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Abstract

We study the problem of fairly allocating a set of
chores to a group of agents. The existence of envy-
free up to any item (EFX) allocations is a long-
standing open question for both goods and chores.
We resolve this question by providing a negative
answer for the latter, presenting a simple construc-
tion that admits no EFX solutions for allocating
six items to three agents equipped with superad-
ditive cost functions, thus proving a separation re-
sult between goods and bads. In fact, we uncover
a deeper insight, showing that the instance has un-
bounded approximation ratio. Moreover, we show
that deciding whether an EFX allocation exists is
NP-complete. On the positive side, we establish the
existence of EFX allocations under general mono-
tone cost functions when the number of items is at
most n+2. We then shift our attention to additive
cost functions. We employ a general framework in
order to improve the approximation guarantees in
the well-studied case of three additive agents, and
provide several conditional approximation bounds
that leverage ordinal information.

1 Introduction
Fair Division has been widely studied in the past decade,
yielding a series of results for various fairness notions. One of
the most popular notions is envy-freeness (EF), under which
each agent (weakly) prefers her own bundle to any other
agent’s bundle. In the case of divisible items, an EF allocation
is always guaranteed to exist, while for indivisible items this
is not always the case; consider for instance a scenario where
we have to allocate a single item among two agents. This fact
has led to numerous relaxations of envy-freeness and approx-
imations thereof.

One such notion is that of envy-freeness up to one item
(EF1) [Budish, 2011]. In EF1 allocations, an agent i might
envy agent j but the envy is eliminated after hypothetically
removing some item; either a good from agent j’s bundle or
a chore from agent i’s bundle. EF1 allocations are known to
exist for both goods [Lipton et al., 2004] and chores [Bhaskar
et al., 2021; Aziz et al., 2021].

A stronger variant is that of envy-freeness up to any item
(EFX); an allocation is said to be EFX if envy vanishes af-
ter the removal of any item. The existence of EFX alloca-
tions remains a challenging open problem in the area and has
been even deemed as “fair division’s most enigmatic ques-
tion” [Procaccia, 2020]. EFX is known to exist for special
cases: two agents with general valuations [Plaut and Rough-
garden, 2020], and three additive agents [Chaudhury et al.,
2020]1. In contrast to the fruitful agenda on EFX for goods,
the landscape of EFX allocations is less explored in the con-
text of chores. For instance, even the existence for three addi-
tive agents as well as a constant factor approximation is elu-
sive.

The problem of EFX allocations remains open, even for ad-
ditive valuations, in the context of goods, “despite significant
effort” [Caragiannis et al., 2019]. Moreover, it has been sug-
gested by Plaut and Roughgarden that EFX allocations may
fail to exist:

We suspect that at least for general valuations,
there exist instances where no EFX allocation ex-
ists, and it may be easier to find a counterexample
in that setting.

We verify the aforementioned suspicion, answering the
analogous question of whether an EFX allocation always ex-
ists for chores to the negative. No such counterexample
was known even in the setting of general monotone valu-
ations, either for the goods or the chores setting. In fact,
the only known counterexamples for the non-existence of
EFX allocations employ mixed manna, i.e., mixtures of goods
and chores, therefore non-monotone valuations [Bérczi et al.,
2020; Hosseini et al., 2023]. Apart from being the first
counterexample for EFX over general monotone functions,
our chore construction signifies the first separation from its
goods-only counterpart.

1.1 Our Contributions
We study fair allocations in a setting where m indivisible
chores need to be allocated to n agents in a fair manner.
We focus on a well-studied notion of fairness, (approximate)
envy-freeness up to any item.

1More recently, the result was further extended to capture more
general valuations via a simplified analysis [Berger et al., 2022;
Akrami et al., 2023])
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We consider the following as our main technical results:

• An EFX allocation for chores need not exist under gen-
eral cost functions. We present a construction with three
agents in which no bounded approximation exists (The-
orem 1).

• Determining whether an instance with three agents and
superadditive costs admits an EFX allocation is NP-
complete (Theorem 2).

We note that no such counterexample was previously
known for any subset of general monotone valuations, either
in the context of goods-only or chores-only. Notably, this is
the first separation result between goods and chores regarding
EFX, since EFX allocations are known to exist when the
number of goods is at most n+ 3 [Mahara, 2023b].

In light of these negative results, we focus on a setting
with few items, namely m ≤ n + 2; we prove the exis-
tence of EFX allocations under general monotone cost func-
tions (Theorem 3). Due to the aforementioned negative ex-
ample, this is the largest constant c for which all instances
with three agents and m ≤ n + c items admit an EFX al-
location. This is the first nontrivial result for a small num-
ber of chores under general cost functions; similar results
have been established for goods [Amanatidis et al., 2020;
Mahara, 2023b], as well as for chores, albeit under additive
utilities [Kobayashi et al., 2023].

Next, we focus on additive cost functions and adapt a gen-
eral framework in order to obtain approximation guarantees
for chores (Theorem 4), establishing a series of improved
(conditional) approximation ratios under ordinal-based as-
sumptions. We follow recent works due to [Bhaskar et al.,
2021; Li et al., 2022] that employ a variant of the well-known
Envy Cycle Elimination technique, namely Top Trading Envy
Cycle Elimination, to obtain improved approximation guar-
antees. Finally, we switch to the special case of three agents
equipped with additive valuations. We improve the approxi-
mation ratio from 2 +

√
6 to 2 (Theorem 5).

1.2 Related Work
In this section we discuss prior works regarding EFX for
goods and chores. We focus on the latter case. The grow-
ing literature on fair division is too extensive to cover here,
and thus, we point the interested reader to the survey of Ama-
natidis et al. for an extensive discussion on recent develop-
ments, along with further notable fairness notions and open
problems.

The seminal work of [Caragiannis et al., 2019] showed that
maximizing the Nash social welfare produces EF1 and Pareto
optimal allocations for goods. The existence of EF1 and PO
allocations remains a major open problem for chores, beyond
a couple of restricted settings [Garg et al., 2022; Ebadian et
al., 2022; Barman et al., 2023].

Envy-freeness up to any item (EFX) for goods. Per-
haps the most compelling relaxation of envy-freeness is EFX
[Gourvès et al., 2014; Caragiannis et al., 2019]. In sharp
contrast to EF1 that enjoys strong existential and algorithmic
properties, EFX remains a challenging open problem. In the

past years, numerous works have studied approximate ver-
sions while also establishing the existence of the notion in re-
stricted settings. [Plaut and Roughgarden, 2020] considered
approximate EFX showing that 1/2-EFX allocations always
exist; [Chan et al., 2019] subsequently showed that such al-
locations can be computed in polynomial time while Ama-
natidis et al. improved the approximation ratio to ϕ − 1 for
additive valuations, which is the best currently known fac-
tor [Amanatidis et al., 2020]. Chaudhury et al. showed in
a breakthrough result that exact EFX allocations always ex-
ist for three agents with additive valuation functions [Chaud-
hury et al., 2020]. Regarding restricted settings, positive re-
sults are known for a small number of items, lexicographic
preferences, two types of goods, two valuation types, and
EFX in graphs. [Mahara, 2023b; Hosseini et al., 2021;
Mahara, 2023a; Gorantla et al., 2023; Christodoulou et al.,
2023]. Lastly, a major line of work has focused on binary
valuations and generalizations thereof, including bi-valued
instances and dichotomous valuations [Halpern et al., 2020;
Amanatidis et al., 2021; Babaioff et al., 2021; Benabbou et
al., 2021].

Envy-freeness up to any item (EFX) for chores. In con-
trast to the case of goods, the existence of EFX allocations
even for three agents with additive valuations remains an open
problem. Zhou and Wu obtained a 5-approximation (later im-
proved to 2 +

√
6 in the journal version) while also show-

ing that an O(n2)-EFX allocation always exists under addi-
tive cost functions for any number of agents [Zhou and Wu,
2024]. Li et al. showed the existence of EFX allocations
when agents exhibit identical orderings over the set of items
(commonly referred to as IDO instances) [Li et al., 2022],
while Gafni et al. showed the existence of EFX allocations
under additive leveled valuations [Gafni et al., 2023]. Sim-
ilarly to the case of goods, several works have shown posi-
tive results for dichotomous valuations [Zhou and Wu, 2024;
Kobayashi et al., 2023; Barman et al., 2023; Tao et al., 2023].
EFX allocations always exist under additive cost functions
when m ≤ 2n [Kobayashi et al., 2023] or when there are
only two types of chores [Aziz et al., 2023].

Lastly, we note that we heavily rely on an important
subclass of valuations, namely superadditive cost functions;
such functions capture complementarities among items and
have received significant attention in the microeconomics and
game theory literature [Nisan et al., 2007; Hassidim et al.,
2011]. Prior work has also examined fair allocations in the
presence of complements, both in the goods and the bads set-
ting [Caragiannis et al., 2019; Barman et al., 2023].

Paper Outline. The remaining sections of the paper are
outlined below. Section 2 includes the formal model and rel-
evant definitions. In Section 3 we derive our main technical
results regarding existence, approximation, and hardness of
EFX allocations. Section 4 deals with the few items setting,
while in Section 5 we show improved approximations under
additive cost functions. Finally, we conclude and propose two
major open questions.
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2 Preliminaries
The problem of discrete fair division with chores is described
by the tuple ⟨N,M,C⟩ where N = {1, . . . , n} is the set
of n agents, M is the set of m indivisible chores and C =
(c1(·), . . . , cn(·)) is the agents’ cost functions. For each agent
i, ci : 2M → R≥0 is normalized, i.e. ci(∅) = 0, and mono-
tone, ci(S ∪ {e}) ≥ ci(S) for all S ⊆ M and e ∈ M . A
subset of chores X ⊆ M is called a bundle and an alloca-
tion X = (X1, . . . , Xn) is an n-partition of M where agent
i receives the bundle Xi. A cost function c is superadditive
if for any S, T ⊆ M : c(S ∪ T ) ≥ c(S) + c(T ) and addi-
tive if the previous relation holds always with equality. For
ease of notation, we sometimes use e instead of {e}. We use
the terms valuations and cost functions for chores (or bads)
interchangeably.
Definition 1 (α-EFX). An allocation X is α-approximate
envy free up to any chore (α-EFX) if for any pair of agents
i, j and any e ∈ Xi : ci(Xi \ e) ≤ α · ci(Xj).

We say that an agent i strongly envies when Definition 1
is violated, i.e., ci(Xi \ e) > α · ci(Xj) for some e ∈ Xj .
By setting α = 1 we retrieve the definition of an exact EFX
allocation2.

We denote by σi(j, S) the j-th most costly chore in S un-
der ci, with ties broken arbitrarily. For instance, we can write
ci(σi(1),M) ≥ ci(σi(2),M) ≥ · · · ≥ ci(σi(m),M) to de-
scribe agent i’s preference over all chores in M . When it is
clear from context we will drop the set parameter for brevity.
Definition 2 (Maximin share). An allocation X is said to be
maximin share fair (MMS) if

ci(Xi) ≤ µn
i (M) = min

X∈Πn(M)
max
k∈[n]

ci(Xk), ∀i ∈ N

2.1 Top Trading Envy Cycle Elimination
In Section 5, en route to obtaining better approximation guar-
antees we will make use of the Top Trading Envy Cycle Elim-
ination algorithm (TTECE, Algorithm 1). In contrast to the
goods-only setting where the utilities of the agents are non-
decreasing while performing envy-cycle eliminations, their
cost increases when picking an item while decreases for the
agents involved in a cycle elimination. The main insight of
the algorithm is that an agent that does not envy any other
agent in some allocation X , meaning that Xi is her top bun-
dle, can receive an additional chore without violating the EF1
property. If such an agent always exists, then we can pro-
ceed in an incremental fashion, allocating one item at a time.
Assuming that no such agent exists we can create the envy di-
graph of the allocation GX as follows: each node represents
an agent and an edge from node i to node j represents that
agent j owns i’s top bundle. Since every node has an out-
going edge the graph contains a cycle C. Reallocating the
bundles along that cycle, i.e. each agent receives the bundle
she envies, creates a new allocation XC that maintains the
EF1 property and creates unenvied agents (sinks).

2We note that there exists an alternative definition in the litera-
ture, in which α · ci(Xi \ e) ≤ ci(Xj) for any pair of agents i, j
and any e ∈ Xi. In this case, α lies within the same range as in the
context of EFX approximations for goods, i.e., 0 < α ≤ 1.

Algorithm 1 Top trading envy cycle elimination algorithm
Input: N,M,C
Output: An allocation X

1: X = {∅, . . . , ∅}.
2: while ∃ some unallocated chore e do
3: if there is no sink in GX then
4: Find a cycle C in GX

5: X = XC

6: end if
7: Choose a sink agent s and let Xs = Xs ∪ e
8: end while
9: return X

3 Non-Existence, Hardness, and
Inapproximability of EFX

In this section we present our main technical results; namely,
we describe our explicit construction and proceed with show-
ing that no finite EFX approximation is possible. Then, we
show that deciding whether an EFX allocations always exists
is NP-complete.

3.1 Non-existence and Inapproximability
Our negative example relies on a simple superadditive struc-
ture with three “special” chores, which are common for all
agents. We use repeatedly the fact that an agent i valuing the
bundle of another agent j at zero, i.e. ci(Xj) = 0, can af-
ford to take at most one item or a bundle of zero value, i.e.
ci(Xi) = 0; this follows from the definition of EFX in the
context of chores.
Theorem 1. An EFX allocation need not exist for three
agents with superadditive cost functions. Moreover, no ap-
proximate solution exists, for any approximation factor.

Proof. The set of chores consists of {â, a1, a2, b1, b2, b3} and
the agents have identical costs for single chores, as given in
the table below3:

â a1 a2 b1 b2 b3

ci k > 2 1 1 0 0 0

To describe the cost function for bundles with multiple
items we set A = {â, a1, a2}, B = {b1, b2, b3} and B−i =
B \ bi. Now the cost function for agent i is given by the
following formula:

ci(Xi) =


k2, B−i ⊆ Xi or

(bi ∈ Xi and Xi ∩A ̸= ∅)∑
x∈Xi

ci(x), otherwise

In words, agent 1 has a cost of k2 for the bundle {b2, b3}, its
supersets, and any bundle that contains b1 paired with some
chore from A. Otherwise, her cost function is effectively ad-
ditive. We are now ready to prove our main theorem.

Let X be an allocation and consider an agent i, say agent 1
without loss of generality, that receives some item(s) from B.

3We will at times abuse notation, using a as the name of a1 and
a2 at once for ease of exposition.
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• Agent 1 receives 3 items from B
Then we have that {b2, b3} ⊆ X1 \ b1 =⇒ c1(X1 \
e) = k2 while min(c1(X2), c1(X3)) ≤ 2 yielding a
k2/2 approximation ratio.

• Agent 1 receives 2 items from B

– Agent 1 receives {b2, b3}
If she receives some extra item then again we have
that B−1 ⊆ X1 \ e and min(c1(X2), c1(X3)) ≤ k
giving a ratio of k. Thus, she should receive exactly
B−1. But then c2(X1) = c3(X1) = 0 while at least
one of them received multiple items, hence the EFX
property is violated and the ratio is unbounded.

– Agent 1 receives {b1, b3} (symmetrically for B−3)
Again if she receives some extra item then c1(X1 \
b3) = k2 while min(c1(X2), c1(X3)) ≤ k.
Thus, she should receive exactly B−2; but then,
c3(X1) = 0. Therefore agent 3 should receive at
most one item; in case this item is b2, then agent 2
will receive all the non zero items while the other
bundles have zero cost leading to unbounded ra-
tio. But if agent 3 does not receive b2, then X2 =
{b2, a, â} (where here, a denotes either a1 or a2) or
{b2, a1, a2} meaning that c2(X2 \ a) = k2 while
c2(X3) ≤ k. Once again the EFX property is vio-
lated and the ratio is k.

• Agent 1 receives 1 item from B

– Agent 1 receives b1
If she receives two more items from A her
cost is k2 even after removing one item while
min(c1(X2), c1(X3)) ≤ k, while if she receives
only b1 then c2(X1) = c3(X1) = 0 leading to a
scenario analogous to when agent 1 receives B−1.
It remains to check what happens when agent 1 re-
ceives exactly one item from A.

* Agent 1 receives {b1, â}
Now c1(X1 \ e) = k and we are left with
a1, a2 and b2, b3. No matter how we partition
the remaining items among the rest of the agents,
min(c1(X2), c1(X3)) ≤ 2 giving us a k/2 ap-
proximation ratio.

* Agent 1 receives {b1, a}, i.e. b1 and one of a1
and a2
Now it is the other way around: c2(X1) =
c3(X1) = 1 thus whoever gets â shall not re-
ceive more items; in any other case she would
have been strongly envious, leading to a k ap-
proximation ratio. Assume wlog that agent 2
gets â. Then agent 3 gets b2, b3, a1 (or simi-
larly, b2, b3, a2) thus after removing b2, her cost
remains k2, resulting in a k2 ratio.

– Agent 1 does not receive b1
Assume wlog that no agent received her matching
item and again due to symmetry assume that 1 ←
b2, 2 ← b3, 3 ← b1. Furthermore, assume that 1
also gets â. Then c1(X1 \ e) = c1(â) = k ≥
k
2 · c1(X2) completing the proof.

We conclude that the instance admits no EFX allocation and
the approximation ratio is k/2 that grows unbounded as k →
∞.

We conclude the section with an immediate corollary of
Theorem 1.

Corollary 1 (Maximin share guarantee implications). The
existence of a maximin share (MMS) fair allocation does not
imply the existence of an α-EFX allocation for any α ≥ 1.

Proof. Notice that the MMS value for agent i is
µn
i (M) = k, since proposing the allocation X ′ =

({k}, {a1, a2, bl}, {bi, bj}) guarantees her MMS. Finally, the
allocation A = ({k}, {a1, a2, b1}, {b2, b3}) achieves the
maximin share for each agent. However, the approximation
ratio for EFX is unbounded, due to the fact that c2(A2 \ e) ≥
1, ∀e ∈ A2 while c2(A3) = 0. In fact, this implies something
even stronger: the existence of a maximin share (MMS) fair
allocation does not imply the existence of an α-EF1 alloca-
tion for any α ≥ 1.

3.2 NP-Completeness
In the sequel, we complement our negative results by study-
ing the computational complexity of EFX allocations with in-
divisible chores under general monotone cost functions. We
show that the problem is NP-complete. In fact, the crux of the
non-existence argument lies in the inherent structure of the
partition problem, which is well-known to be NP-complete.
Some of the cases follow the analysis presented in Theorem
1; we defer the full proof to the full version.

Theorem 2. Deciding whether an EFX allocation exists
given a chores-only instance is NP-complete.

Proof. We will prove the statement by reducing from (a vari-
ant of) the partition problem, in which we are given a set
{ai}ni=1 of n positive integers summing to 3S with ai < S
and the question is whether a partition of A into three sets of
equal sum exists. Given an instance I of Partition, we con-
struct an instance I ′ of our problem that has 3 agents and n+3
items M = {a1, . . . , an, b1, b2, b3}. We call B = {b1, b2, b3}
and A = M \ B. The costs of individual chores are uniform
for any agent i ∈ {1, 2, 3}: ci(aj) = aj for j ∈ [n], and
ci(bj) = 0 for j ∈ {1, 2, 3}. For a bundle Xi assigned to
agent i where |Xi| > 1, the agent’s valuation is determined
as follows:

ci(Xi) =


∞, B−i ⊆ Xi or

(bi ∈ Xi and A ∩Xi ̸= ∅),∑
x∈Xi

ci(x), otherwise

For the forward direction, suppose that I is a YES-instance
of Partition. Then, there exists a partition of {ai}ni=1 into
3 sets, say A1, A2, A3 such that

∑
x∈A1

x =
∑

x∈A2
x =∑

x∈A3
x. We construct the following chore allocation for

I ′ and we will prove that it is EFX: for i ∈ 1, 2, 3, agent i
is assigned the items from A whose corresponding integers
belong to Ai, along with an item bj where j ̸= i. Then,
for any two agents i, j it holds that ci(Xi) =

∑
x∈Ai

x =∑
x∈Aj

x = ci(Aj) ≤ ci(Xj), and the EFX property follows.
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We now move to the reverse direction and we suppose that
I ′ is a YES-instance of our problem. Then there exists an
EFX allocation, and we will demonstrate that I is a YES-
instance of 3-partition by initially establishing the following
claim:

Claim 1. The only plausible EFX allocations for I ′ involve
assigning to each agent i exactly one item from B which
should be an item bj where j ̸= i.

Proof. To prove the claim we will eliminate every other fea-
sible allocation by showing that it is not EFX. Note that for
each agent, at most two bundles can have an infinite cost, im-
plying that if there exists an agent i with ci(Xi \ e) =∞, she
will always be envious of another agent. Therefore, no agent
might receive all items from B (e.g. agent 1 would have had
an infinite cost after removing b1) or two items from B and
some item(s) from A (e.g. agent 1 would have had an infinite
cost even after removing bj from b1, bj , a or a from b2, b3, a).
So we have two cases based on how many items from B an
agent can receive. We consider the following cases:

• Suppose that the EFX allocation involves an agent i such
that |Xi ∩B| = 2 and Xi ∩A = ∅. Again, there are two
subcases to consider based on whether i receives bi or
not.

– In the first case, apart from bi, agent i also receives
a chore bj , for some j ̸= i. Then, for agent j it
holds that cj(Xi) = 0, since Xi contains bj and
no items from A. If agent j receives at least two
items, they will envy agent i after the removal of
one of them. Otherwise, agent j receives at most
one item and the third agent, called agent k, either
receives bk and at least two items from A, or agent
j receives only bk. In the first case say that a ∈ Xk

which results in ck(Xk \ a) = ∞ >
∑

x∈Xj
x =

ck(Xj) and consequently in envy towards agent j.
In the second case, ck(Xj) = 0 and, since once
again agent k receives at least two items from A,
it holds that ck(Xj \ a) > ck(Xj), demonstrating
envy from agent k to agent j.

– For the second case where agent i receives B−i and
no items from A, it holds that cj(Xi) = 0 for any
agent j other than i. Each of these agents will envy
agent i unless they receive at most one item, but
taking into account that the total number of items
that should be fully allocated among these agents is
n+1, the considered allocation does not satisfy the
EFX property.

Therefore, the EFX allocation should allocate exactly one
item from B to every agent. Now, suppose that there ex-
ists an agent i who has been allocated bi. First, consider
the case where |Xi ∩ A| > 1 and say that a ∈ Xi ∩ A.
Then ci(Xi \ a) = ∞ and ci(Xj) =

∑
x∈Xj

x < ∞, since
bi /∈ Xj , leading to an envy from agent i to agent j. On
the other hand, we focus on the case where agent i has re-
ceived at most 1 item from A. Say that agent j ̸= i has
received a bundle Xj and that cj(Xi) = a, where a is the
valuation that agents have towards the item from A in Xi

(perhaps 0, if Xi ∩ A = ∅). Since a < S =
∑

i∈[n] ai

3 , there
should be an agent, say agent j, such that a <

∑
x∈Xj

x.
Agent j has also received an item from B, say b. Thus,
cj(Xj \ b) =

∑
x∈Xj\b x =

∑
x∈Xj

x > a = cj(Xi), lead-
ing to an envy from agent j to agent i.

Say that the given EFX allocation assigns a bundle Xi to
agent i such that Xi = bj ∪ Ai, for some j ̸= i and some
set Ai ⊆ A. Obviously it should hold that ∪i∈{1,2,3}Ai =
A and that Ai ∩ Aj = ∅, for any i, j ∈ {1, 2, 3}. By the
EFX property, it should hold that ci(Xi \ e) ≤ ci(Xj), for
any e ∈ Xi and any pair of agents i, j. Therefore it should
hold that ci(Ai) ≤ ci(Xj) = ci(Aj), for any pair of agents
i, j, which leads to

∑
x∈A1

x =
∑

x∈A2
x =

∑
x∈A3

x and,
consequently to the fact that I is also a YES-instance of the
partition problem.

It follows directly from our proof that the non-existence
construction can be extended to an arbitrarily large number
of items.

4 EFX with a Few Chores
Following the negative result of the previous section (three
agents, six chores) it is natural to ask whether an EFX allo-
cation always exists with less items. We answer this question
affirmatively for the case of m ≤ n+2 chores and any number
of agents. We note that this is the best achievable guarantee
for the special case of three agents. The ideas to be presented
revolve around the following simple fact.

Observation 1. An agent who receives her two smallest
chores does not strongly envy any nonempty bundle.

Proof. Recall that σi(j) denotes the j-th larger chore ac-
cording to agent i. Now, for any k < m − 1 we have
ci(Xi \ e) ≤ ci(σ1(m− 1)) ≤ ci(σ1(k)) ≤ ci(Xj)

We are now ready to state the following theorem.

Theorem 3. There exists an EFX allocation when m ≤ n+2
for any number of agents with general monotone valuations.

Proof. If m ≤ n then we have an EFX allocation by allocat-
ing at most one chore to each agent. If m = n + 1 then let
Zi be the two smallest chores of agent i. Allocating Z1 to
agent 1 and one chore to each of the remaining agents arbi-
trarily is EFX due to Observation 1. We focus on m = n+2.
At a high level, the idea is the following: if there is a pair of
agents i, j ∈ N such that Zi ∩ Zj = ∅, we allocate Zi to
i, Zj to j and again one chore to the other agents arbitrarily.
Asking for a pair of disjoint Z’s is strict and can be relaxed.
For instance, if we allocate Z1 to agent 1 and the two small-
est chores chores from M \ Z1 to agent 2, then agent 2 is
EFX towards agents 3 to n due to Observation 1. Therefore,
strong envy might only arise from agent 2 to agent 1. In order
to avoid this scenario, it suffices that Z1 contains one large
chore for agent 2. Concretely, we have the following two
cases:
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• For some agent j : σj(k) ∈ Zi for some k ≤ n − 1.
We construct an EFX allocation as follows: agent i gets
Zi, agent j gets her two smallest chores from M \ Zi

and each remaining agent gets exactly one chore arbi-
trarily. It suffices to check that j does not strongly envy
i. Indeed, there are three chores with index larger than
k, i.e. smaller than σj(k), and agent i received at most
one of them. Thus, both chores of j are smaller than
σj(k) ∈ Xi = Zi and the case is completed.

• No such agent exists. Then Zi contains two out of the
three smallest chores for any other agent. Consider the
set M \ Zi.

– There exists an agent j such that σi(n,M \ Zi) ̸=
σj(n,M \ Zi). In other words agents i and j dis-
agree on the smallest chore in M \ Zi. Then we
allocate σi(n,M \ Zi) to i and σj(n,M \ Zi) to j,
one item from Zi to each one and a single item to
the other agents arbitrarily. Note that both agents i
and j have received two out of their three smallest
chores while the rest of the agents have received a
strictly larger one. Finally, agent i does not stongly
envy j because σj(n,M \ Zi) has a smaller index
than n for agent i and vice versa.

– No such agent exists. That means that all agents
agree on the least costly chore in M \ Zi. Since
Zi contains two out of the three smallest chores
for all agents, we conclude that all agents agree
upon the set of the three smallest chores, namely
M−. If agent 1 can receive M− without breaking
the EFX property the case is completed. Assum-
ing the contrary, we have that there exists a sub-
set Y ⊂ M− with |Y | = 2, such that c1(Y ) >
c1(σ1(n − 1)). Therefore the allocation in which
agent 1 gets σ1(n − 1) and M− \ Y , some agent
gets Y , and all other agents get one item arbitrarily
is EFX.

5 Approximations for Additive Cost
Functions

We now switch to the case of additive cost functions, aim-
ing to obtain better approximation guarantees. To that end,
we revisit the Envy Cycle Elimination algorithm. So far, this
procedure is less explored in the chore setting due to its lack
of monotonicity. We try to bypass this obstacle via a gen-
eral approximation framework due to [Farhadi et al., 2021;
Markakis and Santorinaios, 2023].

5.1 Approximation Framework
Theorem 4. The allocation produced by Algorithm 2 is
max (α, β + 1)-EFX.

We introduce some more notation and make the following
observation before proceeding with the proof.
Observation 2. Consider a partial allocation Y and define
the ratio matrix R = {rij} as follows

rij =
ci(Yj)

max
e∈M\Y

ci(e)

Algorithm 2 Chore approximation framework
Input: N,M,C
Output: An allocation X

1: For α, β > 0, compute a partial α-EFX allocation Y =
(Y1, . . . , Yn), with the property that

ci(e) ≤ β · ci(Yj) for all i, j ̸= i ∈ N and all e ∈M \Y

2: Run Algorithm 1 until there are no unallocated items

In the case of goods one produces approximations by consid-
ering only the diagonal of the matrix R while for chores we
need to consider anything but the diagonal.

In the sequel, we refer to the property in line 1 of Algorithm
2 as the “ratio property” and stick with the rij notation.

Proof of Theorem 4. Fix some agent i. Initially, i.e. in Y ,
any envy from agent i is at most α-EFX. When a chore is
not allocated to agent i, we get r′ij ≥ rij since the nomi-
nator increases or the denominator decreases or there are no
changes. Thus r′ij ≥ β is maintained. Moreover, agent i is
indifferent to cycle eliminations she does not participate in;
such procedures simply permute the line Ri without affect-
ing rii. Therefore, it remains to check what happens when
she does participate in a cycle elimination or when she gets
some item e. Let Z be the allocation in the first scenario and
Zj the bundle she is about to receive. Then we have that
ci(Zi) ≥ ci(Zj) =⇒ rii ≥ rij ≥ β. Therefore, line Ri is
element-wise greater than β and thus, no bundle reallocations
can disrupt her ratio property. Finally, when e gets allocated
to i we have:

ci(Zi) ≤ ci(Zj)

ci(e) ≤ β·ci(Zj)

The first inequality holds since i is now a sink in the envy
graph, while the second follows from the ratio property, as
described above. Adding the inequalities yields the β + 1
term claimed, completing the proof.

5.2 Conditional Approximations
Similarly to the goods-only setting, one can obtain guaran-
tees by examining only the few most important chores. Here,
the most important ones are those with high costs for some
agents.
Definition 3. Let Lk

i = {σi(1), . . . , σi(k)} denote the set of
the k most burdensome chores for agent i.

In accordance with the goods setting, we refer to chores in
Li as “top”.
Lemma 1 (Top n agreement). If Ln

i = Ln
j , i.e. all agents

agree in the set of the top n chores, there exists a 2-EFX allo-
cation. Moreover, it can be computed in polynomial time.

Proof. Note that allocating one chore from the set to each
agent arbitrarily, produces an EFX allocation that satisfies
Theorem 4 with α = 1 and β = 1, thus yielding a 2-EFX
complete allocation. Moreover, since the partial allocation
can be constructed in linear time the whole procedure is effi-
cient.
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Lemma 2 (Top n − 1 agreement). If Ln−1
i = Ln−1

j , i.e. all
agents agree in the set of the top n − 1 chores, there exists a
max(2, n−2)-EFX allocation. Moreover, it can be computed
in polynomial time.

Proof. Let Ln−1 = {li}1≤i≤n−1 be the top set and construct
the allocation X as follows:

Xi =

{
li, 1 ≤ i ≤ n− 1⋃

j ̸=i σj(n), i = n

Agents 1 to n − 1 are EFX towards the rest since they have
a single item. If agent n also has a single item, we have α =
1, β = 1 thus a 2-EFX allocation. Assuming that agent n has
multiple items we have

cn(Xn \ e) ≤ (n− 2) · cn(σn(n− 1)) ≤ cn(Xj)

where the first inequality is due to the fact that n got at most
n−1 items. Thus α = n−2. As for the ratio property, for all
agents but n, rij ≥ 1 since every bundle contains one chore
from Ln

i and for agent n : rij ̸=i ≥ 1 since every other bundle
contains one chore from Ln−1

n . Again β = 1 and the proof is
complete.

Interestingly, the same approximation ratio can be obtained
when the agents exhibit diametrically opposed preferences,
i.e. disagree on all top n− 1 chores. Note, however, that this
implies that there exist at least n(n− 1) items.

Algorithm 3 Top n− 1 disagreement

1: for each agent i do
2: for each agent j ̸= i do
3: e∗ = argmaxe∈M ci(e)
4: Xj = Xj ∪ e∗

5: M = M \ e∗
6: end for
7: end for

Lemma 3. If Ln−1
i ∩ Ln−1

j = ∅, i.e. all the agents disagree
in the set of the top n−1 chores, there exists a max(2, n−2)-
EFX allocation. Moreover, it can be computed in polynomial
time.

Proof. We will show that the partial allocation produced by
Algorithm 3 satisfies the conditions of Theorem 4 with α =
n− 2 and β = 1. We have that

ci(Xi \ e) ≤ (n− 2) · ci(σi(n− 1)) ≤ ci(Xj)

since agent i cannot receive any item from Ln−1
i while every

other agent receives exactly one item from it. The latter fact
also implies that rij ≥ 1.

Lemma 4. Even if the agents agree upon the ranking of a
large set S of top chores and an exact EFX allocation of S is
given, we cannot obtain better guarantees via Algorithm 2.

Proof. Consider the instance with k common top chores, with
2n < k < m, as shown below:

It is easy to verify that the allocation(
e1, . . . , en−1,

⋃k
i=n ei

)
is envy free and thus EFX.

e1 . . . en−1 en . . . ek
1 1 . . . 1 1 . . . 1
...

...
...

...
...

...
n− 1 1 . . . 1 1 . . . 1
n M . . . M 1

k+1−n . . . 1
k+1−n

5.3 Approximation for Three Agents
Next, we treat the case of three agents with additive disutili-
ties. We show how to apply the techniques developed in the
previous section to obtain unconditional results for the case of
three agents, improving the approximation factor from 2+

√
6

to 2.

Theorem 5. A 2-EFX allocation for three agents exists and
can be computed in polynomial time.

Proof. Due to Lemma 3 there exists a pair of agents that agree
upon at least one top-2 item; otherwise the theorem follows
immediately. Without loss of generality assume that agents
1 and 2 agree. If they agree only on the second chore, i.e.
σ1(2) = σ2(2) we allocate it to agent 3 and agents 1 and
2 receive each other’s top chore. Otherwise, agent 1’s top
chore lies in agent 2’s top-2 set (or vice versa). We allocate
it to agent 3. Then we allocate σ2(1,M \ X3) to agent 1
and σ1(1,M \ (X2 ∪X3)) to agent 2. Now, the allocation is
trivially EFX since any agent has exactly one item. Crucially,
due to the allocating order, agents 1 and 2 do not envy agent
3. As for the ratio matrix we have:

R =

[ • ≥ 1 ≥ 1
≥ 1 • ≥ 1
r31 r32 •

]
All that is left is to ensure that r31 and r32 can be made larger
than 1. To that end, note that running TTECE using agent
3’s cost function and picking the sinks lexicographically will
allocate to agent 3 only after allocating one more item to the
other agents, therefore at that point r3i ≥ 1, fulfilling the
requirements of Theorem 4. In case that does not happen, the
resulted allocation is complete; agent 3 has a single chore,
thus she cannot strongly envy, while agents 1 and 2 satisfy
the requirements of Theorem 4 with a = 1 and b = 1.

6 Conclusion and Future Work
We explore EFX allocations in the context of bads. We
demonstrate a series of strong negative results regarding the
case of three superadditive agents. Moreover, we show that
EFX always exists under a setting with a small number of
items, and provide a separation result with the goods-only
setting. Lastly, we show improved approximation ratios for a
number of cases. Our work leaves two main open questions.
First, determining whether similar constructions can be found
for the case of goods. Second, whether an exact EFX alloca-
tion always exists for three agents with additive disutilities.
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