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Abstract
In the recently introduced topological distance
games, strategic agents need to be assigned to a
subset of vertices of a topology. In the assignment,
the utility of an agent depends on both the agent’s
inherent utilities for other agents and its distance
from them on the topology. We study the com-
putational complexity of finding individually ratio-
nal outcomes; this notion is widely assumed to be
the very minimal stability requirement and requires
that the utility of every agent in a solution is non-
negative. We perform a comprehensive study of the
problem’s complexity, and we prove that even in
very basic cases, deciding whether an individually
rational solution exists is intractable. To reach at
least some tractability, one needs to combine multi-
ple restrictions of the input instance, including the
number of agents and the topology and the influ-
ence of distant agents on the utility.

1 Introduction
You are the coordinator of the annual banquet of your orga-
nization and your task is to convince all employees to attend
the event. Clearly, a person agrees to show up at such an
event, only if they get at least some positive experience from
their participation. However, the enmity between grumpy-
John, prickly-Jack, and grouchy-Joe is known to everyone. It
should be fairly easy to convince all three of them to attend
the banquet if their seats are far away from each other and
some friendly people sit between them. Right? As we will
see, it is not easy at all.

Situations like the above occur in several other scenarios;
think of assigning desks to students, offices to academics, or
seats on an assembly line. In such cases, the happiness of
a participant depends not only on who are their immediate
neighbors and how close their friends are, but also on how far
their “enemies” are located. Recently, Bullinger and Suksom-
pong [2024] proposed the elegant framework of topological
distance games in order to model such preferences for the
agents. In such a game, there is an underlying topology, rep-
resented by an undirected graph, where a set of agents needs
to be assigned on (a subset of) its vertices. Crucially though,
the utility of an agent depends not only on its inherent utility

for other agents, but also on the distance from them on the
topology.

In this model, Bullinger and Suksompong [2024] studied
the existence and the complexity of stable outcomes. More
specifically, they have focused on jump stability, i.e., an as-
signment where no agent has incentives to “jump” to an empty
vertex in order to increase their utility. However, they have
assumed that the agents actually want to participate in the
game, even if there is no way to receive positive utility. For
example, imagine a topology with the same number of ver-
tices as the number of agents and two agents that hate each
other. Then, although every assignment is jump-stable, ar-
guably these agents would not participate if they had to sit
next to each other; it is simply not individually rational.

1.1 Our Contribution
We perform a comprehensive and in-depth study of the com-
plexity of individual rationality (IR) in topological distance
games with the aim of identifying the precise cut-off between
tractable and intractable classes of instances. IR is “a mini-
mal requirement for a solution to be considered stable” [Aziz
and Savani, 2016] and formally states that there exists an as-
signment that guarantees non-negative utility to every agent.
We identify several dimensions of the model – the number
of agents, the enmity graph, the distance factor function, and
the topology structure – and we sketch the complexity of the
problem with respect to them. Here, the enmity graph is a di-
rected graph that shows which agents are “enemies”, i.e., get
negative utility from their interaction, and the distance factor
function is a monotonically decreasing function that weighs
the utility of the agents depending on their distance.

We begin in Section 3 by considering the number of agents
as part of the input and we show that ensuring IR in this case
is extremely hard, even for very restricted cases; see Fig-
ure 1 for a simplified overview of the results of this section.
We start our investigation by not imposing any restrictions
on the enmity graph and we show that the problem is NP-
complete for every distance factor function, even when the
utilities of the agents are symmetric and they have at most 2
different values per agent (Thm. 1). Hence, in order to hope
for tractability, we need to restrict the enmity graph. We then
show that, if at most one agent has enemies, the problem can
be solved in polynomial time (Thm. 2). Unfortunately, this is
the best possible, since the problem is NP-complete when
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there are two arcs in the enmity graph, i.e., there are two
agents with enemies (this establishes a dichotomy with re-
spect to the number of arcs of the enmity graph). More specif-
ically, we provide two different reasons for hardness when
there are two arcs in the enmity graph: Theorem 3 shows
that the problem is hard even when the utilities are symmet-
ric, while Theorem 4 shows hardness for any distance factor
function when the two arcs are towards the same vertex and
there are two types of utilities. Finally, we show that restrict-
ing only the topology does not help us either, as the problem
remains intractable even when the topology is a path and there
are four types of utilities (Thm. 5).

With the above considerations in mind, in Section 4 we
take the number of agents as a parameter; see Figure 2 for a
summary of results of this section. Our first result shows that
there is an easy XP algorithm for the problem (Thm. 6). How-
ever, without any further restrictions, this result is “tight”, as
the problem is W[1]-complete even with two types of sym-
metric utility functions (Thm. 7) and, moreover, the running
time of the algorithm cannot be substantially improved under
the well-known Exponential-Time Hypothesis (ETH).

Next, we show that restricting “just” the topology is
not sufficient for tractability, as the problem remains W[1]-
complete even on path topology; this is our technically most
involved result (Thm. 9). On the positive side though, the
problem is in FPT on path topology when the enmity graph
has arcs only towards at most one agent (Thm. 10); this
combination of structural restrictions seems necessary since
the problem becomes W[1]-complete under the enmity graph
above for general topologies, even when there are only two
types of utilities (Thm. 11).

Due to space constraints, some details are omitted and are
available in the full version of the paper [Deligkas et al.,
2024b].

1.2 Related Work
Topological Distance Games are closely related to many well-
known classes of coalition formation and network games.

The first important source of inspiration includes hedonic
games [Drèze and Greenberg, 1980], a prominent model in
coalition formation. Here, we are given a set of agents to-
gether with their preferences, and our goal is to partition them
into coalitions. The crucial property of hedonic games is that
the agent’s utility is based solely on other members of his or
her coalition. In general hedonic games, every agent a has
preferences over possible coalitions (subsets of agents) con-
taining a. It follows that such preferences cannot be repre-
sented succinctly, and therefore many variants with restricted
preferences are studied, such as graphical [Peters, 2016;
Hanaka and Lampis, 2022], fractional [Aziz et al., 2019;
Fanelli et al., 2021], anonymous [Bogomolnaia and Jack-
son, 2002], or diversity [Bredereck et al., 2019; Ganian et
al., 2023b; Darmann, 2023]. The variant that is closest to
our setting is hedonic games with additively-separable pref-
erences [Bogomolnaia and Jackson, 2002; Aziz et al., 2013]
(ADHGs), where each agent a assigns some value to each
other agent b and the utility for agent a is simply the sum
of values agent a has for all other agents in its coalition.

The modeling of ADHGs in our model is very straightfor-
ward; the topology consists of n cliques, each of size n
(or k in the case of fixed-size coalitions [Bilò et al., 2022c;
Li et al., 2023]), where n is the number of agents. It should
be noted that achieving individual rationality in ADHGs is
trivial: we put each agent into its own coalition.

Closely related are also social distance games [Brânzei and
Larson, 2011; Kaklamanis et al., 2018; Balliu et al., 2019;
Balliu et al., 2022], where our goal is again to partition agents
into coalitions. This time, the agents are given together with a
topology representing relations between them. Agent’s utility
with respect to a coalition is then the average of the recipro-
cal distances to all other agents in this coalition; however, we
assume the distances with respect to the subgraph induced
by the members of this coalition. Consequently, the role of
the topology in social distance games is very different com-
pared to TDGs. Later, [Flammini et al., 2020] generalized
social distance games by adding a global scoring vector that
allows us to extend the model beyond the reciprocal distance
function. This direction was further developed in [Ganian
et al., 2023a], who studied the computational complexity of
this generalization with respect to multiple stability notions,
including individual rationality.

None of the above-mentioned models included the assign-
ment of agents to a topology. In this line of research, very
prominent is Schelling’s segregation model [Schelling, 1969;
Schelling, 1971] and its game-theoretical refinement called
Schelling games [Chauhan et al., 2018; Echzell et al., 2019;
Agarwal et al., 2021; Kreisel et al., 2022; Bilò et al., 2022a;
Bilò et al., 2022b; Friedrich et al., 2023; Deligkas et al.,
2024a; Bilò et al., 2023]. Here, we are given a set of agents
and a topology, and our goal is to assign agents to the topol-
ogy in a desirable way. However, in contrast to TDGs, in
Schelling games, the agents are additionally partitioned into
types, and the utility of each agent is implicitly derived from
the fraction of agents of the same type assigned to its neigh-
borhood.

A similar situation, that is, agents’ utilities are based
solely on their neighbors, also appears in hedonic seat ar-
rangement [Bodlaender et al., 2020; Ceylan et al., 2023;
Wilczynski, 2023], where preferences can be more general, or
recently introduced refugee housing [Knop and Schierreich,
2023; Schierreich, 2023; Lisowski and Schierreich, 2023],
where we additionally have a subset of agents that are ini-
tially assigned to some vertices of the topology, and our task
is to assign the remaining agents in a sort of IR manner.

2 Preliminaries
For each positive integer i, we define [i] to be the set
{1, . . . , i}. For a set S and a positive integer k, we denote
by

(
S
k

)
the set of all k-sized subsets of S, and by 2S we de-

note the set of all subsets of S.

Graph Theory. We follow the standard graph-theoretical
notation [Diestel, 2017]. A simple undirected graph G is a
pair (V,E), where V is a non-empty set of vertices and E ⊆(
V
2

)
is a set of edges. For two vertices u, v ∈ V , we denote

by distG(u, v) the length of the shortest path between u and
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v in the graph G, and we set distG(u, v) = ∞ if there is no
u, v-path in G.

Topological Distance Games. We use N to denote the set
of agents. Each agent i ∈ N is accompanied with a utility
function ui : N → R such that ui(i) = 0. We say that agent j
is a friend of agent i if ui(j) > 0. If ui(j) < 0, the agent j
is an enemy of the agent i. The enmity graph is a directed
graph on the set N of agents such that there is an edge from
an agent i to an agent j if and only if j is an enemy of i.

The topology is a simple undirected graph G = (V,E)
with at least |N | vertices. An assignment is an injective map-
ping λ : N → V assigning agents to vertices of the topol-
ogy. The distance factor function f : N → R>0 is a strictly
decreasing function that scales the influence of one agent to
another agent based on their distance in the topology. In ad-
dition, we define f(∞) = 0. We further extend the utility
function for assignments as follows. Given an assignment λ,
we define its utility ui(λ) as

ui(λ) =
∑

j∈N\{i}

ui(j) · f(distG(λ(i), λ(j))).

Definition 1. An assignment λ is called individually rational
if for every agent i ∈ N we have ui(λ) ≥ 0.

Now, we are ready to formally define the computational
problem of our interest.

Definition 2. The input of the IR-TOPOLOGICAL DISTANCE
GAME problem (IR-TDG for short) is a topology G, a set of
agents N , a utility function ui for every agent i ∈ N , and a
distance factor function f . The goal is then to decide whether
there exists an assignment λ that is individually rational.

Parameterized Complexity. The framework of parameter-
ized complexity [Niedermeier, 2006; Downey and Fellows,
2013; Cygan et al., 2015] gives us formal tools for a finer-
grained complexity of computational problems that are as-
sumed to be intractable in their full generality. Informally,
under this problem, we study variants of intractable problems
that are somehow restricted, and this restriction is captured
in the so-called parameter k. The ultimate goal is then to
invent algorithms such that the exponential blow-up in the
running time can be confined to the parameter and not to the
input size. In this direction, the best possible outcome is an
algorithm running in g(k) · nO(1) time for any computable
function g. Such an algorithm is called fixed-parameter al-
gorithm, and FPT is the class of all parameterized problems
that admit a fixed-parameter algorithm. Slightly worse, but
still positive, is an algorithm running in g(k) · nh(k) time,
where g, h are computable functions. The complexity class
containing all parameterized problems admitting such algo-
rithms is called XP. One can rule out the existence of a fixed-
parameter algorithm by proving that the problem of interest
is W[1]-hard. This can be shown by a parameterized re-
duction from some other W[1]-hard parameterized problem.
For a more comprehensive introduction to the parameterized
complexity, we refer the interested reader to the monograph
of [Cygan et al., 2015].

Enmity
Graph

Out-Star

In-Star

NP-complete
[Thm. 1]

poly-time
[Thm. 2]

NP-complete
[Thm. 3]

NP-complete
[Thm. 4]

NP-complete
[Thm. 5]

unrestricted

restricted
yes

no

≥ 2 arcs path topology

no + two arcs

Figure 1: A simplified overview of our results when the number of
agents is part of the input.

3 Unrestricted Number of Agents
In our first negative result we show that the problem is in-
tractable even if we severely restrict the utilities of the agents.
Theorem 1. For every distance factor function f , it is NP-
complete to decide the IR-TOPOLOGICAL DISTANCE GAME
problem even if the utilities are symmetric and every agent
uses at most 2 different utility values.

Proof sketch. We provide a reduction from the UNARY BIN
PACKING problem [Garey and Johnson, 1979]. The input of
this problem is a list S = (s1, . . . , sn) of positive integers
given in unary, the number of bins B, and a capacity c of
bins. The question is then whether there exist an allocation
α : S → [B] such that ∀j ∈ [B] :

∑
i∈[n] : α(si)=j si = c.

Given an instance I = (S,B, c) of UNARY BIN PACK-
ING, we construct an equivalent instance J of the IR-
TOPOLOGICAL DISTANCE GAME problem as follows. We
start with the topology G, which is a disjoint union of B
cliques C1, . . . , CB , each of size c. Since all vertices are in
distance either one or infinity, the distance factor function f
can be arbitrary. For the sake of exposition, we assume that
f(1) = 1. Next, we define the agents and the utilities. For
every item si ∈ S, we create si agents ai,1, . . . , ai,si . The
utility function of these agents is the same and is constructed
such that these agents have to be part of the same clique; oth-
erwise, their utility is necessarily negative. Specifically, we
set uai,j (aℓ,k) = −1, where i ∈ [n], j ∈ [si], ℓ ∈ [n] \ i,
and k ∈ [sℓ], and uai,j

(ai,ℓ) = c−si
si−1 , where i ∈ [n] and

j, ℓ ∈ [si]. The utilities are indeed symmetric, and every
agent uses 2 different values in the utility function. One can
now verify that the two instances are indeed equivalent and
that the reduction runs in polynomial time.

Then, we prove that the problem is tractable when there is
at most one agent that has enemies.
Theorem 2. If there is at most one agent p assigning nega-
tive utility to other agents, the IR-TOPOLOGICAL DISTANCE
GAME problem can be solved in polynomial time for any dis-
tance factor function f .

Proof sketch. Let there be at least one arc in the enmity
graph. We can split the agents into two sets N+ and N−

according to the utility the agent p has for them. Then, we try

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2784



all possible assignments of agent p to the topology, and for
every possibility, we do the following. Let v be the vertex the
agent p is assigned in the currently examined possibility. We
run the Breadth-first search algorithm starting with the vertex
v to find a BFS-tree T . Now, we do a level order traversal of
the tree T , and for each vertex u of T , we assign to u an agent
i ∈ N+ that was not assigned before, and the agent p has for
it the highest utility between all agents in N+. As the final
step, we assign the agents from N−. This is again done by
the level-order traversal with the following differences. The
traversal is done from the deepest level, and the agents are
assigned according to the increasing utility that the agent p
has for them. If, for this assignment, the utility of i is non-
negative, we return yes and exit the algorithm. Otherwise, we
will continue with another possibility. If no possibility leads
to an individually rational assignment, we return no.

In our next result, we show that a single arc in the enmity
graph (cf. Theorem 2) is basically the only restriction that
makes the problem tractable. Specifically, in our next result,
we show that if there are two arcs in the enmity graph, the
problem becomes intractable.

The NP-hardness is proven via a reduction from the EQUI-
TABLE PARTITION problem [Garey and Johnson, 1979]. In
fact, we start with this problem in Theorems 4 and 5 as well.
In this problem, we are given a list S = (s1, . . . , s2n) of 2n
positive integers such that

∑
i∈[2n] si = 2k, and the goal is to

decide whether there exists a set I ⊆ [2n] of size n such that∑
i∈I si =

∑
i∈[2n]\I si = k. Without loss of generality, we

can assume that minS ≥ n2 and that for any i, j ∈ [2n] we
have |si − sj | ≤ minS

n2 [Deligkas et al., 2024c]. In particu-
lar, this means that for any J ⊆ [2n] with |J | < n, we have∑

i∈J si < k.

Theorem 3. For every distance factor function f , it is NP-
complete to decide the IR-TOPOLOGICAL DISTANCE GAME
problem even if the enmity graph contains only two arcs and
the utilities are symmetric.

Proof sketch. Given an instance S of the EQUITABLE PARTI-
TION problem, we construct an equivalent instance J of the
IR-TOPOLOGICAL DISTANCE GAME problem as follows.
First, we construct the topology G. At the beginning, we cre-
ate a complete bipartite graph Kn,n with two parts L and R.
Then, we add a vertex vℓ, which is connected with all ver-
tices of the part L, and a vertex vr, which is connected with
all vertices of the part R. The set of agents consists of 2n
element-agents, each corresponding to one element of the set
S, and two guard-agents g1, g2. The idea behind the con-
struction is that the guards hate each other, and the only way
to make their utility non-negative is to assign to vertices vℓ
and vr, respectively, and to partition the element-agents be-
tween two parts of Kn,n such that utility the agents g1 and
g2 gain from neighboring agents is exactly k. To ensure this,
we define the utilities as follows. Let f be an arbitrary but
fixed distance factor function. For the guard-agents, we set
ug1(g2) = ug2(g1) = −(k + f(2)

f(1) · k)/f(2). Next, let si,
i ∈ [2n], be an element-agent. We set ug1(ai) = ug2(ai) =

uai(g1) = uai(g2) = si
f(1) . The remaining utilities, that is,

between element-agents, are zero.

Next, we show that the problem remains hard even if the
enmity graph consists of two arcs pointed towards the same
agent; in other words, if we ignore isolated vertices, the en-
mity graph is an in-star with two arcs.

Theorem 4. For any distance factor function f , it is NP-
complete to decide the IR-TOPOLOGICAL DISTANCE GAME
problem, even if there are only two arcs in the enmity graph
and both of them are directed towards the same agent.

Our last result of the section shows that even restricting the
topology to a path does not surprisingly suffice for tractabil-
ity.

Theorem 5. It is NP-complete to decide the IR-
TOPOLOGICAL DISTANCE GAME problem, even if there are
only three arcs in the enmity graph, all of them are directed
towards the same agent, and the topology is a path.

Proof sketch. Given an instance S of EQUITABLE PARTI-
TION with 2n integers, we construct an equivalent instance
J of the IR-TOPOLOGICAL DISTANCE GAME problem as
follows. Recall that we assume that for any I ⊆ [2n] such
that |I| ≤ n− 1, we have

∑
i∈I si < k.

The topology of J is a path P = (v1, v2, . . . , v2n+4) on
2n + 4 vertices. The set of agents N also contains 2n + 4
vertices, split into:

• one trouble-maker t;

• three grumpy agents g1, g2, g3;

• 2n element-agents a1, a2, . . . , a2n.

The idea is that only negative utilities are set from the three
grumpy agents towards the trouble-maker. To balance it, the
grumpy agents will have positive utility towards the element
agents that depend on which element the given agent repre-
sent. The most animosity is from g3 towards t and the func-
tion f is carefully crafted, so that g3 and t are at the oppo-
site sides of P and g3 needs n element-agents, at distance at
most n each, representing elements with total sum at least k
to balance the negative contribution of t. The second most
animosity is from g2 towards t, crafted that g2 needs to be at
distance at least n+2 from t and when it is at distance exactly
n+2, then g2 needs all the element-agents at distance at most
n to balance its animosity towards t. Finally, this will fix g1
exactly next to t and to balance its animosity towards t, we
need n element-agents, at distance from g1 at most n each,
representing elements with total sum at least k to balance the
negative contribution of t.

4 Parameter-Many Agents
In the previous section, we have established strong in-
tractability results for the problem when the number of agents
is part of the input. For this reason, in this section, we
follow the parameterized complexity paradigm and we con-
sider |N | to be a parameter of the problem; Figure 2 pro-
vides a mind-map of our results. Note that parameterization
by the number of agents has been successfully used to give
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any
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Figure 2: A simplified overview of our results for the setting with
parameter-many agents. All W[1]-complete combinations can be
solved by an XP algorithm, which is asymptotically optimal under
ETH (see Theorem 6).

fixed-parameter algorithms for various hard problems in com-
putational social choice; see, e.g., [Bredereck et al., 2020;
Deligkas et al., 2021; Ganian et al., 2023c].

Our first result is a brute-force algorithm that finds an in-
dividually rational assignment (if one exists) in XP time. In
other words, the IR-TDG problem is solvable in polynomial
time if the number of agents is a fixed constant.

Theorem 6. There is an algorithm for the IR-TOPOLOGICAL
DISTANCE GAME problem running in |V (G)|O(|N |) time.

Proof. The algorithm is a simple brute-force. We exhaus-
tively try all assignments of vertices of the topology to agents.
Then, in polynomial time, we verify whether the checked pos-
sibility assigns to each agent a different vertex and whether
the assignment is individually rational. If this is the case, we
return yes as the result. Otherwise, if no possibility leads to
an individually rational assignment, we return no. The algo-
rithm is trivially correct as it checks all possible assignments.
Additionally, there are V (G)O(|N |) possible agents-vertices
assignments, and for each assignment, the verification of the
uniqueness of the vertices and of the individual rationality
can be performed in polynomial time. Therefore, the overall
running time is |V (G)|O(|N |).

Now, the natural question arises. Is the XP algorithm of
Theorem 6 the best we can hope for, or is there an FPT algo-
rithm for the problem? We resolve this question in negative
in our next result.

Theorem 7. For every distance factor function f , it is W[1]-
complete to decide the IR-TOPOLOGICAL DISTANCE GAME
problem parameterized by the number of agents |N |, even if
the utilities are symmetric, the utility function uses two differ-
ent values, and there are only two types of agents.

Proof. We provide a parameterized reduction from the
INDEPENDENT SET problem, which is very well-known
to be W[1]-complete when parameterized by the solution
size k [Downey and Fellows, 1995]. Let I = (H, k) be an in-
stance of the INDEPENDENT SET problem. We construct an
equivalent instance J of the IR-TOPOLOGICAL DISTANCE
GAME problem as follows.

First, the topology G is just a copy of the graph H with
one added apex vertex x. The set of agents consists of k stan-
dard agents a1, . . . , ak and a single guard agent g. Next, let
β ∈ R>0 be a number. We fix an arbitrary distance factor
function f . Finally, we define the utilities. For every pair
of distinct standard agents ai, aj ∈ N , we set uai

(aj) =

uaj
(ai) = −β and uai

(g) = ug(aj) = (k−1)·f(2)·β
f(1) . There

are two types of agents, and the utilities are symmetric.

Consequently, if we parameterize only with the number of
agents, an FPT algorithm cannot exist (unless FPT = W[1]).
What is even more disturbing is that the simple brute-force al-
gorithm proposed in Theorem 6 is, under standard theoretical
assumptions, asymptotically optimal.
Theorem 8. Unless ETH fails, there is no algorithm solving
the IR-TOPOLOGICAL DISTANCE GAME problem in g(|N |)·
|V (G)|o(|N |)-time for any computable function g.

The previous results clearly indicate that, in order to reveal
at least some tractability, we need to further restrict the in-
put instances. We start with a very strong intractability result,
which shows that when the distance factor function remains
unrestricted, there cannot be an FPT algorithm with respect
to the number of agents, even under the severe restriction of
having a path topology. The proof is based on a reduction
from the PARTITIONED SUBGRAPH ISOMORPHISM problem
(PSI for short). Here, we are given two undirected graphs G
and H with |V (H)| ≤ |V (G)| (H is smaller) and a mapping
ψ : V (G) → V (H). The question is whether H is isomor-
phic to a subgraph of G? I.e., is there an injective mapping
ϕ : V (H) → V (G) such that {ϕ(u), ϕ(v)} ∈ E(G) for each
{u, v} ∈ E(H) and ψ ◦ ϕ is the identity?
Theorem 9. IR-TOPOLOGICAL DISTANCE GAME is W[1]-
complete parameterized by the number of agents, even if the
topology is a path. Unless ETH fails, there is no algorithm
solving the IR-TOPOLOGICAL DISTANCE GAME problem in

g(|N |) · |V (G)|o(
|N|

log |N| )-time for any computable function g.

Proof sketch. We show W[1]-hardness by a parameterized re-
duction from the PARTITIONED SUBGRAPH ISOMORPHISM
problem, which is known to be W[1]-complete when param-
eterized by the solution size k even on 3-regular graphs. Fur-
thermore, there is no algorithm A and function g such that A
correctly decides every instance of PSI with the smaller graph
H being 3-regular in time g(|V (H)|)no(|V (H)|/ log |V (H)|),
unless ETH fails (see [Marx, 2010] and [Eiben et al., 2019]).

Let (G,H,ψ) be an instance of PSI with H 3-regular and
denote k = |V (H)|. Note that the mapping ψ : V (G) →
V (H) partitions the vertices of V (G) into x = |V (H)|
many parts V1, . . . , Vx, each corresponding to a specific ver-
tex ofH . Moreover, we wish to select in each part Vi, i ∈ [x],
exactly one vertex vi, such that if vw ∈ E(H) and Vi corre-
sponds to v and Vj corresponds to w, then vivj is an edge
in G. Notice that if vw /∈ E(H), then the edge in vivj is
not required to be in E(G), however, it is also not forbidden.
Hence we can, without loss of generality, assume that G does
not contain edges between Vi and Vj if these two vertex sets
correspond to vertices in H that are not adjacent. It follows
that we can also partition the edges ofE(G) into y = |E(H)|
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many partsE1, . . . , Ey , each corresponding to a specific edge
of H . This is important, because, as is usual for a reduction
from PSI, we will have a “gadget” to select a single vertex in
each Vi, a gadget to select an edge in each Ej , and then a way
to check that this selection is consistent.

We will now construct an equivalent instance J of the
IR-TOPOLOGICAL DISTANCE GAME problem such that the
topology of J is a path on |V (G)|O(1) many vertices. A very
crude idea of this reduction is to assign each of the vertex-
parts Vi, i ∈ [x], and each of the edge-parts Ej , j ∈ [y] an
interval on the path such that these intervals are disjoint. Then
using two additional “guard” vertices placed at the endpoints
of the path, O (|V (H)|+ |E(H)|) many so-called “anchor”
vertices, and a clever choice of the function f , we force each
of the intervals to contain exactly two consecutive vertices at
some “allowed” positions inside the interval, that represent a
selection of specific edge or vertex in this interval. Finally,
using basically the same trick we used to force the “allowed”
consecutive vertices in a selection gadget to be only at spe-
cific positions – specific distances from an “anchor” vertices
– we are able to force that the selected vertices vi ∈ Vi and
the selected edges ej ∈ Ej are consisted, i.e., if Ej is asso-
ciated with an edge of H whose one endpoint is the vertex
associated with Vi, then vi is an endpoint of ej . It is impor-
tant that the intervals for these selection gadgets are placed
carefully and all the distances for which we need to set up the
value of f are different.

Now let us go a bit more into detail. For ease of notation
let n = |V (G)|, m = |E(G)|. We let the topology of J be
the path P on 40mn vertices.

The set of agents N consists of the following.
• Two guard agents g1, g2, these will be placed at the end-

points of P and the intervals for “selector” gadgets will
be defined by their distance from g1.

• A ”dummy” agent d2 to make g2 “happy” if g1 is at the
other endpoint and d2 exactly next to it.

• x = |V (H)| many “vertex-selector” pairs of agents
vi, wi, i ∈ [|V (H)|]. The idea is that vi represents the
selection of the vertex in Vi and wi is a helper agent that
fixes vi in the interval for Vi.

• y = |E(H)| many “edge-selector” pairs of agents ej , e′j ,
j ∈ [|E(H)|]. Again ej represents the selection of an
edge in Ej and e′j is the helper agent to fix ej in the
interval of P selected for Ej .

• x + y many “anchor” pairs of agents ai, bi i ∈ [x + y].
These are designed such that ai is at the start of each
“selector” gadget, and we use them together with the
distance factor function f to force the selector-pair to
occupy only a specified subset of vertices inside the se-
lector gadget. The agent bi is again a “helper” agent that
will be placed next to ai.

We will now describe how we set the distance factor func-
tion f and how the utilities of the agents are defined. We
remark that if we do not define a utility ui(j) of an agent
i toward agents j, then we assume that ui(j) = 0. The
function f is such that for any d ∈ {1, . . . , |V (P )| − 1}
we have f(d) = 2pd(n) − qd, where 0 ≤ qd < d and

n3 ≥ pd(n) ≥ n3 − 7n2. In addition, steps from d to d + 1
in the function f are always one of the following four types:
(i) f(d + 1) = f(d) − 1, (ii) f(d + 1) = 2pd(n)−1, (iii)
f(d+1) = 2pd(n)−1− qd, and (iv) f(d+1) = 2pd(n)−n. We
start with f(1) = 2n

3

and f(2) = 2n
3−n. Unless we specify

otherwise, we have f(d+ 1) = f(d)− 1.
To fix g1 and g2 to be at the endpoints of P , we set

ug2(d2) = 1, ug2(g1) = − f(1)
f(|V (P )|−1) and letting utility of

g2 towards any other agent to be 0. After this is done, we
can fix each of the remaining agent-pairs to specific intervals
of distances from g1 by setting only the utility of the helper-
agent in the pair towards g1, g2, and its partner and using a
type-(iv) step to force some minimum distance from g1 and
from g2 and use a sequence of type-(i) steps to make sure that
the partner has to be next to the helper independently where
inside the interval the helper is.

In order to fix a vertex-selector pair (vi, wi) in only the sub-
set of allowed positions, we set the utility of its anchor ai as
uai

(vi) = 1 and uai
(vi) = −2 and use the type-(iii) steps in

the distance function to indicate allowed positions and type-
(i) steps to indicated forbidden positions. This allows us to
have distinct distance for each pair of an allowed position for
a vertex and an allowed position for an edge.

Finally, since distances between allowed vertex-agent po-
sitions and allowed edge-agent positions are distinct, we can
use the exactly same trick to force that the selection of edges
and the selection of vertices is consistent by setting the utili-
ties of the vertex-agent vi. The important thing to notice here
is that since we are keeping f(d) = 2n

3−O(n2) + qd, where
qd ≤ d, the negative contribution of inconsistent selection
cannot be balanced by having all the remaining connections
for particular vertex consistent.

On the other hand, if we additionally restrict the enmity
graph, we finally obtain fixed-parameter tractability. Namely,
if we parameterize by the number of agents, the topology is a
path, and all edges in the enmity graph are oriented towards a
single agent, the problem becomes tractable.
Theorem 10. For any distance factor function f , if all the
edges in the enmity graph are oriented towards one agent p
and the topology is a path, then the IR-TOPOLOGICAL DIS-
TANCE GAME problem is in FPT parameterized by the num-
ber of agents N .

Proof sketch. Let the graph be a path P = {v1, . . . , vn},
where n is the number of vertices. As the first step of our
algorithm, we set λ(p) = vn. Next, we guess the ordering
π : N \ {p} → [|N | − 1] of the vertices on the path. Now,
for every i ∈ [|N | − 1], we set λ(π−1(i)) = vi. For the cor-
rectness, we show that if there exists an individually rational
solution λ′, then there also exists an individually rational so-
lution λ where agents inN \{p} are assigned only to vertices
v1, . . . , v|N |−1 and p is assigned to vn.

The algorithm in the previous theorem heavily relies on
the special path topology. In our next result, we show that
this restriction is necessary for tractability; if we allow for an
unrestricted topology, the IR-TDG problem again becomes
hopelessly intractable.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2787



Theorem 11. For every distance factor function f , if all
edges of the enmity graph are oriented toward one agent, then
the IR-TOPOLOGICAL DISTANCE GAME problem is W[1]-
complete parameterized by the number of agents N , even if
there are only 2 types of agents and the utility function uses
three different values.

Proof sketch. We show W[1]-hardness by a parameterized
reduction from the CLIQUE problem, which is known
to be W[1]-complete when parameterized by the solution
size k [Downey and Fellows, 1995]. Let I = (H, k) be an
instance of CLIQUE. We construct an equivalent instance J
of the IR-TOPOLOGICAL DISTANCE GAME problem as fol-
lows.

The topology G is the graph H with added apex vertex c
with a pendant p. By this tweak, every pair of vertices is now
in distance 1 or 2. The set of agents N consists of k selection
agents a1, . . . , ak and a single guard agent g. Next, we de-
fine the utilities. For the guard agent, we set ug(ai) = 0 for
every i ∈ [k]. Next, each selection agent ai receives negative
utility from the guard agent and positive utility from other se-
lection agents. The utilities are set so that the guard agent
has to be in distance 2 and the selection agents have to form
a clique. Otherwise, a selection agent with fewer than k − 1
direct neighbors would have negative utility. Specifically, we
set uai

(g) = −β and uai
(aj) =

f(2)·β
f(1)·(k−1) , where β ∈ R≥0

is a fixed constant. As utility functions for selection agents
are the same, there are clearly only two types of agents. It
is also easy to see that utilities use only 3 different values,
namely 0, β, and f(2)·β

f(1)·(k−1) .

5 Conclusions
This paper studied the complexity of finding individually ra-
tional solutions in topological distance games, which is ar-
guably one of the most fundamental stability notions. Albeit
this class of games can capture a plethora of models, its versa-
tility comes with the drawback of strong intractability results
even for very restricted cases, at least from the theoretical
point of view. As our results reveal, individual rationality is
hard to be assured even if someone resorts to the parameter-
ized complexity regime. However, our results do not imply
parameterized-complexity hardness for jump stability. We
strongly believe that this avenue deserves further study.

At a different dimension, our results indicate that follow-
ing a worst-case point of view is not sufficient for tractability.
This makes someone wonder, whether there exist some nat-
ural values for the parameters of the model that ensure IR in
practice. If not, does individual rationality even exist?
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[Bilò et al., 2022c] Vittorio Bilò, Gianpiero Monaco, and
Luca Moscardelli. Hedonic games with fixed-size coali-
tions. In AAAI ’22, pages 9287–9295. AAAI Press, 2022.
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