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Abstract
We initiate the study of a novel problem in mecha-
nism design without money, which we term Truth-
ful Interval Covering (TIC). An instance of TIC
consists of a set of agents each associated with
an individual interval on a line, and the objective
is to decide where to place a covering interval to
minimize the total social or egalitarian cost of the
agents, which is determined by the intersection of
this interval with their individual ones. This funda-
mental problem can model situations of provision-
ing a public good, such as the use of power gen-
erators to prevent or mitigate load shedding in de-
veloping countries. In the strategic version of the
problem, the agents wish to minimize their individ-
ual costs, and might misreport the position and/or
length of their intervals to achieve that. Our goal
is to design truthful mechanisms to prevent such
strategic misreports and achieve good approxima-
tions to the best possible social or egalitarian cost.
We consider the fundamental setting of known in-
tervals with equal lengths and provide tight bounds
on the approximation ratios achieved by truthful
deterministic mechanisms. For the social cost, we
also design a randomized truthful mechanism that
outperforms all possible deterministic ones. Fi-
nally, we highlight a plethora of natural extensions
of our model for future work, as well as some nat-
ural limitations of those settings.

1 Introduction
We introduce the Truthful Interval Covering (TIC) problem,
a novel problem in the field of mechanism design without
money [Procaccia and Tennenholtz, 2013]. In this problem,
there is a set N of n agents, each of whom is associated with
an interval Ii on the line of real numbers. There is also a cov-
ering interval C, which should be placed somewhere on the
line. The cost of agent i ∈ N is a function of the portion of Ii
that C covers; in the simplest version of the problem, the cost
is just the part of Ii that is not covered by C. The goal is to
place the interval so as to minimize the social cost (total cost
of the agents) or the max cost (maximum individual agent
cost), while taking the incentives of the agents into account.

Indeed, agents might misreport information about their inter-
vals (e.g., their position or length) if that would lead to an
outcome that is preferable for them.

The TIC problem captures applications in which a public
good is provisioned and shared among a set of participants.
We provide a few indicative of many examples below.

• The covering interval could represent the time interval
during which a power generator can be operated, and
the individual intervals capture the times during which
each citizen would like to have access to electricity. The
minimum-social cost solution is one that covers as much
demand for electricity as possible. This is particularly
relevant in developing countries where electricity might
be a scarce resource, and can be used to prevent or miti-
gate the effects of load shedding.1

• The covering interval could correspond to the range of
a public WiFi hotspot to be placed in an area with low
broadband connectivity, when the agents’ intervals are
the signal ranges of their devices.

• The covering interval could capture the time in which to
schedule a university open-day or a job fair, given the
preferences of the potential attendees over the different
time intervals in the day.

• The covering interval could be an express public trans-
portation line connecting parts of a city or intercity net-
work, and the agents express which parts of the route
they would like this service to cover.

Despite its fundamental nature, and its resemblance to
other classic algorithmic problems like the interval schedul-
ing problem and its variants [Kolen et al., 2007], the interval
covering problem has seemingly not been studied systemati-
cally from a purely algorithmic point of view. This can likely
be attributed to the fact that the optimal covering can be found
in polynomial time via a rather simple algorithm (see Theo-
rem 2 in Section 2). Once we move to a mechanism design
regime however, where the incentives of the agents for mis-
resorting come into effect, the problem becomes much more
challenging. Truthful mechanisms, which eliminate those in-
centives, are necessarily suboptimal, and resort to approxima-
tions. Our goal is to design truthful mechanisms that achieve

1E.g., see https://en.wikipedia.org/wiki/South African energy
crisis
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approximations that are as small as possible, and identify the
limitations of such mechanisms via appropriate inapproxima-
bility results.

1.1 Our Contribution
In this paper, we introduce the Truthful Interval Covering
(TIC) problem as a novel and interesting problem in mech-
anism design without money. Our technical contribution is as
follows.

• We provide upper and lower bounds on the approxima-
tion ratio of truthful mechanisms for the most funda-
mental version of the problem, where all of the interval
lengths are known and equal, which already turns out to
be quite challenging. We start with the social cost objec-
tive and deterministic truthful mechanisms, for which, in
Section 3, we prove a tight bound of 2− 2/n on the ap-
proximation ratio. In Section 4, we present a simple ran-
domized, universally truthful mechanism that achieves
an approximation ratio of 5/3, thus outperforming all
deterministic ones. In Section 5, we turn our attention
to the max cost objective, for which we show a tight
approximation ratio of 2 for deterministic mechanisms,
and a lower bound of 2 for a natural class of randomized
mechanisms, thus showing that randomization might not
be able to lead to improvements for this objective.

• We also consider two natural extensions of the main
model in Section 6. In the first one, the agent inter-
vals are assumed to be unknown, and thus the agents can
misreport their starting positions as well as the lengths
of their intervals. We show that no truthful mechanism
can achieve a meaningful approximation ratio in terms
of both the social and the max cost. In the second ex-
tension, we consider the case where the interval lengths
are known but might be unequal. We show that a sim-
ple mechanism, which places the covering interval at the
starting position of the agent with the maximum-length
interval is truthful and achieves a linear approximation
ratio in terms of the social cost, and an approximation
ratio of at most 2 for the max cost; the latter is best pos-
sible when the interval lengths are known (any might be
equal or unequal).

In Section 7, we present and discuss several other interest-
ing variants of the main model, which capture a wealth of
different possible application domains. We believe that there
is great potential for follow-up work, and the problem could
enjoy similar success as other problems within the research
agenda of mechanism design without money, such as truthful
facility location [Chan et al., 2021; Procaccia and Tennen-
holtz, 2013], truthful resource allocation [Krysta et al., 2014;
Filos-Ratsikas et al., 2014; Abebe et al., 2020], or impar-
tial selection [Alon et al., 2011; Fischer and Klimm, 2014;
Bjelde et al., 2017]. Due to space constraints, the proofs of
some statement are omitted.

1.2 Related Work and Discussion
The research agenda of approximate mechanism design with-
out money was put forward by Procaccia and Tennen-
holtz [2013] and aims to capture settings involving selfish

participants, in which truthful mechanisms are used to opti-
mize a social objective. These mechanisms are compared, via
their approximation ratio, against the performance of the best-
possible outcome, which would be achievable if the partici-
pants were not selfish. The prototypical problem in this field
is that of truthful facility location, which has flourished into
an extremely fruitful research area, giving rise to a plethora
of works on several different variants; see the survey of Chan
et al. [2021] for details, and the related work discussion in
[Procaccia and Tennenholtz, 2013] for earlier references.

Our setting is markedly different from facility location,
where the cost of an agent depends on the distance from
the location of the facility. In contrast, in our case, the cost
of an agent is a function of how much her associated inter-
val is covered. Still, there are some conceptual similarities
between the two problems, namely in terms of the truthful
mechanisms employed to achieve the approximation guaran-
tees. In particular, similarly to the literature of facility loca-
tion, we also employ mechanisms that are based around k-
th ordered statistics (e.g., the median) of the agents’ reports.
These are in fact not particular to facility location, but more
generally centered around the concept of single-peaked pref-
erences [Black, 1948; Moulin, 1980]. Despite this superficial
connection, the proofs for the performance of these mecha-
nisms are very much different in the TIC problem; it is worth
mentioning that, contrary to the setting of [Procaccia and Ten-
nenholtz, 2013], in TIC these mechanisms provably do not
admit social-cost minimizing outcomes.

Another related problem is that of strategyproof activity
scheduling studied by Xu et al. [2020], in which an activity
(represented by an interval) is to be placed on a line based
on the preferences of self-interested agents. Despite the su-
perficial similarity, this setting is again notably different from
ours; in activity scheduling, each agent reports a single point
and her cost is the distance from the closest endpoint of the
activity interval. This makes the problem much closer to fa-
cility location rather than our covering problem. The work of
Bei et al. [2022] on truthful cake sharing is also related to our
paper. In contrast to our model, where the agents report their
intervals on the line and have costs for the chosen covering
interval, in the cake cutting model of Bei et al., the agents re-
port piecewise uniform utilities over a cake (represented as a
fixed-size interval) and the objective is to choose an interval
of certain length that they will all share.

From a purely algorithmic point of view (without incen-
tives), problems related to intervals (like scheduling or col-
oring) are rather fundamental and included in most text-
books on algorithms, e.g., see [Kleinberg and Tardos, 2006;
Roughgarden, 2022]. As we mentioned earlier, the algo-
rithmic variant of TIC admits an easy polynomial-time al-
gorithm, and the problem becomes challenging once studied
under the mechanism design regime.

Finally, we remark that the term “truthful interval cover”
has been used before in the literature for mechanisms with
money for solving a crowdsourcing problem, where agents
bid for intervals of tasks that they are willing to get;
see [Dayama et al., 2015; Markakis et al., 2022]. This model
is completely different compared to the one we study here,
and, thus, we do not expect any ambiguity to arise.
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2 The Setting
In the Truthful Interval Covering (TIC) problem, there is a set
N of n agents, each associated with an interval Ii = [si, ti]
on the line of real numbers. There is also a covering in-
terval C = [s, t] whose position needs to be determined.
We focus on the most fundamental version of the problem,
in which the interval lengths are all known and equal, i.e.,
|Ii| = |Ij | = |C| for any agents i, j ∈ N . Given this, we
can assume without loss of generality that |Ii| = 1 for any
i ∈ N and |C| = 1. Let I = (I1, I2, . . . , In) be the vector
of the agents’ intervals, to which we refer to as an instance.
Without loss of generality, we assume that for any two agents
i, j ∈ N with i < j, si ≤ sj , i.e., the intervals in I appear
in non-decreasing order of left endpoints. Using this, we may
refer to an agent i being before or after another agent if i < j
or i > j, respectively. We will also say that an agent i is
before or after a point x if si ≤ x or si > x.

Given a position for the covering interval C, the cost of an
agent i ∈ N is the part of her interval Ii that does not overlap
with C, i.e., costi(C) = |Ii \ (Ii ∩ C)| = 1 − |Ii ∩ C|. The
social cost of C is the total cost of all agents:

SC(C) =
∑
i

costi(C).

The max cost of C is the maximum cost over all agents:

MC(C) = max
i

costi(C).

When the objective (social or max cost) is clear from context,
for any instance I, we will use O(I) to denote the covering
interval that minimizes the objective for instance for I; when
I is also clear from context, we will simply write O.

A deterministic mechanism M takes as input an instance
I and outputs the position of a covering interval M(I), i.e.,
the position s ∈ R of the left endpoint of the covering in-
terval. We also consider randomized mechanisms, which, in-
stead of a single position, output a probability distribution
DM(I) over possible positions of the covering interval.

The approximation ratio of M in terms of an objective f ∈
{SC,MC} is the worst-case ratio of the objective value of the
covering interval computed by M over the smallest possible
objective value achieved by any covering interval, over all
instances of the problem:

sup
I

f(M(I))
minC f(C)

.

For randomized mechanisms, the definition is very similar,
with the only difference that the expected objective value
EM(I)∼DM(I)[f(M(I))] appears in the numerator.

The term “Truthful” in the name of the TIC problem comes
from the fact that the information about the intervals is not
public knowledge, but has to be elicited from the agents. The
agents are self-interested entities who might misreport this
information if that results in them achieving a smaller cost.
In the setting we consider, since the interval lengths are all
1, the elicited information is the position of the interval of
each agent i ∈ N , i.e., the left endpoint si ∈ R of Ii. For
simplicity, we say that each agent reports her interval Ii rather
than si.

A mechanism M is said to be truthful if does not incen-
tivize the agents to misreport their intervals, that is, for every
agent i and every possible interval I ′i that the agent could re-
port,

costi(M(I)) ≤ costi(M(I ′i, I−i)) (1)

where I−i is the vector I without the i-th coordinate.
For randomized mechanisms, the definition of truthfulness

extends to truthfulness in expectation, which stipulates that
no agent can decrease her expected cost by deviating. In our
positive results, we will actually use a stronger truthfulness
guarantee called universal truthfulness. A mechanism is uni-
versally truthful if it is truthful for any realization of truthful-
ness, i.e., Inequality (1) holds for any M(I) ∼ DM(I).

Our goal is to design truthful mechanisms (either deter-
ministic truthful or universally truthful) with approximation
ratios as close to 1 as possible. To achieve this, we focus on
a class of mechanisms called k-ordered statistics.

Definition 1 (k-ordered statistic). For k ∈ [n], the k-ordered
statistic mechanism M outputs the interval reported by the
k-th ordered agent i in instance I, i.e., M(I) = Ii.

For example, for k = ⌊n/2⌋, the k-ordered statistic mech-
anism outputs exactly the interval reported by the median
agent. k-ordered statistic mechanisms (as well as their con-
vex combinations) are well-known to be truthful in other con-
texts, e.g., see [Dummett and Farquharson, 1961; Moulin,
1980]. For similar reasons, any k-ordered statistic mecha-
nism is truthful in our setting.

Theorem 1. For any k ∈ [n], the k-ordered statistic mecha-
nism is truthful. Furthermore, any convex combination over
k-ordered statistic mechanisms is universally truthful.

Before we proceed with the design of truthful mechanisms,
we state and prove the following statement, which establishes
that the purely algorithmic version of the problem, without
any regard to agent incentives, can be solved in polynomial
time with respect to the social cost and the max cost. We refer
to this problem as the INTERVAL COVERING PROBLEM.

Theorem 2. The social cost-minimizing and the max cost-
minimizing positions for the covering interval in the INTER-
VAL COVERING PROBLEM can be computed in linear time.

3 Social Cost: Deterministic Mechanisms
We start by showing bounds on the approximation ratio of de-
terministic truthful mechanisms for the social cost. As men-
tioned in Section 1.1, for this case we obtain a tight bound
of 2 − 2/n on the approximation ratio achievable by any
such mechanism. The mechanism that achieves this bound is
the MEDIAN mechanism, the k-ordered statistic mechanism
with k = ⌊n/2⌋ (see Definition 1). Similar mechanisms (that
choose the reported action of the median agents) have played
a prominent role in other domains in mechanism design with-
out money [Chan et al., 2021]. However, as we mentioned
earlier, the nature of our problem is different from those, and
hence the proof is also rather different.

Theorem 3. The MEDIAN mechanism achieves an approxi-
mation ratio of 2− 2

n for the TIC problem.
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Proof. Consider an arbitrary instance. Let m be the median
agent so that Im = [sm, tm] is the unit-size interval that is
chosen by the mechanism. Let O = [so, to] be the optimal
unit-size interval. Without loss of generality, we can assume
that so ≥ sm and that n is even. Let x ∈ [0, 1] be the length
of the intersection Im ∩ O = [so, tm] between the interval
chosen by the mechanism and the optimal interval. Let L be
the set of n/2− 1 agent at the left of m, M the set of agents
between m and so, and R the set of agents at the right of so;
note that |M ∪ R| = n/2. Clearly, the maximum cost of the
mechanism is n and the minimum optimal cost is 0. We make
the following observations:

• The median agent decreases the cost of the mechanism
by 1 and increases the optimal cost by 1 − x (the part
of the median interval that the optimal solution does not
cover).

• Any agent i ∈ L such that |Ii ∩ [so, tm]| = 0 increases
the optimal cost by 1; let A be the set of such agents.

• Any agent i ∈ L such that |Ii ∩ [so, tm]| = xi > 0
decreases the cost of the mechanism by at least 1−x+xi

and increases the optimal cost by least 1− xi (since the
interval of i starts before sm but reaches so); let B be
the set of such agents.

• Any agent i ∈ M decreases the cost of the mechanism
by at least x.

• Any agent i ∈ R such that |Ii ∩ [so, tm] = xi > 0 de-
creases the cost of the mechanism by some length xi ∈
[0, x] and increases the optimal cost by 1−xi−(1−x) =
x− xi; let Γ be the set of such agents.

• Any agent i ∈ R such that |Ii ∩ [so, tm]| = 0 increases
the optimal cost by at least x; let ∆ be the set of such
agents.

Hence, we have

SC(Im) ≤ n− 1− |B|(1− x)−
∑
i∈B

xi − |M |x−
∑
i∈Γ

xi

SC(O) ≥ 1− x+ |A|+ |B| −
∑
i∈B

xi + |Γ|x−
∑
i∈Γ

xi + |∆|x.

So, the approximation ratio is at most
n− 1− |B|(1− x)−

∑
i∈B xi − |M |x−

∑
i∈Γ xi

1− x+ |A|+ |B| −
∑

i∈B xi + |Γ|x−
∑

i∈Γ xi + |∆|x
.

Since the ratio is at least 1 (by definition), it is an increas-
ing function in terms of

∑
i∈B xi ≤ |B|x and it terms of∑

i∈Γ xi ≤ |Γ|x , and is thus at most

n− 1− |B| − (|M |+ |Γ|)x
1− x+ |A|+ |B|(1− x) + |∆|x

.

Since |A|+ |B|+ 1 = n/2 and |M |+ |Γ|+ |∆| = n/2, we
further obtain

n− 1− |B| − (n/2) · x+ |∆|x
n/2− x− |B|x+ |∆|x

.

This is a decreasing function in terms of |∆| ≥ 0, and is thus
at most

n− 1− |B| − (n/2) · x
n/2− x− |B|x

.

This is a decreasing function in terms of |B| ≥ 0, and is thus
at most

n− 1− (n/2) · x
n/2− x

.

Finally, this is a decreasing function in terms of x and thus
attains its maximum value of 2− 2/n when x = 0.

Next, we present a lower bound for deterministic truthful
mechanisms that matches the upper bound of Theorem 3. Be-
fore we do so though, we will provide a structural property of
any deterministic truthful mechanism. This property will be
repeatedly used in order to prove the lower bound.

Lemma 1. Consider a deterministic truthful mechanism M,
an instance I, and an agent i such that Ii ∩M(I) ̸= ∅. In
addition, consider the instance I ′ = (I ′i, I−i), where I ′i∩Ii∩
M(I) ̸= ∅, and let M(I ′) be the location of the covering
interval in I ′ under mechanism M. Then, it must hold that
I ′i ∩M(I ′) ̸= ∅.

Theorem 4. Let M be any deterministic truthful mechanism.
Then the approximation ratio of M is at least 2− 2

n .

Proof. Let M be any deterministic truthful mechanism. At a
high level, the proof will construct a series of instances and
will use the truthfulness of M to argue about the possible po-
sitions of the covering interval on each one of those instances.

The starting point is the following instance I0, with two
groups of agents: group G0 contains n

2 agents with Ii = [0, 1]
for all i ∈ G0 and group G1 contains n

2 agents with Ii =
[n, n+1] for all i ∈ G1. Without loss of generality, we will as-
sume that on instance I0, mechanism M locates the covering
interval [a0, b0] such that it covers some part of the intervals
of the agents from cluster G0; the other case is symmetric.
Observe here that throughout the proof it is without loss of
generality to assume that the covering interval always covers
a strictly positive part of an agent; if this was not the case,
then the optimal cost would be n/2 while the mechanism
would achieve cost of n and thus it would be 2-approximate.
In addition, again without loss of generality, we will assume
that 0 ≤ a0 ≤ 1. Observe that since the covering interval has
length 1, then it cannot cover any agent from cluster G1.

The proof will construct a sequence of families of instances
J 0,J 1,J 2, . . . ,J k, where k ≤ n/2 − 1, which will guar-
antee that, on any instance in any of these families:

1. mechanism M cannot place the covering interval and
cover (part of) the cluster of agents located at [n, n+1];

2. mechanism M can move the covering interval only to
the right of its position in the previous instance and never
to the left;

3. the maximum approximation ratio that mechanism M
can achieve will strictly decrease, compared to the pre-
vious family.

Before we present the formal argument, we define some no-
tation that will make the exposition more clear. For every
instance I, let X(I) = {i ∈ [n] : Ii ∩ M(I) ̸= ∅}, i.e.,
the set X(I) contains the agents that have a non-empty inter-
section with the covering interval M(I). We will prove by
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induction that for each J k with k ∈ {0, . . . , n
2 −1} and every

instance I ∈ J k the following two conditions are satisfied.

1. The left endpoint of M(I) is in [k, k + 1].

2. On instance I ∈ J k, due to truthfulness, mechanism
M is able to cover a total mass of at most n/2 − k, for
a social cost of at least n− (n/2− k) = n/2+ k, while
the optimal social cost will remain the same, equal to
n/2. Hence, when the argument reaches family J n

2 −1,
i.e., when k = n/2−1, the social cost of M becomes at
least n−1, leading to an approximation ratio of 2−2/n.
For a visual representation of instance I ∈ J n

2 −1, see
the right-hand side of Figure 1.

Now we are ready to complete the proof. Observe that by
assumption Conditions 1 and 2 above hold for I0, so they
hold for the base case, J 0, of our induction. For the induction
step, assume that Conditions 1 and 2 hold for instance I ∈
J k, for some k ≤ n/2 − 1. Hence, we have that the left
endpoint of M(I) is in [k, k + 1] and that M(I) intersects
with at most n/2− k agents, formally, |X(I)| ≤ n/2− k.

In what follows, without loss of generality we will assume
that |X(I)| > 1; if |X(I)| ≤ 1, then M(I) has zero inter-
section with the intervals of at least n − 1 agents, and hence
has a social cost of at least n − 1. The optimal cost is n/2,
and hence M has an approximation ratio of at least 2 − 2/n
and we are done.

Given the above, we can pick a “rightmost” agent i ∈
X(I) with interval Ii = [si, ti], i.e., an agent i such that
ti ≥ ti′ for all i′ ∈ X(I). We define instance I ′ = (I ′i, I−i)
as follows, where left(I ′) and right(I ′) denote the left and
right endpoints of interval I ′ respectively.

• If left(M(I)) < ti < right(M(I)), then I ′i = [ti, ti +
1].

• If ti ≥ right(M(I)), then I ′i = [right(M(I)) −
δ, right(M(I)) − δ + 1], where δ > 0 is an arbitrarily
small quantity.

Observe that in both cases we have that Ii ∩ I ′i ∩M(I) ̸= ∅.
Thus, from Lemma 1 and due to the truthfulness of mecha-
nism M, it must hold that I ′i ∩M(I ′) ̸= ∅. We distinguish
between three cases.

• left(M(I ′)) < k + 1 and |X(I ′)| > 1. Then, we create
a new instance I ′′ as before; formally, we set I = I ′

and X(I) = X(I ′) and we choose an agent from X(I)
to move.

• left(M(I ′)) < k+1 and |X(I ′)| = 1. Then, as we have
argued above, the approximation ratio of mechanism M
is 2− 2/n.

• left(M(I ′)) ∈ [k + 1, k + 2]. In this case, it holds that
I ′ ∈ J k+1. Observe that since we have assumed that
|X(I)| > 1 and that since we have created instance I ′

by moving the “rightmost” interval of X(I), it should
hold that |X(I ′)| ≤ |X(I)| − 1 ≤ n

2 − k− 1, where for
the last inequality we have used the induction hypothe-
sis.

This completes the induction step and the proof.

4 Social Cost: Randomized Mechanisms
In this section, we turn our focus to randomized mechanism
for the social cost. We present a simple randomized, univer-
sally truthful mechanism that achieves an approximation ratio
of 5/3, thus outperforming all deterministic truthful mecha-
nisms. In particular, we consider the following mechanism,
which we coin UNIFORM-STATISTIC:

Definition 2 (UNIFORM-STATISTIC). Let ℓ be the (n/3)-th
leftmost agent, m be the median agent, and r be the (2n/3)-
th leftmost agent. Place the covering interval at the starting
position of each of {ℓ,m, r} with probability 1/3.

The mechanism is a convex combination of k-ordered
statistics, and hence by Theorem 1, it is universally truthful.
What remains is to bound its approximation ratio, established
by the following theorem.

Theorem 5. The approximation of UNIFORM-STATISTIC is
at most 5/3.

Proof idea. We show that any arbitrary instance can be trans-
formed into one of the following two possible worst-cases
instances (up to symmetries), by appropriately moving the
agents so that the approximation ratio of the mechanism does
not decrease.

• WCI1: The first instance is such that there are (approxi-
mately) 2n/3 agents grouped together, while the remain-
ing n/3 agents are all singletons without any intersection
with any other agent. The optimal interval completely
covers the group of 2n/3 agents for a social cost of n/3.
The output of the mechanism coincides with the optimal
with probability 2/3 (due to agents ℓ and m, or agents
m and r), and has social cost (approximately) n with
probability 1/3 when it chooses a singleton. So, the ap-
proximation ratio is 2/3+ 1

3 ·
n

n/3 = 5/3. See Figure 1a.

• WCI2: The second instance is such that there are n/2
singleton agents (including m) without any intersection
with any other agent, while the remaining n/2 agents are
grouped together. Here, the optimal interval completely
covers n/2 agents for a social cost of n/2. The output of
the mechanism coincides with the optimal with probabil-
ity 1/3 (due to agent r, or agent ℓ) and has cost (approxi-
mately) n with probability 2/3 when it chooses a single-
ton. So, the approximation ratio is 1/3+ 2

3 ·
n

n/2 = 5/3.
See Figure 1b.

We complement the aforementioned positive result with a
lower bound of 3/2 on the approximation ratio of any ran-
domized truthful mechanism that is a convex combination of
k-ordered statistic mechanisms.

Theorem 6. The approximation ratio of any convex combi-
nation of k-ordered statistic mechanisms is at least 3/2.

Proof. Let p be the total probability with which any of the
first n/2 agents is chosen; hence, 1 − p is the total probabil-
ity with which any of the remaining n/2 is chosen. Without
loss of generality, p ≥ 1/2. Now, consider an instance in
which the first n/2 agents are singletons, whereas the other
n/2 agents are all grouped together. The optimal social cost
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Figure 1: The two worst-case instances for the UNIFORM-STATISTIC mechanism. In each figure there are some singleton agents and a group
of agents whose intervals overal (these are depicted as a shaded rectangle).

is exactly n/2, while the expected social cost of the mecha-
nism is p·n+(1−p)·n/2, since with probability p we choose
some of the first n/2 agents leading to social cost n and with
probability 1− p we choose some the last n/2 agents leading
to the optimal social cost of n/2. Therefore, the approxima-
tion ratio is 1 + p ≥ 3/2.

5 Max Cost
In this section, we focus on the max cost and show that the
best possible approximation ratio of any deterministic mech-
anism is 2, and this is achieved by any k-ordered statistic
mechanism.

Theorem 7. For the max cost, the approximation ratio of any
k-ordered statistic mechanism is at most 2.

Proof. Consider an arbitrary instance and any k-statistic
mechanism. The max cost of the solution computed by the
mechanism as well that of the optimal solution depend on
how close the intervals of the leftmost and rightmost agents
are. We consider the following cases:

• If the intervals of the leftmost and the rightmost agents
are disjoint and the distance between them is at least 1,
then the max cost of the mechanism and the optimal max
cost are both 1; hence, the mechanism is optimal.

• If the intervals of the leftmost and the rightmost agents
are disjoint and the distance between them is equal to
1− x for some x ∈ (0, 1), then the optimal interval can
cover x/2 of each of these two agents (and any other
agent inbetween them), leading to an optimal max cost
of 1−x/2 ≥ 1/2. Since the max cost of the mechanism
is again 1, the approximation ratio is at most 2.

• If the interval of the leftmost and the rightmost agents
have an overlap of x < 1, then the max cost of the
mechanism is 1 − x. The optimal solution can cover
x + y from each of the two agents, where y is such that
x+2y = 1 ⇔ y = 1−x

2 , leading to an optimal max cost
of 1− x− y = 1−x

2 . So, the approximation ratio is 2.

Overall, in any case, the approximation ratio is at most 2.

Next, we show that there is no better deterministic truthful
mechanism.

Theorem 8. For the max cost, for any k > 0 the approxima-
tion ratio of any deterministic truthful mechanism is at least
2− 1

k .

Proof idea. In order to prove our theorem we produce a se-
quence of instances with two agents – Left agent and Right
agent – such that the approximation ratio of any determinis-
tic truthful mechanism will be monotonically increasing and
tend to 2. The high level idea is that at every iteration of the
sequence, either Left agent moves ε to the left, or Right agent
moves ε to the right; at the same time though, due to truthful-
ness the mechanism can either (a) follow the agent that moves
and lose a “large” fraction of the other agent that optimal so-
lution covers, or (b) do not follow the agent that moves and
thus lose a fraction of the agent that is covered by the opti-
mal solution. Using this idea iteratively, we prove that the
approximation ratio of any deterministic truthful mechanism
tends to 2.

We finally show that no randomized mechanism that is a
convex combination of k-ordered mechanism can achieve an
approximation ratio better than 2.
Theorem 9. For the max cost, the approximation ratio of any
mechanism that is a convex combination of k-ordered mech-
anisms is at least 2.

6 Two Natural Extensions
Our results so far concerned the case of known intervals of
equal length and settled the problem for deterministic truth-
ful mechanisms, while the best possible approximation ratio
for randomized mechanisms is still to be determined. We now
present two very natural extensions of the main model which
could be better fitted to several of the potential applications of
the problem. In particular, we first consider the setting where
the lengths of the agent intervals are private information; for
this model, it turns out that meaningful approximations and
truthfulness are incompatible. Second, we consider the case
where the lengths of the agent interval are known but unequal;
for this, we show that a finite approximation ratio is possi-
ble for the social cost, and we also identify the best possible
mechanism for the max cost.

6.1 Unknown Interval Lengths
In general, it seems natural to assume that the length of the
agent intervals, as well as their positions, could constitute re-
ported information. In this case, however, we prove the fol-
lowing impossibilities for both the social and the max cost.
Theorem 10. For the social cost, when the lengths of the
intervals are unknown, the approximation ratio of any ran-
domized truthful in expectation mechanism is Ω(1/ε), for any
ε ∈ (0, 1).
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Theorem 11. For the max cost, when the lengths of the
intervals are unknown, the approximation ratio of random-
ized truthful in expectation mechanism is Ω(1/ε), for any
ε ∈ (0, 1).

6.2 Known, Unequal Interval Lengths
Another interesting variant that directly generalizes our main
setting is that in which the interval lengths are known, but
they are not necessarily equal. In the case of electricity sup-
ply for example, it is reasonable to assume that the govern-
ment has good estimates of how much time each household
requires to complete essential chores, based on verifiable in-
formation (e.g., the size of their property or the number of
family members), not about their preferences on the different
times of the day.

For the social cost, it is not hard to see that the vanilla me-
dian mechanism, and in fact any unweighted k-th ordered
statistic, has an infinite approximation ratio for this case.
However, we can show a linear approximation ratio by con-
sidering the MAX-LENGTH mechanism, which places the in-
terval at the starting position of the agent with the maximum-
length interval among all agents. This mechanism is clearly
truthful since the lengths are known. Without loss of general-
ity, we will assume that the covering interval length is 1.

Theorem 12. Let ℓ = maxi∈N |Ii|. For the social cost, the
approximation ratio of the MAX-LENGTH mechanism is at
most n− 1 when ℓ ≤ 1, and at most n when ℓ > 1.

For the max cost, we show that MAX-LENGTH achieves
an approximation ratio of at most 2. In combination to
Theorem 8, this show that MAX-LENGTH is essentially the
best possible among all deterministic mechanisms when the
lengths of the intervals are known (equal or unequal).

Theorem 13. For the max cost, the approximation ratio of
the MAX-LENGTH mechanism is at most 2.

7 Other Open Problems and Directions
We envision that the model we have introduced in this paper
can serve as a basis for a plethora of further extensions mo-
tivated from real life scenarios. Having completely resolved
the foundational version of the model, at least with respect to
deterministic mechanisms, below we highlight what we con-
sider to be some of the most prominent avenues for future
work.

Multiple Intervals. A very meaningful extension is the one
where each agent is associated with multiple intervals (say, ki
intervals for agent i), and there are kc covering intervals to be
placed (think of the the choice of several different open days
at a university); those intervals could be of equal or unequal
(known) length. A similar setting is one in which there is
a covering budget (a total covering length ℓc) which can be
partitioned into intervals freely over the line. Similarly, the
agents themselves could also have such interval budgets ℓi;
one could even impose some restrictions on the number of
intervals that can be used by each agent, or by the covering
budget.

Different Cost Functions and Objectives. In this paper,
we have considered perhaps the simplest and most intuitive
cost function for the agents, namely the part of their intervals
that is not covered by C. One could consider more compli-
cated cost functions, e.g., functions where the cost is a con-
vex or concave function of the proportion of the agents’ inter-
val(s) that are covered, or some most specific functions like a
piecewise linear function (e.g., capturing cases where a cer-
tain amount of the interval has to be covered for the agent to
have any reduction in cost).

Utilities and Social Welfare. We could even consider (pos-
itive) utilities rather than (negative) costs. For example, in
the simplest case of known and equal length intervals that we
studied here, the utility of an agent would be the part of her
interval that is covered, and the approximations would be in
terms of the social welfare, the total utility of the agents. It is
not hard to observe that the social welfare and the social cost
of a covering interval C are related in this case; it holds that
SW(C) = n−SC(C). Given this, if we have a mechanism M
with a provable approximation ratio of ρ in terms of the so-
cial cost, the approximation ratio of the same mechanism is at
most 1

ρ+
n(ρ−1)

ρ·SW(M) in terms of the social welfare. This directly
gives us that the approximation ratio of the MEDIAN mech-
anism is at most n/2, since ρ = 2 − 2/n and SW(M) ≥ 1
(since at least one agent is completely covered). It is not hard
to verify that the same arguments as in Theorem 4 can lead
to an essentially matching lower bound for all deterministic
truthful mechanisms, thus showing that the MEDIAN mecha-
nism is best possible even in terms of utilities and the social
welfare. For more general settings, such relations between
the social cost and social welfare might not exist however,
and studying both of them is interesting.

Obnoxious and Hybrid Models. There are also applica-
tions in which the agents might want to avoid any intersection
with the covering interval. For example, when the interval
corresponds to a public transportation line, the agents might
want to not have any intersection with the interval since they
have no interest in using the public transportation and want to
avoid possible congestion or noise. On the other hand, some
agents might want to have intersection with the interval in
such a case as they want to use the public transportation, thus
leading to interesting hybrid interval covering models. This
sort of application draws parallels to similar models in the
facility location literature [Chan et al., 2021].

Higher-Dimensional Spaces. One does not have to restrict
attention only to intervals; a very similar setting can be de-
fined in which each agent is associated with one or more geo-
metric shapes on a higher dimensional space (e.g., the plane)
and there is also one or more covering geometric shapes to be
placed, aiming to minimize the cost of the agents as a function
of the intersection with their shapes. For example, think that
the covering comes from cellular antennas and every agent
wants to minimize the area that they are not covered by the
radius of the antenna.
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