xi).

(iii) For all i, h ∈ N , p(yi)
wi

≥ p−1(xh)
wh

. In particular,
p(yℓ)
wℓ
≥ p−1(xb)

wb
, where agent ℓ has the least weighted

disutility in y and agent b has the biggest weighted disu-
tility up to one chore in x.

Lemma 4. Let N be a set of agents with the same disutility
function p(·) and M be a set of chores. Let x = WPS(N,M)
be an allocation of M to N using the WPS algorithm, and
y = WPS(N,M ∪ j), for a chore j /∈M . Then we have:

(i) For all i ∈ N , p(yi) ≥ p(xi).

(ii) For all i ∈ N , p−1(yi) ≥ p−1(xi).

(iii) For all i, h ∈ N , p−1(yh)
wh

≤ p(xi)
wi

. In particu-

lar, p−1(yb)
wb

≤ p(xℓ)
wℓ

, where agent b has the biggest
weighted disutility up to one chore in y and agent ℓ has
the least weighted disutility in x.

When a set of chores M with associated payments p is on
MPB for a group N containing agents of the same type, the
disutility of a chore is proportional to its payment. There-
fore, the above lemmas also hold when p represents the pay-
ment vector (which is proportional to the disutility vector)
and p(xi) represents the earning of agent i in (x,p) (which
is proportional to the disutility of i in x). We next show:
Lemma 5. Throughout the execution of Algorithm 2, no
chore transfer decreases the weighted earning of the wLE.

The following two lemmas analyze steps of Algorithm 2
which cause a group Nλ to cease being the wLE group.
Lemma 6. If a step of Algorithm 2 results in the weighted
least earner group becoming the weighted big earner group,
then the resulting allocation must be wpEF1.

Lemma 7. If a step of Algorithm 2 results in the weighted
least earner group Nλ becoming the weighted middle earning
group, then agents in Nλ do not wpEF1-envy agents in the
new weighted least earner group in the resulting allocation.

To summarize, if a group Nλ ceases to be the wLE group,
then either resulting allocation is wpEF1 or Nλ becomes the
wME group and agents in Nλ do not wpEF1-envy agents in
the new wLE group. These observations are important for
proving the lemmas that follow.

We next consider steps of Algorithm 2 which cause a group
Nβ to cease being the wBE group. We first show:
Lemma 8. If a step of Algorithm 2 results in the weighted big
earner group becoming the weighted least earner group, then
the resulting allocation must be wpEF1.

Recall that we initially assigned all the chores to group N1.
Hence Nβ = N1 was the initial wBE group. We prove that

this is the case almost throughout the execution of the algo-
rithm. To this end, we show that Nβ (i.e. N1) loses a chore
in every poly(m)-many steps.
Lemma 9. While the weighted big earner belongs to the
group Nβ and the allocation is not wpEF1, Nβ must lose a
chore in poly(m) steps.

Note that N1 has m chores to begin with (i.e. always
|M1| ≤ m), and Algorithm 2 never transfers a chore to N1.
Lemma 9 therefore implies that in poly(m) steps either the al-
location is wpEF1 or N1 ceases to be the weighted big earner
group. In the latter scenario, we show that we arrive at a
wEF1 allocation in at most one more chore transfer step.
Lemma 10. After N1 stops being the wBE group for the last
time, Algorithm 2 terminates with a wEF1 and fPO allocation
after performing at most one subsequent chore transfer.

The above discussion leads us to conclude that Algorithm 2
computes a wEF1 and fPO allocation in polynomial time for
three agent types instances. This proves Theorem 1. Due to
space constraints, we defer missing proofs to the full version
of our paper [Garg et al., 2024].

4 wEF1+fPO for Two-Chore-Type Instances
We now turn to the problem of existence and computation of a
wEF1+fPO allocation for instances with two types of chores.
We answer this question positively in this section. Thus, our
result generalizes that of [Aziz et al., 2023], who showed that
EF1+fPO allocations can be computed in polynomial time for
two chore type instances with unweighted agents.
Theorem 2. In any two chore type instance, a wEF1 and fPO
allocation exists and can be computed in polynomial time.

To prove Theorem 2, we present a polynomial time algo-
rithm, Algorithm 3, that computes a wEF1 and fPO allocation
for a given two chore type instance. We note that Algorithm 3
is also an alternative algorithm to that of [Aziz et al., 2023]
for computing an EF1+PO allocation.

Let M = A ⊔ B be a partition of the chores into two sets,
each containing chores of the same type. For X ∈ {A,B},
we refer to a chore in set X as an X-chore, and denote by
diX the disutility an agent i has for any chore in set X .

4.1 Algorithm Description
We first sort and re-label the agents in non-decreasing order
of diA/diB , i.e., for i < j, diA

diB
≤ djA

djB
. Roughly speaking,

agents with a smaller index prefer to do A-chores over B-
chores, and vice-versa.

Our algorithm proceeds in at most n phases. Starting from
i = 1, in Phase i we select agent i as the pivot agent. The
pivot agent i is initially assigned all the chores (making i the
only agent with wpEF1-envy and the unique wBE), and the
payments of the chores are set according to the disutilities of
the pivot. In other words, we set the payment of a chore in
set X as pX = diX for X ∈ {A,B}. While the allocation
is not wpEF1, we attempt to reduce the wpEF1-envy of i by
transferring a chore from i to a wLE agent (this maintains the
property that while the allocation is not wpEF1, i is the only
agent with wpEF1-envy and is the unique wBE). Let ℓA be

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2804



Algorithm 3 wEF1+fPO for two chore types instances
Input: Two chore type instance (N,W,M,D)
Output: An integral wEF1 and fPO allocation x

1: Let M = A⊔B be a partition of chores according to type
2: for i = 1 to n do
3: xi ←M , xh ← ∅ for h ̸= i
4: Set payments as pA = diA and pB = diB
5: while (x,p) is not wpEF1 do

▷ L is the set of global wLE agents
6: L← {k : k ∈ argminh∈[n]

p(xh)
wh
}

▷ Set ℓA as max. index wLE in [i−1], max ∅ =∞
7: ℓA ← max(L ∩ [i− 1])

▷ Set ℓB as min. index wLE in [n]\ [i], min ∅ = 0
8: ℓB ← min(L ∩ [n] \ [i])
9: if ℓA < i and xi ∩A ̸= ∅ then

▷ Transfer A-chore from i to ℓA
10: Let a ∈ xi ∩A be an A-chore in xi

11: xi ← xi \ a, xℓA ← xℓA ∪ a
12: else if ℓB > i and xi ∩B ̸= ∅ then

▷ Transfer B-chore from i to ℓB
13: Let b ∈ xi ∩B be a B-chore in xi

14: xi ← xi \ b, xℓB ← xℓB ∪ b
15: else: Break ▷ Failure in Phase i
16: if (x,p) is wpEF1 then
17: return x

the index of a wLE agent among agents 1 through (i − 1) if
such an agent exists (otherwise let ℓA =∞), with ties broken
in favour of larger index (Line 7). Similarly, let ℓB be the
index of a wLE agent among agents (i+1) through n if such
an agent exists (otherwise let ℓB = 0), with ties broken in
favour of smaller index (Line 8). We attempt to make a chore
transfer as follows:

(Lines 9-11) If ℓA < i and xi ∩A ̸= ∅, then there is a wLE
agent to the left of the pivot agent i and i has an A-chore
which is on MPB for ℓA. Thus, we transfer this A-chore
from i to ℓA.

(Lines 12-14) If ℓB > i and xi ∩ B ̸= ∅, then there is a
wLE agent to the right of pivot agent i and i has a B-chore
which is on MPB for ℓB . Thus, we transfer this B-chore
from i to ℓB .

(Line 15) If neither of the above cases are met, then we have
encountered a failure in Phase i. It cannot be that a wLE
exists on both sides of i, as then i must have been able to
transfer some chore to a wLE agent (since we maintain that
i is the wBE her bundle must be non-empty). This implies
that either (i) a wLE agent exists only on the left side of i
but i has no A-chores to transfer, or (ii) a wLE agent exists
only on the right side of i but i has no B-chores to transfer.
In the case of (i), we say that agent i faces an A-fail in
Phase i, and in the case of (ii) we say that agent i faces a
B-fail in Phase i. After facing a failure, no more transfers
are done in Phase i.

Algorithm 3 terminates either when a wpEF1 allocation is
found, or when all phases are completed.

4.2 Analysis of Algorithm 3: Overview
We now provide an overview of the proof of Theorem 2, by
arguing that Algorithm 3 finds a wpEF1 and fPO allocation.
We first show:

Lemma 11. Throughout the run of Algorithm 3, every allo-
cation is fPO.

We then argue that Algorithm 3 eventually finds a wpEF1
allocation. To this end, we first show:

Lemma 12. Throughout the execution of Phase i, if the al-
location is not wpEF1 then agent i is the only weighted big
earner.

The above lemma shows that if we did not find a wpEF1
allocation in Phase i, it must be because the only wBE i could
not transfer a chore to a wLE agent. That is, Phase i was
terminated due to i facing either an A-fail or a B-fail. We
next prove that:

Lemma 13. If agent i faces a B-fail, then agent (i+1) cannot
face an A-fail.

By definition of a failure, agent 1 cannot face an A-fail.
Thus if agent 1 faces a failure, it must be due to a B-fail.
By Lemma 13, we know that agent 2 cannot face an A-fail.
Proceeding inductively, we conclude for each i ∈ [n] that
either agent i faces a B-fail or does not face a failure at all.
However, agent n cannot face a B-fail by definition of failure.
Thus it must be that there is some pivot agent i∗ ∈ [n] who
did not face a failure.

Therefore, by invoking Lemma 12 we conclude that in
Phase i∗, it was always possible to transfer chores from the
only wBE agent i∗ to a wLE agent, until the allocation be-
came wpEF1. Thus, a wEF1 and fPO allocation will be found
in Phase i∗. Since there are at most n phases and there are at
most m chore transfers in each phase, Algorithm 3 terminates
in polynomial time. This proves Theorem 2.

To prove the crucial Lemma 13, we relate the allocation re-
turned by Algorithm 3 in Phase i with the allocation returned
by running the weighted picking sequence algorithm for as-
signing A-chores to [i] and B-chores to [n]\ [i]. Due to space
constraints, we defer missing proofs to the full version of our
paper [Garg et al., 2024].

5 Discussion
In this work we studied the problem of computing a wEF1
and fPO allocation of chores for agents with unequal weights
or entitlements. We showed positive algorithmic results for
this problem for instances with three types of agents, or two
types of chores. The existence of EF1 and fPO allocations
of chores in the symmetric case remains a hard open prob-
lem. Our results further our understanding of this problem
by contributing to the body of positive non-trivial results. To-
gether with the result of [Wu et al., 2023] concerning bivalued
chores, our paper shows that wEF1 and fPO allocations exists
for every structured instance known so far that admits an EF1
and fPO allocation. Our idea of combining the competitive
equilibrium framework with envy-resolving algorithms like
the weighted picking sequence algorithms could be an im-
portant tool in settling the problem in its full generality.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2805



References
[Amanatidis et al., 2023] Georgios Amanatidis, Haris Aziz,

Georgios Birmpas, Aris Filos-Ratsikas, Bo Li, Hervé
Moulin, Alexandros A. Voudouris, and Xiaowei Wu. Fair
division of indivisible goods: Recent progress and open
questions. Artificial Intelligence, 322:103965, 2023.

[Aziz et al., 2019] Haris Aziz, Ioannis Caragiannis, Ayumi
Igarashi, and Toby Walsh. Fair allocation of indivisible
goods and chores. In Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI), page
53–59, 2019.

[Aziz et al., 2022] Haris Aziz, Bo Li, Herve Moulin, and Xi-
aowei Wu. Algorithmic fair allocation of indivisible items:
A survey and new questions, 2022.

[Aziz et al., 2023] Haris Aziz, Jeremy Lindsay, Angus Ri-
tossa, and Mashbat Suzuki. Fair allocation of two types
of chores. In Proceedings of the 2023 International Con-
ference on Autonomous Agents and Multiagent Systems,
AAMAS ’23, page 143–151, Richland, SC, 2023. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

[Barman et al., 2018] Siddharth Barman, Sanath Kumar Kr-
ishnamurthy, and Rohit Vaish. Finding fair and efficient al-
locations. In Proceedings of the 19th ACM Conference on
Economics and Computation (EC), pages 557–574, 2018.

[Bhaskar et al., 2021] Umang Bhaskar, A. R. Sricharan, and
Rohit Vaish. On Approximate Envy-Freeness for Indi-
visible Chores and Mixed Resources. In Mary Wootters
and Laura Sanità, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Tech-
niques (APPROX/RANDOM 2021), volume 207 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
1:1–1:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

[Caragiannis et al., 2016] Ioannis Caragiannis, David
Kurokawa, Hervé Moulin, Ariel D. Procaccia, Nisarg
Shah, and Junxing Wang. The unreasonable fairness of
maximum Nash welfare. In Proceedings of the 17th ACM
Conference on Economics and Computation (EC), page
305–322, 2016.

[Chakraborty et al., 2020] Mithun Chakraborty, Ayumi
Igarashi, Warut Suksompong, and Yair Zick. Weighted
envy-freeness in indivisible item allocation. In Proceed-
ings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), page 231–239,
2020.

[Ebadian et al., 2022] Soroush Ebadian, Dominik Peters,
and Nisarg Shah. How to fairly allocate easy and diffi-
cult chores. In International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 2022.

[Feige et al., 2021] Uriel Feige, Ariel Sapir, and Laliv
Tauber. A tight negative example for MMS fair alloca-
tions. In Web and Internet Economics - 17th International
Conference, WINE, volume 13112, pages 355–372, 2021.

[Foley, 1967] Duncan Foley. Resource allocation and the
public sector. Yale Economic Essays, 7(1):45–98, 1967.

[Garg and Murhekar, 2021] Jugal Garg and Aniket
Murhekar. On fair and efficient allocations of indivisible
goods. In Proceedings of the 35th AAAI Conference on
Artificial Intelligence (AAAI), 2021.

[Garg et al., 2022] Jugal Garg, Aniket Murhekar, and John
Qin. Fair and efficient allocations of chores under bivalued
preferences. Proceedings of the 36th AAAI Conference on
Artificial Intelligence (AAAI), pages 5043–5050, 2022.

[Garg et al., 2023] Jugal Garg, Aniket Murhekar, and John
Qin. New algorithms for the fair and efficient allocation
of indivisible chores. In Edith Elkind, editor, Proceed-
ings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI-23, pages 2710–2718. In-
ternational Joint Conferences on Artificial Intelligence Or-
ganization, 8 2023. Main Track.

[Garg et al., 2024] Jugal Garg, Aniket Murhekar, and John
Qin. Weighted EF1 and PO allocations with few types of
agents or chores, 2024.

[Lipton et al., 2004] Richard Lipton, Evangelos Markakis,
Elchanan Mossel, and Amin Saberi. On approximately fair
allocations of indivisible goods. In In ACM Conference on
Electronic Commerce (EC, pages 125–131, 2004.

[Mas-Colell et al., 1995] Andreu Mas-Colell, Michael D.
Whinston, and Jerry R. Green. Microeconomic Theory.
Oxford University Press, 1995.

[Steinhaus, 1949] Hugo Steinhaus. Sur la division pragma-
tique. Econometrica, 17(1):315–319, 1949.

[Wu et al., 2023] Xiaowei Wu, Cong Zhang, and Shengwei
Zhou. Weighted ef1 allocations for indivisible chores. In
Proceedings of the 24th ACM Conference on Economics
and Computation, EC ’23, page 1155, New York, NY,
USA, 2023. Association for Computing Machinery.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2806


	Introduction
	Our Contributions

	Preliminaries
	wEF1 and fPO Allocations in Three-Agent-Types Instances
	Algorithm Description
	Analysis of alg:three-agent-types: Overview

	wEF1+fPO for Two-Chore-Type Instances
	Algorithm Description
	Analysis of alg:two-chore-types: Overview

	Discussion

