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Abstract
To understand and summarize approval preferences
and other binary evaluation data, it is useful to order
the items on an axis which explains the data. In a
political election using approval voting, this could
be an ideological left-right axis such that each voter
approves adjacent candidates, an analogue of single-
peakedness. In a perfect axis, every approval set
would be an interval, which is usually not possible,
and so we need to choose an axis that gets closest to
this ideal. The literature has developed algorithms
for optimizing several objective functions (e.g., min-
imize the number of added approvals needed to get
a perfect axis), but provides little help with choosing
among different objectives. In this paper, we take
a social choice approach and compare 5 different
axis selection rules axiomatically, by studying the
properties they satisfy. We establish some impossi-
bility theorems, and characterize (within the class
of scoring rules) the rule that chooses the axes that
maximize the number of votes that form intervals,
using the axioms of ballot monotonicity and resis-
tance to cloning. Finally, we study the behavior of
the rules on data from French election surveys, on
the votes of justices of the US Supreme Court, and
on synthetic data.

1 Introduction
This paper is about analyzing and understanding binary eval-
uation data. Such data could come from many sources, such
as user reviews featuring a thumbs up / thumbs down eval-
uation, or datasets of items with binary information about
their features. Another source of such data is approval voting,
where each evaluator is a voter who approves the candidates
that have been assigned an evaluation of 1. Since we will
use techniques from computational social choice in our anal-
ysis, for simplicity we will generally use voting terminology
to refer to our setting. Our aim is to obtain an ordering of
the candidates (an axis) which is supposed to summarize the
data. Specifically, we interpret an axis to “perfectly depict”
the data if every voter approves an interval of the axis. This
is an approval version of single-peaked preferences. For most
datasets, such axes will not exist, so we study rules that, given

an approval profile, find the axes that best approximate the
interval structure and that thereby provide a good (ordinal)
one-dimensional embedding of the profile. Such rules have
many applications for understanding and visualizing data, as
well as direct use-cases where the axis itself plays a key role:
• Ordering political candidates and parties. In politics, if

voters are asked to approve candidates, an axis could cor-
respond to an ideological ordering of the candidates from
left-wing to right-wing. For example, in France, election
polls are typically presented with candidates ordered by ide-
ology, but the major pollsters use many different axes (see
Section 6.2), which they apparently construct ad hoc. Our
rules will find an axis in a principled way.

• Ordering members of parliament. Once elected, we can
interpret each bill as a “voter” who approves those mem-
bers who supported it. An axis rule would then provide an
ordering of members of parliament by ideology.

• Archaeological seriation. A well-established approach in ar-
chaeology for ordering artefacts by their age is to let features
that were temporarily “in fashion” (e.g., drawing styles) ap-
prove artefacts [Petrie, 1899; Baxter, 2003]. In the true
ordering by age, each feature is likely to induce an interval.

• Scheduling. A conference organizer could ask attendees
about which talks they wish to see and then use our rules
to arrange the talks so attendees can join for consecutive
talks. A different way of applying our rules is for key terms
to “approve” the papers that mention the term, leading to a
thematically coherent ordering of the talks.

Algorithmically, the task of finding an axis optimizing a par-
ticular objective function is well studied. To check whether
a perfect axis exists (i.e., one where every voter approves an
interval), one needs to check whether the 0/1 approval matrix
has the consecutive ones property (C1P), which can be done
in linear time [Booth and Lueker, 1976]. However, in all the
applications discussed above, the 0/1 matrices are likely to
only approximately satisfy C1P. The problem of finding an
axis that makes as many votes as possible into an interval is
NP-complete and already appears in the book of [Garey and
Johnson 1979, Problem SR14] together with several similar
problems about recognizing almost-C1P matrices like mini-
mizing the number of approvals to add to satisfy C1P (Problem
SR16). However, this complexity theoretic work does not tell
us which of these objective functions “work best”.
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We provide a framework for answering the question of
which is the “best” objective function via the axiomatic method
used in social choice. We interpret objective functions as rules
that take an approval profile as input and decide on an axis. We
compare these rules by identifying properties that they satisfy
or fail. When some properties seem particularly desirable, this
will help with selecting a good objective function.

The protagonists of our paper are the following five rules,
with more precise definitions provided later:

• Voter Deletion. Minimize the number of ballots that are not
intervals of the axis.

• Minimum Flips. Minimize the number of approvals to add
or remove from ballots so as to make them intervals of the
axis.

• Ballot Completion. Minimize the number of approvals to
add to ballots so as to make them intervals of the axis.

• Minimum Swaps. Minimize the average number of swaps
within the axis that are needed to turn votes into intervals of
the axis.

• Forbidden Triples. Minimize the total size of holes in a vote,
weighted by how many approved candidates they separate.

On a high level, we find that Voter Deletion and Ballot
Completion satisfy a desirable monotonicity property (saying
that the chosen axis should not change if some voters change
their ballots to better align with that axis), while the last two
rules use more information contained in the profile. We do not
identify any positive features of Minimum Flips.

Besides introducing the rules and the axioms, we also prove
an impossibility result saying that no scoring rule (which are
rules that optimize a voter-additive objective function) can
simultaneously satisfy two versions of the “clones” princi-
ple that a rule should behave reasonably in the presence of
identical candidates: clone proximity which says that such
candidates must be placed next to each other on the axis and
clone resistance which says that deleting some of the identical
candidates should not affect the relative placement of other
candidates. We also establish a characterization result that
the Voter Deletion rule is the unique scoring rule that satisfies
clone resistance as well as ballot monotonicity.

We conclude the paper by applying our rules to different
datasets: French election surveys (ordering candidates from
left to right), votes of the justices of the US Supreme Court
(ordering justices from conservative to progressive), and syn-
thetic datasets. The simulations show how our rules differ,
which perform best, and how they compare to rules that are
based on taking rankings rather than approvals as input.

In this short version, we have omitted all proofs. These can
be found in the full version [Delemazure et al., 2024].

2 Related Work
The work of Escoffier et al. [2021], extended in the thesis
of [Tydrichová 2023, Sec. 4.4], is closest to ours, as it com-
pares different methods for finding axes that make a profile
of rankings of the candidates nearly single-peaked. Single-
peaked ranking preferences [Black, 1948] are frequently stud-
ied in social choice because they can avoid impossibility
theorems and computational hardness [Elkind et al., 2017;

Elkind et al., 2022]. Escoffier et al. [2021] focus on com-
putational complexity, but also consider axiomatic properties
satisfied by different objective functions. However, they do
not give axiomatic characterization or impossibility results,
and our experiments suggest that the approval approach may
lead to better axes. Nearly single-peaked preferences are
well-studied algorithmically, both in terms of their recognition
[Bredereck et al., 2016; Erdélyi et al., 2017; Elkind and Lack-
ner, 2014] and their impact on the winner determination prob-
lem of computationally hard voting rules [Misra et al., 2017;
Chen et al., 2023].

For approval ballots, structured preferences are studied by
Elkind and Lackner [2015], who say that a profile satisfies
Candidate Interval (CI) if there is a perfect axis for it [see also
Faliszewski et al.; Terzopoulou et al. 2011; 2021]. Dietrich
and List [2010] discuss a similar concept in judgement aggre-
gation. The study of the algorithmic problem of recognizing
profiles that are nearly C1P goes back to Booth [1975] and has
received thorough attention since [see, e.g., Hajiaghayi and
Ganjali 2002, Tan and Zhang 2007, Chauve et al. 2009,Dom
et al. 2010,Narayanaswamy and Subashini 2015].

3 Preliminaries
Let C be a set of m candidates, and V a set of n voters. An
approval ballot is a non-empty subset of candidates A ⊆ C.
An approval profile P is a collection of n approval ballots
P = (Ai)i∈V . We denote by P the set of all approval profiles.
For two profiles P1 and P2, we write P1 + P2 for the profile
obtained by combining the ballots in the two profiles.

An axis ◁ is a strict linear order of the candidates, so that
a ◁ b means that candidate a is strictly on the left of b on the
axis. We write a P b if a ◁ b or a = b. For brevity, we will
sometimes omit the ◁ and write abc for the axis a ◁ b ◁ c. Let
A be the set of all axes over C. The direction of an axis is
irrelevant, so we will informally treat the axes abc and cba as
being the same axis.

An approval ballot Ai is an interval of an axis ◁ if for all
pairs of candidates a, b ∈ Ai and every c such that a◁c◁b, we
have c ∈ Ai. If instead c /∈ Ai, we say that c is an interfering
candidate. A profile P is linear if there exists an axis ◁ such
that all approval ballots in P are intervals of ◁. We also say
that this axis ◁ is consistent with the profile P . We write
con(P ) ⊆ A for the set of all axes consistent with P .

For an approval ballot A and an axis ◁ = c1c2 . . . cm with
candidates relabeled by their axis position, we denote by
xA,◁ = (x1

A,◁, . . . , x
m
A,◁) the approval vector where xi

A,◁ = 1
if ci ∈ A and 0 otherwise. For instance, for the axis ◁ = abcd
and ballot A = {b, c}, we get the vector (0, 1, 1, 0), while
A′ = {a, d} gives the vector (1, 0, 0, 1) (which has two inter-
fering candidates). The approval matrix of a profile P = (Ai)i
has xAi,◁ as its ith row. Thus, its (i, j)-entry is equal to 1 if
cj ∈ Ai and equal to 0 if cj ̸∈ Ai. Note that a profile is linear
if and only if its approval matrix (derived from an arbitrary
axis ◁) satisfies the consecutive one property (or C1P, see the
survey by [Dom, 2009]), i.e., its columns can be reordered
such that in each row, the “1”s form an interval.

An axis rule f is a function that takes as input an approval
profile P and returns a non-empty set of axes f(P ) ⊆ A,
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a b c d e costVD

0
1
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1

(a) Voter Deletion (VD).
Votes that need to be
deleted have a border line.

a b c d e costMF

0
1
1
1
2

(b) Minimum Flips (MF).
Added and removed candi-
dates are shown as red and
blue ticks, respectively.

a b c d e costBC

0
3
1
2
2

(c)Ballot Completion (BC).
Added candidates are rep-
resented by red ticks.

a b c d e costMS

0
3
2
2
2

(d) Minim. Swaps (MS).
Arrows show the swaps
that are needed to make the
vote an interval.

a b c d e

1 1 1
4
2 2

2 2

costFT

0
3
4
4
4

(e) Forbidden Triples (FT).
For each interfering candi-
date, its number of forbid-
den triples is shown in red.

Figure 1: Costs of some ballots under different rules.

such that for each ◁ in f(P ) its reverse axis ⃗◁ is also in f(P ),
encoding the idea that the direction of the axis does not matter.

We focus on the family of scoring rules, which we define
in analogy to other social choice settings [Myerson, 1995;
Pivato, 2013]. Let cost : 2C ×A → R⩾0 be a cost function,
so cost(Ai, ◁) is the cost that a ballot Ai ∈ P incurs when
the axis ◁ is chosen. Then cost(P, ◁) =

∑
Ai∈P cost(Ai, ◁)

is the total cost of an axis ◁ for the profile P . An axis rule
f is a scoring rule if there is a cost function costf such that
f(P ) = argmin◁∈A costf (P, ◁) for all profiles P .

A focus on the class of scoring rules can be justified as
an analogue to scoring rules in voting theory, in that every
scoring rule satisfies the reinforcement axiom [Young, 1975]
which says that if f chooses the same axis ◁ in two disjoint
profiles P1 and P2, so that f(P1) ∩ f(P2) ̸= ∅, then the axes
it chooses in the combined profile P1 + P2 are exactly the
common axes, i.e., f(P1 + P2) = f(P1) ∩ f(P2). However,
providing an axiomatic characterization of this class using
reinforcement appears to be difficult since the neutrality axiom
turns out to be quite weak in our setting. Another motivation
for scoring rules is their natural interpretation as maximum
likelihood estimators when there is a ground truth axis, as
observed by Conitzer et al. [2009] in the voting setting. To
see the connection, let ◁ be the ground truth axis, and suppose
voters obtain their approval ballots Ai i.i.d. from a probability
distribution P(Ai | ◁) (where intuitively ballots are more likely
the closer they are to forming an interval of ◁). Then, the
likelihood of a profile P is P(P | ◁) =

∏
i P(Ai | ◁). To find

the axis inducing maximum likelihood, we solve MLE(P ) :=
argmax◁ P(P | ◁) = argmin◁ −

∑
i log(P(Ai | ◁)), which

is a scoring rule with costs costf (Ai, ◁) = − log(P(Ai | ◁)).

4 Axis Rules
We now introduce five scoring rules. Many are inspired by
objective functions proposed for near single-peakedness for
rankings [Faliszewski et al., 2014; Escoffier et al., 2021].

The first and simplest rule is called Voter Deletion (VD):
Voter Deletion returns the axes that minimize the number
of ballots to delete from the profile P in order to become
consistent with it. This rule is a scoring rule based on the cost
function costVD such that costVD(A, ◁) = 0 if A is an interval
of ◁, and 1 otherwise.

The idea behind this rule is that perhaps some “maverick”
voters are “irrational”, and should hence be disregarded. The

aim is to delete as few maverick voters as possible. Figure 1(a)
shows the costs of some ballots under the VD rule, and we
clearly observe that the rule gives the same cost to all non-
interval ballots.

An intuitive shortcoming of VD is that it does not measure
the degree of incompatibility of a given vote with an axis. It
does not distinguish ballots that miss just one candidate to
be an interval, and an approval ballot in which only the two
extreme candidates of the axis are approved. For this reason,
more gradual rules might do better.

The first rule in this direction is Minimum Flips (MF) which
changes ballots by removing and adding candidates.
Minimum Flips This rule returns the axes that minimize the
total number of candidates that need to be removed from and
added to approval ballots in order to make the profile linear. It
is the scoring rule based on:

costMF(A, ◁) = min
x,y∈A : xPy

|{z ∈ A : z ◁ x or y ◁ z}|
+ |{z /∈ A : x ◁ z ◁ y}|.

The definition of costMF optimizes the choice of the left- and
right-most candidates x and y in the ballot after removing and
adding candidates, and then counts the number of candidates
that were thus removed (first term of the sum) and added
(second term). We can equivalently view MF as finding for
each vote Ai the interval ballot closest to Ai in Hamming
distance, with that distance being the cost of ◁. In another
equivalent view, the rule finds the linear profile of minimum
total Hamming distance to the input profile, and returns its
axes. Figure 1(b) shows the costs of some ballots under the
MF rule. Observe that we can obtain an interval by only
removing candidates (as in the second ballot), by only adding
candidates (as in the third ballot), or by both removing and
adding candidates (as in the last ballot).

In many applications, adding approvals seems better mo-
tivated than removing them. For example, a voter i might
not approve a candidate c because i does not know who c is;
fixing this error corresponds to adding a candidate. Choosing
to approve some candidate by accident seems less likely. The
Ballot Completion (BC) rule implements this thought.
Ballot Completion returns the axes that minimize the number
of candidates to add to the ballots to make the profile consistent
with it. It uses the cost function

costBC(A, ◁) = |{b ̸∈ A : a ◁ b ◁ c for some a, c ∈ A}|.
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Thus, given a ballot A and an axis ◁, this rule counts all inter-
fering candidates with respect to A and ◁. To see the difference
between MF and BC, observe that costBC({a, d}, abcd) = 2
as we need to add b and c to obtain an interval, while
costMF({a, d}, abcd) = 1 as we can just remove a. Figure 1(c)
shows the costs of some ballots under the BC rule.

In the approval context, BC is the only rule we know of that
has already been used in the literature to find an underlying
political axis of voters, on the data of experiments conducted
during the 2012 and 2017 French presidential elections [Lebon
et al., 2017; Baujard and Lebon, 2022]. The axes found by
BC were close to the orderings discussed in the media.

The Minimum Swaps (MS) rule modifies the axis rather
than the ballots. Given an approval ballot A, the MS rule
asks how many candidate swaps we need to perform in an
axis ◁ until A becomes an interval of it: the cost costMS(A, ◁)
is the minimum Kendall-tau distance between ◁ and an axis
◁′ (the number of swaps of adjacent candidates needed to go
from ◁ to ◁′) such that A is an interval of ◁′. For instance,
costMS({a, d}, abcd) = 2 because we need to have a next to
d on any axis consistent with {a, d}, and we need at least
two swaps to obtain this. One can check that this rule is
implemented by the following cost function.
Minimum Swaps uses the cost function

costMS(A, ◁)=
∑

x/∈Amin(|{y∈A :y ◁ x}|, |{y∈A :x ◁ y}|).

Figure 1(d) shows the costs of some ballots under the MS
rule. Note that the order in which the swaps are performed
matters. Indeed, we need to swap the same pairs for the third
and fourth ballot ({c, d} and {d, e}), but we start by swapping
c and d in the third ballot and d and e in the fourth ballot.

Finally, the Forbidden Triples (FT) rule is inspired by a
proposal by Escoffier et al. [2021]. It counts the number of
violations of the interval condition, as defined in Section 3.
Forbidden Triples uses the cost function

costFT(A, ◁) = |{(x, y, z) : x, z ∈ A, y /∈ A, x ◁ y ◁ z}|.

Note that there is one forbidden triple for each combination
of an interfering candidate and a pair of candidates lying on its
left and its right, respectively. Intuitively, this rule looks at the
holes in a vote, with larger holes separating many approved
candidates counting more. Figure 1(e) shows the costs of some
ballots under the FT rule.

The cost functions of our five scoring rules can be related
via a chain of inequalities, suggesting that they form a natural
collection of rules to study.

Proposition 1. For all ballots A and axes ◁, we
have costVD(A, ◁) ⩽ costMF(A, ◁) ⩽ costBC(A, ◁) ⩽
costMS(A, ◁) ⩽ costFT(A, ◁).

If there are m ⩽ 3 candidates, all the rules defined in this
section are equivalent (the only possible costs are 0 and 1).
If there are m = 4 candidates, VD and MF are equivalent
and BC and MS are equivalent. This is because the respective
cost functions coincide for m ⩽ 4. For m ⩾ 5, the rules are
pairwise non-equivalent; we give examples in the full version.
Example 1 shows a profile with m = 4 for which VD, BC,
and FT all select different axes.

a b c d

4 ×
4 ×
3 ×
1 ×
1 ×

d a b c

4 ×
4 ×
3 ×
1 ×
1 ×

a d b c

4 ×
4 ×
3 ×
1 ×
1 ×

Figure 2: Profile of Example 1 on axes ◁1, ◁2, and ◁3. Red circles
indicate interfering candidates.

Example 1. Consider the profile P = (4 × {b, c, d}, 4 ×
{a, b}, 3× {a, d}, 1× {a, c}, 1× {b, c}). On this profile, all
rules agree that a ◁ b ◁ c, but they disagree on the position of d.
Indeed, ◁1 = abcd is optimal for VD and MF, ◁2 = dabc for
BC and MS, and ◁3 = adbc and ◁4 = abdc for FT. Figure 2
shows the profile aligned according to the first three axes.

Problems about recognizing matrices that are almost C1P
have long been known to be NP-complete. Hardness of VD
and BC is explicitly known (see Booth [1975]), and the re-
ductions only use approval sets of size 2. Hardness of MF,
MS, and FT directly follows from the observation that they
are equivalent to either VD or BC when maxi |Ai| = 2.
Theorem 1. The VD, MF, BC, MS, and FT rules are NP-
complete to compute, even for profiles in which every ballot
approves at most 2 candidates.

A lot of other axis rules could be defined. However, in this
paper, we focus on the five rules introduced above, and leave
the study of potential other rules to further research. In partic-
ular, we think that greedy variants of the rules we introduced
are of interest to circumvent computational hardness.

5 Axiomatic Analysis
In this section, we conduct an axiomatic analysis of the rules
we introduced. Table 1 summarizes the results of this section.

We start with some basic axioms that all our rules satisfy.
The first two are classic symmetry axioms: a rule f is anony-
mous if whenever two profiles P and P ′ are such that every bal-
lot appears exactly as often in P as in P ′, then f(P ) = f(P ′).
It is neutral if for every profile P , renaming the candidates
in P leads to the same renaming in f(P ). The third basic
property fundamentally captures the aim of an axis rule: if
there are perfect axes, then the rule should return those.
Consistency with linearity. A rule f is consistent with linear-
ity if f(P ) = con(P ) for all linear profiles P .

If f is a scoring rule and it satisfies these three axioms,
we can deduce that its underlying cost function has a certain
structure. In particular, it attains its minimum value for con-
sistent axes, it is invariant under reversing the axis, and it is
symmetric. We formalize these properties in the full version.

5.1 Stability and Monotonicity
Some rules are more sensitive to changes in information than
others. Intuitively, Voter Deletion rarely reacts to changes in
the profile, as it only checks whether the ballots are intervals
of the axis or not. Thus, a single voter will have little effect on
the axes selected. Indeed, for VD, adding a new ballot to the
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VD MF BC MS FT

Stability
Ballot monotonicity
Clearance
Veto winner centrism
Clone-proximity
Clone-resistance

Table 1: Properties satisfied by the axis rules.

profile cannot completely change the set of optimal solutions.
We can formalize this behavior in the following axiom.
Stability. A rule f satisfies stability if for every profile P and
approval ballot A, we have f(P ) ∩ f(P + {A}) ̸= ∅.

Similar axioms were used by [Tydrichová [2023],
Sec. 4.4.2] for rankings, and by Ceron and Gonzalez [2021]
to characterize Approval Voting as a single-winner voting rule.
Whether stability is a desirable property depends on the con-
text: while it implies that the rule is robust, it also means that
the rule might disregard too much information.

Proposition 2. Stability is satisfied by VD, but not by MF, BC,
MS, and FT.

Monotonicity axioms say that if the input changes so as
to more strongly support the current output, then the output
should stay the same. For our setting, we define monotonicity
to say that if some voters complete their ballots by approving
all interfering candidates with respect to the current axis ◁,
then ◁ should continue being selected.1

Ballot monotonicity. A rule f satisfies ballot monotonicity
if for every profile P , ballot A ∈ P and axis ◁ ∈ f(P ) such
that A is not an interval of ◁, we still have ◁ ∈ f(P ′) for
the profile P ′ obtained from P by replacing A by the interval
A′ = {x ∈ C : ∃y, z ∈ A s.t. y P x P z}.

VD and BC satisfy this axiom, but the other rules do not.

Proposition 3. Ballot monotonicity is satisfied by VD and BC,
but not by MF, MS, and FT.

5.2 Centrists and Outliers
On a high level, good axes should place less popular candidates
towards the extremes, where they are less likely to destroy
intervals. Conversely, popular candidates are safer to place in
the center. We will define two axioms that identify profiles
where this expectation is strongest, and that require candidates
to be accordingly placed in center or extreme positions.

Our first axiom considers the placement of very unpopular
candidates. The axiom is easiest to satisfy by placing them at
the extremes, but it does not require doing so in all cases.
Clearance. A rule f satisfies clearance if for every profile P
in which candidate x is never approved, all ◁ ∈ f(P ) are such
that there is no A ∈ P with y, z ∈ A and y ◁ x ◁ z.
Thus, never-approved candidates cannot be interfering.

1One could define monotonicity in other ways, but we leave the
study of those variants to future work.

Proposition 4. Clearance is satisfied by BC, MS, and FT, but
not by VD and MF.

While VD and MF always choose some axis that satisfies
the clearance condition, they can additionally choose axes
which violate this condition, and hence they fail the axiom.

For another way of formalizing the intuition that unpopular
candidates should be placed at the extremes, we consider veto
profiles in which every ballot has size m− 1, i.e., each voter
approves all but one of the candidates. For a veto profile, the
only voters who will approve an interval are those who veto
a candidate at one extreme of the axis. Since veto profiles do
not have any interesting structure, the best candidates to put at
the left and right end of the axis are the two candidates with
the lowest approval score (i.e., the most vetoed candidates).
All of our rules indeed choose only such outcomes.

We can extend this intuition to say that candidates that are
vetoed more frequently should be placed at positions closer to
the extremes. This would imply that the least vetoed candidate
should be placed in the center, so that as few ballots as possible
have holes in the center.
Veto winner centrism. A rule f satisfies veto winner centrism
if for every veto profile P , the median candidate (or one of the
two median candidates if m is even) of every axis ◁ ∈ f(P )
has the highest approval score.

Among the rules studied in this paper, only MS and FT
satisfy veto winner centrism.
Proposition 5. Veto winner centrism is satisfied by MS and
FT, but not by VD, MF, and BC.

In fact, MS and FT always place candidates so that the
approval scores are single-peaked.

Clearance and veto winner centrism suggest that MS and
FT place unpopular candidates at the extremes, which is also
confirmed by our experiments in Section 6. While this gener-
ally seems sound, in the political context it can lead to wrong
answers: there can be ideologically centrist candidates who
don’t get many votes due to not being well-known. We leave
for future work whether there are rules that can correctly place
candidates in these contexts.

5.3 Clones and Resistance to Cloning
We now focus on the behaviour of rules in the presence of
essentially identical candidates. We say that a, b ∈ C are
clones if for each voter i ∈ V , a ∈ Ai if and only if b ∈ Ai.
While perfect clones are rare, studying them gives insights for
how rules handle similar candidates.

Intuitively, one would expect clones to be next to each other
on any optimal axis. This is captured by the following axiom:
Clone-proximity. A rule f satisfies clone-proximity if for
every P in which a, a′ ∈ C are clones, for every axis ◁ ∈
f(P ), every candidate x with a ◁x ◁ a′ or a′ ◁x ◁ a, and every
A ∈ P , we have x ∈ A whenever a, a′ ∈ A. Note that x is
not necessarily a clone of a and a′, because x can be approved
even if a and a′ are not approved.

Surprisingly, only FT satisfies clone-proximity. All of our
rules choose at least one axis where the clones are next to
each other, but the rules other than FT may choose extra axes
with a violation, as we show in the following result. For
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instance, in P = (2× {b, c}, 2× {c, d}, 1× {a, a′, b, d}) the
axis a◁b◁c◁d◁a′ in which the clones a and a′ are at opposite
extremes is an optimal axis for VD, MF, and BC.
Proposition 6. Clone-proximity is satisfied by FT, but not by
VD, MF, BC, and MS.

Inspired by axioms from voting theory [Tideman, 1987],
we could require that removing or adding a clone to the profile
does not change the result. If we remove a clone from a profile,
the restriction of any optimal axis should remain optimal, and
adding a clone to a profile should not modify the relative order
of the other candidates on any optimal axis. We will need some
notation. For a profile P defined on a set C of candidates, we
denote by PC′ the restriction of P to a subset of candidates
C ′ ⊆ C. We also denote P−c the restriction of the profile
to C \ {c} where c ∈ C is a given candidate. Similarly, we
define ◁C′ and ◁−c. We can now state the axiom:
Resistance to cloning. A rule f is resistant to cloning if for
every P in which a, a′ ∈ C are clones, (1) for all ◁ ∈ f(P ),
we have ◁−a ∈ f(P−a) and (2) for all ◁∗ ∈ f(P−a), there is
an axis ◁ ∈ f(P ) with ◁−a = ◁∗.

Among our rules, only VD is resistant to cloning.
Proposition 7. Resistance to cloning is satisfied by VD, but
not by MF, BC, MS, and FT.

These two clone axioms are quite strong: each excludes all
but one of our rules. Indeed, we now show that if a scoring rule
satisfies neutrality and consistency with linearity, then clone-
proximity and resistance to cloning are actually incompatible.
Theorem 2. No neutral scoring rule satisfies resistance to
cloning, clone proximity, and consistency with linearity.

We can show that resistance to cloning and ballot mono-
tonicity in fact characterize VD among scoring rules. This not
only distinguishes VD from the other four rules, but shows its
normative appeal among the entire class of scoring rules.
Theorem 3. Let m ⩾ 6, and let f be a neutral scoring rule.
Then f satisfies consistency with linearity, ballot monotonicity,
and resistance to cloning if and only if it is VD.

Resistance to cloning can be strengthened to heredity [Tydri-
chová, 2023], a kind of independence of irrelevant alternatives
axiom. It states that if we remove any candidate, the rule
should return the original axes with that candidate omitted.
Heredity. A rule f satisfies heredity if for every profile P and
every subset of candidates C ′ ⊆ C, we have that for each axis
◁ ∈ f(P ), there is ◁∗ ∈ f(PC′) with ◁C′ = ◁∗.

However, an easy impossibility theorem shows that no rea-
sonable axis rule can satisfy this axiom.
Proposition 8. No axis rule satisfies heredity and consistency
with linearity.

6 Experiments
In this section, we investigate the rules from Section 4 using
an experimental analysis, based on synthetic and real datasets.
While the rules are hard to compute, for m up to about 12, we
can find the best axes in reasonable time using a brute force
approach (using pruning and heuristics) and ILP encodings,
which we describe in the full version.
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Figure 3: Evolution of the average KT distance between the axes
returned by the rules and the actual axes for σ = 0.3 and r ∈
[0.2, 0.6], averaged over 1 000 random samples.

Our main aims are (1) to compare our rules to each other,
and (2) to compare our rules for approval profiles to two known
rules for ranking profiles (VD-rank and FT-rank, see Escoffier
et al. 2021). The full version contains more details on the
datasets and the experimental results.

6.1 Synthetic Data
To better understand how different rules behave, we tested
them on several synthetic data models which sample a linear
profile on a ground truth axis and add random noise to it. We
then measured the distance of a rule’s output to the ground
truth. Some of our rules are in fact the MLEs of these noise
models, so as predicted they perform well in those cases. How-
ever some rules adapted better than others to different noise
models. We observed that for all models, our rules tend to
push the least approved candidates towards the extremes.

To compare approval-based and ranking-based rules, we
introduce the noisy observation model, inspired by random
utility models such as the Thurstone–Mosteller model. Each
candidate and voter x ∈ C ∪ V is associated with a posi-
tion p(x) ∈ R on the line. Each voter v estimates the po-
sition of each candidate c under independent normal noise:
pv(c) = p(c) + N (0, σ) with σ a parameter of the model.
Voters approve (resp. rank) candidates based on their estima-
tions. More precisely, the approval set of voter v contains all
candidates such that |p(v)− pv(c)| ⩽ r, where the approval
radius r is a parameter of the model. The ranking of v is given
by decreasing distances between p(v) and pv(c).

The positions p(c) of the candidates describe a ground truth
axis. Figure 3 shows the Kendall-tau (KT) swap distance be-
tween the axes output by different rule results and the ground
truth for σ = 0.3 and r ∈ [0.2, 0.6], and results for other
values can be found in the full version. We find that VD-rank
is always far from the true axes (at distance 7-8, too much
to fit in the chart), and that for most values of σ and r, ap-
proval rules actually perform better than FT-rank, returning
axes with lower average KT distance to the ground truth. This
is surprising, as intuitively rankings provide more information
than approvals. However, note that FT-rank is better than ap-
proval methods when r is very small or very large, leading to
many approval sets having size 0 or 1 (or m), thereby provid-
ing no information. FT-rank is also slightly better when σ is
small, but in this case all approval rules also have very good
performance, with their average KT distances all below 1.
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FT: LO , NPA , PS , LFI , EM , R , LR , DLF , FN , UPR , SP

Ipsos: LO , NPA , LFI , PS , EM , R , LR , DLF , FN , SP , UPR

Figure 4: The axis produced by the FT rule and the axis used by the
Ipsos institute.

6.2 The French Presidential Election
We now present the results of our rules on two political
datasets: the 2017 and 2022 edition of the online experiment
Voter Autrement conducted during the French presidential elec-
tions [Bouveret et al., 2018]. In parallel to the actual elections,
the participants were invited to express their opinions on can-
didates using various voting methods, including approval and
ranking-based ones. This allows us to compare our axis rules
for both settings. After data cleaning, for the 2017 [2022]
dataset, we obtained approval preferences of 20 076 voters
[1 379 voters] and preference rankings of 5 796 voters [412
voters] over 11 candidates [12 candidates].

We found that all our approval rules returned very similar
axes. They mostly differ on the position of less popular can-
didates (often placed at one of the extremes), and the relative
order of candidates within their ideological subgroup (e.g.,
left-wing candidates). We computed the KT distance between
the axes returned by our rules and the ones used by the main
7 polling institutes. All rules return an axis that has a KT
distance of less than 5 to at least one poll institute axis (while
the worst possible KT distance are 27 and 33 for m = 11
and 12). For instance, the ordering obtained with FT is very
similar to the one of the Ipsos institute (see Figure 4). The KT
distance between them is 2. Note that the small parties ( LO ,
NPA , R , UPR , SP ), displayed using small font, are placed at
the extremes.

Regarding ranking-based methods, the quality of the axes
returned by FT-rank seems comparable to the axes returned
by approval rules. The VD-rank axes were much less con-
vincing. This corroborates other observations in the literature.
For instance, Sui et al. [2013] ran experiments on 2002 Irish
General Election data and found that the VD-rank axis only fit
0.4%–2.9% of voters. Escoffier et al. [2021] ran experiments
on a similar French presidential election dataset and also ob-
served that the optimal axis found using VD-rank was very
different from the orderings discussed in French media. In our
experiments, the optimal VD-rank axes cover less then 4% of
voters. For comparison, the approval version of VD returned
axes covering more than 60% of voters.

6.3 Supreme Court of the United States
Finally, we used our rules to obtain an ideological ordering of
the 9 justices of the Supreme Court of the United States. The
dataset is based on the opinions authored and joined by the
justices, derived from the Supreme Court Database [Spaeth et
al., 2023]. Each opinion, concurrence, or dissent becomes a
ballot “approving” the justices that joined in it. The intuition
is that justices joining the same opinion share an ideology so
should be placed close together.

The problem of ordering the justices has been extensively
studied; the standard method used by political analysts is

Rule Avg KT Correct Median

VD 4.94 53.8 %
MF 4.22 58.5 %
BC 3.68 56.9 %
MS 3.55 64.6 %
FT 3.43 66.2 %

Table 2: Results on the Supreme Court dataset, showing the Kendall-
tau distance between the axes produced by our rules and the Martin-
Quinn (MQ) axis, as well as the fraction of the 65 terms in which the
axes have the same median justice as the MQ axis.

the Martin-Quinn (MQ) method, which uses a dynamic item
response theory model [Martin and Quinn, 2002]. A limitation
of this model is that it uses only the vote data (whether a justice
agreed with the majority or not), while our model can use more
fine-grained data about which opinions each justice joined.

We compare the axes returned by our rules for 65 terms
between 1946 and 2021, removing the years having more
than 9 justices involved (e.g., if one is replaced mid-term).
Table 2 shows the average KT distance of the axes returned by
our rules to the MQ axis. We see that these distances are on
average quite low (noting that the worst possible KT distance
for m = 9 is 18). Moreover, we observe that the FT rule
comes closest, while the VD rule is relatively far away. We
also checked how often the axes computed by our rules agreed
with the MQ axis on which justice is placed in the median
position. This is of particular interest since the median justice
tends to be pivotal. All rules agreed with MQ on who was the
median justice in more than half of the years. The FT rule
agrees most frequently, choosing the same median justice in
66% of terms.

7 Future Work
There are many promising directions for future work, such as
considering methods that output other types of structures, like
circular axes (in which the first and last candidates on the axis
are next to each other) or embeddings into multiple dimen-
sions, or introducing metric distances between candidates on
the axis. An axiomatic approach could provide novel insights
for all these problems. Moreover, the methods we present not
only return a set of optimal axes, but also their “cost”, which
provides an indicator of how close a profiles is to be linear.
One could try to analyze these methods as rules measuring the
degrees of linearity of approval profiles. In addition, one can
further investigate the interpretation of scoring rules as maxi-
mum likelihood estimators, mentioned at the end of Section 3.
In particular, one could develop noise models that give rise to
the rules that we study, or develop new natural noise models
and (axiomatically) study the rules that they induce, similar to
the work of [Tydrichová [2023], Section 4.5] for rankings.

Technically, several open questions remain. It would be
interesting to obtain an axiomatic characterization of the class
of scoring rules using the reinforcement axiom, though this is
challenging as the neutrality axiom is quite weak in our setting.
It would be useful to design polynomial-time computable rules
that produce good outputs, for dealing with many candidates.
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