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Abstract

We study committee elections from a perspective of
finding the most conflicting candidates, that is, can-
didates that imply the largest amount of conflict,
as per voter preferences. By proposing basic ax-
ioms to capture this objective, we show that none of
the prominent multiwinner voting rules meet them.
Consequently, we design committee voting rules
compliant with our desiderata, introducing conflict-
ual voting rules. A subsequent deepened analysis
sheds more light on how they operate. Our inves-
tigation identifies various aspects of conflict, for
which we come up with relevant axioms and quan-
titative measures, which may be of independent in-
terest. We support our theoretical study with exper-
iments on both real-life and synthetic data.

1 Introduction

Where a collective decision over a set of options based on a
number of opinions has to be reached, conflict is inevitable.
Reflected by differences in the opinions, it usually comes
from different perspectives of the opinions (e.g., in the case of
human opinions, a beginner investor would likely have com-
pletely different opinion on various asset classes than their
professional counterpart). However, conflict might also be
option-based and stem from diverse, sometimes even con-
tradicting, inherent qualities of the options (e.g., potentially
high-return assets typically have high risk levels).

We are interested in how to identify these conflicting op-
tions, based on the preferences. Since the options might rep-
resent multiple entities (e.g., sports players, societal issues,
or marketing strategies), answering this question has numer-
ous natural applications that include selecting competitors to
organize engaging sport events (e.g., boxing matches), con-
troversial topics to organize interesting political debates, dis-
putable issues for socially-relevant deliberations, or conflict-
ing ideas for boosting the creativity with passionate discus-
sions.

A somewhat different application of identifying conflicting
options is learning new insights about the options or the opin-
ions’ perspectives. Imagine a space agency that validates pro-
cedures (options) for landing on the Moon using a collection
of complex simulations. Each simulation assesses the quality
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of each procedure and ranks the procedures (expressing an
opinion) from the ones that are most likely to the one that are
the least likely to succeed. The existence of two significantly
conflicting procedures can then offer additional insights. It
might suggest that there is some (possibly unknown) feature
that impact only some of the simulations and is ignored by
the rest. Alternatively, the two procedures may differ in some
operational detail that is a crucial success factor for some of
the simulated scenarios. In both cases, a careful inspection
of the procedures would help to recognize the source of the
conflict and thus contribute to advancing the explainability of
the simulations or the knowledge about the procedures.

To provide a big picture of our approach, we use a par-
ticularly illustrative application, which is finding polarizing
issues. Having a collection of ordinal preferences of voters
expressing their view on the importance of the issues, we aim
at identifying two issues that are the most conflicting ones.
This goal poses a significant conceptual challenge as conflict,
which in our scenario can be associated with polarization, is
actually of dual nature. Indeed, we want to find two issues
that are (1) supported by two different, large, and, ideally,
equal-sized groups of voters and that are (2) perceived ide-
ologically as far from each other as possible in these two
groups. As it turns out, balancing between these two con-
ditions forms an important part of our modeling of conflict.
A natural motivation behind our goal in this scenario is to
reduce the polarization. This motivation combines the two
aforementioned applications: of selecting two disputable is-
sues and of fostering learning about the selected issues and
the voters. Indeed, learning about the groups of voters can
help in finding communication channels to improve dialogue
between the groups. The conflicting issues, on the other hand,
are the first ones to be addressed by specific policies. Addi-
tionally, the selected issues might indicate particular compro-
mises that must be obeyed not to divide the society more.

We view our task of finding conflicting candidates natu-
rally falling into the framework of multiwinner voting rules.
Such rules, given preferences of voters over candidates and a
desired committee size, select a winning committee — a sub-
set of the candidates — of the desired size that aims at meet-
ing certain objectives. Adapting this terminology to our sce-
nario, we also have a number of candidates and a collection
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Reverse Stability
Conflict Consistency

Conflict Monotonicity
Antagonization Consistency
Matching Domination

x| NN x| NN | MaxSum

NS N x| NN | MaxNash
x| NN x| NN | MaxPolar

N < N x| NN | MaxSwap

Balance Preference \

Table 1: Axiomatic properties of conflictual rules.

of voters! expressing preferences over the candidates. Our
objective is to select the most conflictual candidates.

In their survey, Faliszewski et al. [2017] discuss three so-
far studied objectives of multiwinner voting rules: (1) indi-
vidual excellence, focusing on selecting individually the best
candidates, (2) diversity, which aims at representing as many
voters as possible, and (3) proportional representation, which
selects a committee that proportionally represents the voters.
There seems to be a clear consensus that the two former goals
are achieved by, respectively, the k-Borda [Debord, 1992]
and the Chamberlin-Courant [Chamberlin and Courant, 1983;
Elkind er al., 2017b] rules. Understanding how various
rules guarantee achieving proportionality is an active area
of research [Monroe, 1995; Elkind et al., 2017a; Elkind et
al., 2017b; Skowron et al., 2017; Faliszewski et al., 2019;
Peters et al., 2021].

Focusing on diverse candidates might appear as being able
to fulfil our goal of seeking conflictual candidates. Intuitively,
two most diverse candidates should be exactly those that di-
vide the voters the most. However, as we show in Section 3.2,
a fairly small example shows that this is not the case (in fact,
the example shows that none of the standard three objectives
meets our needs). We also verify this considering scenarios
beyond the “worst-case” ones in our simulations.

To the best of our knowledge, no rule suitable for find-
ing such conflicting candidates has been introduced so far.
Nonetheless, this line of research closely aligns with the
concept of polarization? in elections extensively studied
from axiomatic, computational, and experimental perspec-
tives [Alcalde-Unzu and Vorsatz, 2013; Hashemi and Endriss,
2014; Alcalde-Unzu and Vorsatz, 2016; Can et al., 2017,
Colley et al., 2023; Faliszewski et al., 2023]. Yet, the fo-
cus has so far been on measuring a value of polarization of all
voters or of a single candidate, which is a different problem
than selecting a pair (or a subset) of conflicting candidates.

Our Contributions. Our primary contribution is concep-
tual, offering a novel perspective on the voting theory inspired
by finding conflicting candidates. To this end, we establish

"For convenience and increased readability, we decided to keep
term “voters,” even though ,as demonstrated in the introduction, our
model and its applications are not limited to voting scenarios.

2As well as with agreement and diversity of votes, as argued
by Faliszewski et al. [2023].

new foundational axioms and show that they differ from the
traditional ones. Defining more demanding axioms, we ar-
rive at an impossibility result that sets our expectations (Sec-
tion 3). This result also guides us in developing new multi-
winner voting rules, termed conflictual voting rules, in Sec-
tion 4. They are specifically designed to identify the most
conflicting pair(s) of candidates as required by the introduced
axioms (Table 1 highlights our axiomatic analysis). To bet-
ter understand the intricacies of the introduced rules, in Sec-
tion 5, we provide multiple metrics capturing different as-
pects of conflict, which can be of independent interest.

Finally, in Section 6, we present the experimental evalua-
tion, using both synthetic and real-life elections, empirically
showing the behavior of the conflictual rules.? Thus, we not
only validate our theoretical insights but also provide insights
into their real-world applications and implications.

Due to space constraint, missing proofs, details, and ad-
ditional experiment results are deferred to the full version of
this work [Delemazure et al., 2024].

2 Preliminaries

For a set X, let # X denote the cardinality of that set.
Let E = (C,V) be an election with aset C = {c1,...,¢m}
of candidates and a set V. = {wy,...,v,} of voters. A
profile P = (>1,...,>,) is a collection of rankings (total
linear orders) over C' such that each voter v; is associated
with >;; we denote the set of all possible profiles by P. By

P = (<;1, ce tn), we denote profile P with all ballots be-
ing reversed. In particular, for all v; € V and all ¢,¢’ € C,
¢ »; ¢ if and only if ¢/ £ .c. A committee voting rule R is a
function that takes as input a profile P € P and a committee
size k > 2 and outputs a non-empty set R(P, k) of commit-
tees, such that for each W € R(P, k) we have # W = k
and W C (. In this document, we focus on the case k = 2,
and write R(P) for simplicity.

For brevity, we denote by v(a) the position of candidate a
in vote v. More formally, we have v;(a) = #{z | = =,
a} + 1. Moreover, let v(a, b) denote the distance between a
and b in vote v, that is, v(a, b) = v(b) —v(a); for conciseness
instead of v(a,b), we write v(ab). For instance, in the vote
v=a>0b>c>d>e wehavev(b) =2, v(e) =5 and
v(be) = v(b,e) = 5 — 2 = 3. Analogously v(eb) = —3.

Furthermore, for all pairs {a, b} of candidates from C, we
denote V2% = {v; € V | a ; b} the set of voters preferring
a to b in profile P. Finally, we say that a pair of candidates
{a,b} is conflicting if their ordering is not unanimous, i.e.,
#Vab > 0 and # V% > 0. In other words, a pair of
candidates is conflicting if neither of them Pareto-dominates
the other one.

3 Properties of Conflictual Rules

Before defining our rules, we proceed with fundamental prop-
erties that we require from them. As we will show, already
these somewhat weak, basic axioms prove that the objectives

3The experiments’ source code is freely available at https:/
github.com/Project-PRAGMA/conflictual-rules--1IJCAI-24.
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of conflictual rules are far from those of the rules commonly
studied in the computational social choice literature.

3.1 Fundamental Axioms

We start by defining two fundamental axioms expected from
conflictual rules. The first one assures that unless we have an
identity election, only a conflicting pair could win.

Definition 1 (Conflict Consistency). Rule R is conflict con-
sistent if it does not output non-conflicting pair if there exists
a conflicting one.

The second axiom comes from the observation that in con-
flicting voting rule, we want “love” and “hate” to have sym-
metrical purposes. Thus, the most polarizing pair in a profile
should be as much polarizing if we reverse all voters’ prefer-
ences.

Definition 2 (Reverse Stability). Rule R is reverse stable if
for each profile P it holds that R(P) = R(?)

3.2 Relation to Standard Axioms

The postulates of our axioms stand in stark contrast to all es-
tablished objectives of multiwinner voting rules, that is, to
individual excellence, proportionality, and diversity. In par-
ticular, conflictual rules are incompatible with the unanimity
axiom. This is a very weak axiom guaranteeing effective-
ness, saying that if a candidate is ranked first by every voter,
it should be selected in the committee. This is the main differ-
ence with the classical paradigm of social choice: conflictual
rules specifically avoid consensual candidates.

Definition 3 (Unanimity). Rule R is unanimous if a candi-
date that appears on top of every ranking is always in the
winning committee.

Proposition 1. There is no rule R that satisfies both unanim-
ity and conflict-consistency.

Proof. Consider the profile {a > b > ¢,a > ¢ > b}. Una-
nimity implies a belongs to the committee, but the only con-
flicting pair in this profile is {b, c}. O

The incompatibility stated by Proposition 1 has a strong
implication. Namely, conflictual rules are different from the
very prominent family of committee scoring rules. The ob-
servation follows from the fact that the latter rules must be
unanimous [Skowron et al., 2019].

3.3 Further Properties of Conflictual Rules

In this section, we consider more axioms, that sound desirable
but are unfortunately not always possible to satisfy.

The first axiom we want to introduce is a kind of Pareto-
domination axiom, since it is based on the domination of a
pair of candidates by another one. However, the pair needs
not to be dominated in every ranking, as in classic Pareto
properties. Given profile P and two conflicting pairs of can-
didates {a,b} and {x,y} we say that {a,b} is matching-
dominating {x, y} if there exists a bijective function f : V —
V that (1) maps all voters from V%~ to V=¥ and from V¢
to V¥~ (2) for all voters v, |v(ab)| > |(f(v))(xy)| and (3)
there exists a voter v such that |v(ab)| > |(f(v))(zy)|.

Example 1. Consider profile {vi: a > 2 > y = b,va: a >
y == bug:b=x > a>yv:b=y>=arz}
and pairs {a,b} and {x,y} of candidates, which gives sets
Vart = Ly v} and VY = {vy,v3}. A matching
f={v1 = v, va = v3, V3 = Vg, V4 — V4} meets con-
dition (1). Recalling that, e.g., (f(v2))(zy)) = vs(zy) = 2,
it is easy to verify that |v;(ab)| > |(f(v;))(xy)| for all i €
{1,2,3,4} (condition (2)). Finally, since |vi(ab)] = 3 >
[(f(v1))(zy)| = |vi(zy)| = 1, f meets condition (3). Hence,
the pair {a, b} dominates pair {x,y}.

Definition 4 (Matching Domination). Rule R satisfies
matching domination if matching-dominated pairs are never
selected.

The next axiom is inspired by the monotonicity notion
from the literature of classical social choice. The idea is the
following: If one pair is the most conflicting in a given pro-
file, adding more conflict between the two candidates should
not make another pair even more conflicting, and be selected
instead of the original one.

Definition 5 (Conflict Monotonicity). Rule R is conflict
monotonic if for each profile P and each selected pair
{a,b} € R(P), it holds that if we increase the distance be-
tween a and b by swapping one of them with its adjacent can-
didate in one of the votes, {a, b} is still selected.

Unfortunately, we can show that this property is incompat-
ible with conflict consistency and matching domination.

Theorem 1. No rule satisfies matching-domination, conflict
consistency, and conflict monotonicity.

Proof. Let f be arule satisfying these 3 axioms, and consider
the following profile: {v1 : a = b = ¢ > d,v3 : b = a >
d = c}. By conflict consistency, the only pairs that can be
selected are {a, b} and {c, d}. Assume that {a, b} is selected.
The proof if {c, d} is selected is almost the same. Now, con-
sider the profile {vy : @ = b > ¢ > d,va : b= d > ¢ > a},
in which we increased the conflict between a and b in the
second vote by swapping a with its neighbors. By conflict
monotonicity, {a,b} should still be selected. Now, the val-
ues of v(ab) are (1, —3) and the values of v(ad) are (—3, 2).
With the matching f = {v; — v2,v2 — v}, we obtain that
{a, d} is dominating {a, b}, thus {a, b} cannot be selected by
matching-domination. This is a contradiction. O

This example highlights why conflict monotonicity is quite
hard to achieve, but an extreme (and weaker) version of it can
actually be satisfied by conflictual rules. The idea is that in-
stead of increasing the conflict in only one ranking, we in-
crease it in every ranking at once, and we increase it as much
as we can in every ranking.

By antagonization of profile P with respect to pair {a, b},
denoted by Pt we refer to a profile P in which, in all votes
from V%% we shift a to the first position and b to the last
position, and in all votes from Vb=a we shift b to the first
position and a to the last position. However, the relative order
of all the other candidates remains the same.

Definition 6 (Antagonization Consistency). Rule R is an-
tagonization consistent if, given a profile P and a selected
pair {a,b} € R(P), {a,b} is also selected in P,
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4 Conflictual Rules

After we made explicit what we expect from conflictual rules
by the means of axioms, we can start searching for such rules.

In order to define the rules, we should first define what
could be a conflict, in particular between two voters. In-
tuitively, there is a conflict induced by a pair of candidates
{a, b} between two voters if they disagree on the ordering be-
tween a and b. Moreover, the more distant a and b are in the
rankings of the voters, the greater the conflict. Starting with
this, we define the sum-conflict (conf +) and the Nash-conflict
(conf™) as follows:

Definition 7 (Pairwise conflict). Foro € {4+, x}, let the con-

flict induced by a pair of candidates a and b between two
votes v and v’ be:

conf® ,(a,b) = 0 ifv(ab) - v'(ab) > 0
£, (a,b) {|U(ab)| )

For instance, the Nash (resp. sum) pairwise conflict in-
duced by a and b between votes a > b > cand b > ¢ > a is
conf  (a,b) = 1x2 = 2 (resp. conf; ,(a,b) = 142 = 3).
By extension, for two candidates a and b, the conflict is de-
fined as the sum of the pairwise conflict over all possible pairs
of voters: conf®(a,b) =3, oy conf, . (a,b).

Then, we can define the rules that select the pairs of
candidates that maximize this value. Therefore, we define
the MaxSumConflict rule based on conf’, MaxSum(P) =

argmax,, e conf™ (a, b), which is equivalent to

argmax # Ve Z v(ab) + # Vb Z v(ba).

a,beC veVard veVb-a

define the MaxNashConflict rule,
argmax, ye o conf ™ (a,b), which is

Z v(ba).

veEVbra

otherwise

Similarly, we
MaxNash(P) =
equivalent to

argmax Z v(ab) -

a,beC

Remark 1. Looking at the second rule, it is tempting to
define an alternative rule in which we maximize the sum

Y vevars V(ab) 4+ D2 cyesa v(ba) instead of the product.
However, such a rule does not satisfy conflict-consistency,
and could elect a non-conflicting pair*

The following example demonstrates the defined rules.
Example 2. Let profile P over 6 candidates be:

a-x>=c>=d=y>b,
c-y=br-ar-x>d.

The only conflicting pairs of candidates are {a, b} and {z,y}.
We have that conf™ (a,b) = 6 = conf™ (z,y), conf* (a,b) =
5, and conf™ (z,y) = 3x3 = 9. Hence, while in the MaxSum
rule both pairs tie, MaxNash clearly selects {x,y}.

“Selecting only from conflicting pairs makes this rule conflict-
consistent, yet somehow non-monotonic. Indeed, consider a non-
conflicting pair A that scores higher than a conflicting pair B. After
adding a voter equally increasing the pairs’ scores and making A
conflicting, the rule selects A, which is intuitively “less conflicting.”
So, we do not consider rules naturally failing conflict-consistency.

Proposition 2. MaxSum and MaxNash satisfy reverse sta-
bility, conflict consistency, antagonization consistency, and
matching-domination.

Another approach is to select pairs of candidates {a, b} that
maximize the minimum number nonconf(a, b) of swaps of
adjacent candidates to make {a, b} a non-conflicting pair in
the profile P. We call the respective rule MaxSwap and re-
mark that formally MaxSwap selects pairs {a, b} such that:

Z v(ab), Z v(ba)

veVarb veVbra

argmax min
a,beC

For demonstration recall Example 2, where MaxSwap would
select {x,y} as we need 3 swaps to make this pair non-
conflicting, compared to one swap required for {a, b}.

Proposition 3. MaxSwap rule satisfies reverse-stability, con-
flict consistency, and antagonization consistency. MaxSwap
fails matching-domination.

S Interpretation

So far, we have introduced several conflictual rules and pro-
vided their axiomatic analysis. We now look further, beyond
the somehow worst-case study that axioms usually offer. We
want to understand what are the practical differences between
our rules. To this end, we introduce various notions that help
us interpret the rules’ behavior.

5.1 Partitioning and Discrepancy

Intuitively, a pair of candidates is perfectly polarizing if there
are two groups of equal sizes that have conflicting prefer-
ences on this pair, and all voters have very strong opinions
of the candidates. We adapt these two features to describe
our committees in the notions of social partitioning ratio
and candidates’ discrepancy. On the one hand, candidates
a and b provide maximal partitioning ratio if exactly half of
the voters prefer a to b. Formally, we define partitioning ra-
tio a(a, b) € [0, 1] for candidates a and b as

ala,b) = 2 min(# Vel #vi-a),
n

On the other hand, candidates a and b have high discrepancy
if every voter strongly prefers one candidate to the other. In
particular, if each voter ranks either a or b first, and the other
candidate last, then the pair {a, b} has maximal discrepancy.
Formally, we define the discrepancy 3(a, b) € [0, 1] as

1
B(aab) - n - (m _ 1) Z |U(ab)|
veV

Given a profile P, by atmax (P) and S (P) we denote the
max,  o(a, b) and max,; 8(a,b), respectively. First note
that Smax € (1/3,1] since there is always a pair of candidates
{a,b} such that 8(a,b) > 1/3. We defer complete calcula-
tions and the « and 3 values of characteristic profiles studied
by Faliszewski et al. [2023] (i.e., identity, uniformity, and an-
tagonism) to the full version [Delemazure et al., 2024].

When selecting conflicting pairs, rules must do a trade-off
between these two notions. To build our intuition, we look at
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discrepancy and partitioning ratio in a specific case. With the
new insights we obtain, we develop a family of voting rules
based on « and 3. Let us fix some candidates a and b and
consider the case in which the value |v(ab)] is the same for
all voters v € V; hence, we have 3(a, b) = v(ab)|/(m—1) (for
ease of presentation, we omit a and b and use « and 3 in this
paragraph). Then, using some constant C; independent of a
and b, we can express the sum-conflict between a and b as
follows:

conf'(a,b) = # Ve Z v(ab) + # Vb Z v(ba)

veEVarb veEVb-a

_ 2#vb>—a#va>—bﬁ

—2 (n%) (n (1 - %)) 8 =Cha(2 — a)B.

Analogously, conf*(a,b) = Cea(2 — «)B? and
nonconf(a,b) = Csaf. The expressions clearly illus-
trate the tension between discrepancy and partitioning ratio:
while some rules give more weight to pairs that divide the
society more equally, other prefer those that have higher
discrepancy.

The observed trade-off forms in fact a flexible framework
for a family of rules covering the whole spectrum of possi-
ble behavior. Let R be some rule endowed with a scoring
function S(-,) : [0,1]2 — Rx that selects pairs of candi-
dates {a, b} which maximize value S(a(a,b), 5(a,b)). Each
such rule R naturally satisfies reverse-stability. Moreover, the
rule satisfies conflict consistency if and only if S(«,5) = 0
when o = 0 and S(«, 3) > 0 otherwise. If S is strictly in-
creasing with both « and 8 when « > 0, then the rule based
on S also satisfies antagonism-consistency and matching-
domination. In particular, these conditions are met by the
family of scoring functions S(«, 3) = afP for p > 0, that we
named p-MaxPolarization rules (p-MaxPolar in short). Note
that, the higher the value of p, the more weight is put on dis-
crepancy in comparison to partitioning ratio. The natural de-
pendence on discrepancy and partitioning ratio motivates us
to include MaxPolar rules into our further analysis.

We visualize how the outcome of our rules depends on dis-
crepancy and partitioning ratio using the following example.
Consider a preference profile over four candidates in which
a pair {a1, b1} has maximal discrepancy and a pair {as, b}
has maximal partitioning ratio; hence, we have $(a1,b1) = 1
and a(az,by) = 1. Understanding the interplay between
discrepancy and partition ratio boils down to the question:
Which pair is preferred in our scenario for different values of
the non-fixed values (a2, b2) and a(aq,b1)? For clarity, we
once again consider our simplified case in which §(az, by) =
[v(az;b2)|/m—1 for all voters v. Figure 1 depicts how the pre-
ferred pair depends on the non-fixed values for various rules.
For example, for 2-MaxPolar, the pair {ay,b;} is preferred
if a(as,b2)B%(az,bs) < aflay,by)B?(ai,br), which boils
down to a(ag,b2) < afai,by) for our simplified scenario.
Hence, the figure contains the plot of a(a1,b1) = 5%(az, b2),
where pair {a1, by} wins for each point over the curve. Sim-
ilarly, for MaxNash, where S(a, 3) = (2 — )f3? in our
simplified scenario, we see the plot of «(2 — «) = 32 (omit-
ting the arguments for o and f3 for readability).
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Figure 1: Area where {a2, b2} is preferred to {a1, b1} for different
rules. We assume «(az, b2) = 1 and B(a1,b1) = 1.

5.2 Polarization Balance

Partitioning ratio and discrepancy enable us to interpret the
rules we introduced in Section 4 in the special case described
above. By this, we learn whether these rules give more impor-
tance to voters having strong opinions or to be evenly split.
Yet, there is another phenomenon distinguishing these rules
from the MaxPolar rules, and that is the discrepancy balance.
To see this, recall profile P from Example 2. Here, pairs
{a, b} and {x, y} have the same partitioning ratio « = 1 and
discrepancy value 3 = 3/5. However, the discrepancy be-
tween a and b is not balanced between the two voters: a’s
supporter is very extreme in its preferences, while b’s sup-
porter is almost indifferent between the two. In comparison,
the discrepancy between z and y is perfectly balanced. Max-
Polar rules are agnostic to this phenomenon, while rules from
Section 4 take it into account and would select pair {z, y}.

This leads us to introducing the third metric, the discrep-

ancy balance ~. By u(a,b) = %

average discrepancy between a and b among supporters of
a. For the discrepancy to be balanced, we want p(a, b) and
(b, a) to be as similar as possible. Thus, we define it as fol-
lows:

we denote the

~(a,b) = min (#(@:9)/1(b,a), #?:8)/u(a,b))

Measures «, 3 and -y are not independent from each other.
For instance, 3(a,b) = 1 and a(a, b) > 0 implies y(a,b) = 1
(but y(a,b) = 1 does not imply anything for 3(a,b)). In-
tuitively, the value of v has more influence on rules like
MaxSwap and MaxNash than on MaxSum, as the former are
more egalitarian than the latter. This intuition is supported by
the experiments presented in Section 6.

Note that o measures if the electorate is divided evenly
between two candidates and « measures if the discrepancy
is balanced among supporters of each group. By combining
these two ideas, we obtain the last measure, called group dis-
crepancy imbalance ¢, defined as:

|2 vev v(ad)|
ZvEV "U((Lb)|
It is O when the total discrepancies of the groups are equal

and 1 when they are totally imbalanced (in that case o = 0).
As expected, contrary to y, metric ¢ is sensitive to the size

¢(a7 b) =
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of the groups. Particularly, if all rank differences are equal
(8 = Iv(ab)|/m—1 for all voters v), theny = 1,but p = 1 — .

With group discrepancy imbalance, we can rewrite two of
our rules in the general case: MaxNash and MaxSwap. For
MaxNash, we have that the score of the pair is proportional to
B%(1 — ¢?) and for MaxSwap to 3(1 — ¢), so they both care
about this imbalance between the two groups. The other rules
cannot be defined using ¢ in general, but in the particular case
in which all rank differences are the same, we can simply
replace o by 1 — ¢, which gives 3(1 — ¢?) for MaxSum.

Because of this, we introduce a new property that enable
us to distinguish some rules.

Definition 8 (Balance Preference). A rule satisfies balance
preference if given two pairs {a,b} and {x,y}, if there ex-
ists a perfect matching from voters to voters ¢ : V. — V
such that |v(ab)| = |p(v)(xy)| (i.e., their vectors of abso-
lute rank differences are the same), and if | ), ., v(ab)| <
| > ey v(xy)| (i.e., discrepancy between supporters of a and
of b is more balanced), then {x,y} cannot be selected.

To better understand this axiom, consider the profile P =
{2 x x>axb-y,1 X a>-y=x>b,1 X b=y>=x>~a}. In P, vot-
ers are evenly divided between x and y, but x supporters are
extreme while y supporters are quite indifferent. On the other
hand, a is preferred to b by 3 voters, but they each have at least
one extreme supporter. In this case, {z,y} is more balanced
in terms of group size, but {a, b} is more balanced in terms
of average polarization. More precisely, ¢(z,y) = 572 = 1

o ) 6+2 — 2°
and ¢(a,b) = 375 = 7.

Moreover, the pairs satisfy the
condition of the balance preference axiom, so if a rule satis-
fies it, {x, y} should not be selected. This is why MaxSwap
and MaxNash select {a, b}. However, 3(a,b) = (z,y) and
ala,b) < a(z,y), so all MaxPolar rules select {x,y}, and
we can also show that MaxSum selects {x,y}. More gener-
ally, we can state the following proposition.

Proposition 4. MaxNash and MaxSwap satisfy balance pref-
erence and MaxSum and MaxPolar rules fail it.

6 Experiments

The goals of our experiments are to compare conflictual rules
to traditional ones, and to compare the introduced rules with
each other. The full version of our paper [Delemazure et al.,
2024] contains a detailed description of the used data as well
as further experimental results for the omitted synthetic data,
rules, and polarization metrices we introduced.

6.1 Comparison with Standard Committee Rules

First, we compare MaxNash and two well-known committee
rules Chamberlin-Courant and Borda, which respectively aim
at achieving diversity and individual excellence. We chose
MaxNash as a representative of all conflictual rules because
all of them gave qualitatively same results.

Under Borda rule, each voter assigns m — 1 points to her
favorite candidate, m — 2 points to the second one, m — 3
to the third one, and so on. Finally, we select the candidates
with the highest scores. Under the Chamberlin-Courant rule
(CC) and k = 2, each voter assigns m — min(v(z),v(y))
points to the pair of candidates {x, y}, and the pair with the
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Figure 2: Distribution of the positions of the winning candidates for
different rules and distributions of positions. Each pair of colored
points correspond to the winners of a single election.

highest score is selected. Thus, only the preferred candidate
in the pair is taken into account.

To get the intuition about differences between these
rules and conflictual ones, we use the 2D-Euclidean frame-
work [Elkind et al., 2017al. Here, voters and candidates
are represented by points in the 2D-Euclidean space, and the
preferences of voters are based on their distances to candi-
dates: a voter v prefers a to b if v is closer to a than to b.

We sampled the positions on [0, 1] of all voters and can-
didates using: (1) the uniform distribution and (2) the normal
distribution centered in (0.5,0.5). Figure 2 presents the re-
sults for 10,000 sampled instances. For each instance, we
marked on the plane the two selected candidates, highlight-
ing the pairs for three random instances for reference.

Supporting the axiomatic analysis, the results show that the
conflictual rules behave significantly different from the clas-
sical ones. Indeed, they select candidates that are far away
from the center of the plane, while all other rules select those
that are around the center. We also computed partitioning ra-
tio and discrepancy for all pairs of candidates (see the long
version). Their values confirm that, on average, the pairs
selected by Borda and CC have lower values than those se-
lected by the conflictual rules. As expected, this tendency is
particularly strong for discrepancy — in our scenario, if two
candidates are close to each other on the plane, then they are
relatively close to each other in every ranking.

6.2 Comparisons of Conflictual Rules

We include next experimental results solely for the real-life
datasets, deferring the discussion of the results for synthetic
models to the paper’s full version [Delemazure et al., 2024].

Our goal now is to compare the conflictual rules with
each other, particularly focusing on MaxSwap, MaxNash,
MaxSum, and 2-MaxPolar. We study 4 datasets: (i) pref-
erences over 11 candidates gathered for experiments during
French presidential elections in 2017 and 2022 [Bouveret et
al., 2018; Delemazure and Bouveret, 2022], which we ex-
pect to be conflictual, and that we discuss in more extent in
Section 6.3, (ii) preferences over 10 sushi types [Kamishima,
2003] and (iii) juries’ ranking of contestant performances in
figure skating competitions, from Preflib [Mattei and Walsh,
2013], which we expect to be less conflictual.

In this set of experiments, we sampled rankings from the
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Figure 3: Metrics values of the selected pairs of candidates for real
data. Each pair {a, b} is a ball at point at («(a,b), 8(a, b)), with
radius 7y (a, b), and colored redder with increasing ¢(a, b). Each plot
represents 1000 profiles of 100 voters and 10 candidates.

dataset over a subset of candidates in the case of real data or
from a probability model in the case of synthetic data. This
way, we always generated the same number n = 100 of vot-
ers and m = 10 of candidates. For each generated profile,
we simluated our rules. Then, we compared the values of the
select pairs’ polarization metrics (partitioning ratio, discrep-
ancy, discrepancy balance and group discrepancy imbalance).
We repeated this experiment for 1000 random profiles. Fig-
ure 3 shows each selected pair {a, b} as a dot with coordinate
(a(a,b), B(a,b)); its size is proportional to y(a,b) and the
redder the dot the higher the value of ¢(a,b). The first row
depicts uniformly sampled pairs of candidates, providing an
estimate of the actual distribution of the pairs in the datasets.

The first observation, based on the first row of the figure
in which we plot points associated to random pairs of can-
didates, is that the three datasets are very different in terms
of conflict. The most conflictual seems to be the political
one, with most pairs having both a high partitioning ratio «
and discrepancy (3. The sushi dataset is already less conflict-
ual: Some pairs have higher «, but their 3 is quite low, and
conversely. This is even worse for the ice skating dataset, as
rankings rely a lot on the quality of participants’ performance.

The experiments confirm our theoretical analysis of the for-

| 2017 | 2022
MaxSwap | Far-left io-vi Far-right | Far-left i«-oi Far-right
MaxNash |Socialist §¢§ Far-right | Left ¢~ Far-right
MaxSum |Socialist 3 Far-right |Far-left =} Far-right
2-MaxPolar | Far-left ¢4 Farright |Far-left - Far-right

Borda Left ¢4  Liberal Left ¢4 Green
CC Left -3 Conservative| Green -3 Far-right

Table 2: Selected pairs for different rules.

mula based on « and 3, that we obtained assuming a sim-
plified special case. In particular, we clearly see that Max-
Nash puts the most emphasis on 3, while MaxSwap prefers
an equal division between a and b supporters (i.e., maximiz-
ing a). Yet, group discrepancy imbalance also influences the
results for MaxSwap. On the contrary, 2-MaxPolar ignores
the discrepancy balance, which explains why it might return
pairs of candidates with smaller and bluer dots.

6.3 Results on a Conflictual Election

We now consider the political data, featuring the most con-
flictual preferences, that was gathered by the Voter Autrement
initiative during the 2017 and 2022 presidential elections.’

Table 2 summarizes the candidates selected by each rule
and compares them to classic voting rules outcomes. We
chose to put the political labelization of candidates instead
of their names. While the non-conflictual rules return two
popular candidates (e.g., the main candidates of each the left
and the right side of the spectrum), conflictual rules tend to
select at least one extreme candidate, if not two. Rules that
put more emphasis on discrepancy like MaxNash would se-
lect more well-known candidates, sacrificing equal dividing
of the society, as voters have strong preferences on them. On
the contrary, MaxSwap might select fewer well-known candi-
dates, but who divide the society more evenly. MaxSum and
2-MaxPolar lie in between these two extremes.

7 Conclusions and Future Work

We proposed and analyzed rules that aim at selecting the most
conflicting candidates, and have shown that these rules fun-
damentally differ from the standard ones. Together with the
proposed metrics, our rules allow us to better understand the
structures causing conflict in the electorate.

A natural (and fairly non-trivial) follow up direction is to
analyze extending these rules and axioms to selecting more
than just two candidates. Since our rules provide a score
for each pair of candidates, one polynomial-time computable
possibility would be to simply select a committee maximizing
the smallest score among all pairs of candidates. Nonetheless,
approaches evaluating the whole committee at the same time,
rather than pairs of candidates might turn out to be superior.

5The data comes from an online poll that asked voters to try alter-
native voting methods using rankings. We removed partial rankings
(voters could sometimes rank only their top k alternatives) and re-
weighted the voters (based on their actual vote in the election) get-
ting a distribution closer to the actually observed one. Effectively,
we obtained n = 5755 (resp. 412) voters and m = 11 (resp. 12)
candidates for the 2017 (resp. 2022) dataset.
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