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Abstract

Challenge the champ tournaments are one of the
simplest forms of competition, where a (initially
selected) champ is repeatedly challenged by other
players. If a player beats the champ, then that
player is considered the new (current) champ. Each
player in the competition challenges the current
champ once in a fixed order. The champ of the
last round is considered the winner of the tourna-
ment. We investigate a setting where players can
be bribed to lower their winning probability against
the initial champ. The goal is to maximize the prob-
ability of the initial champ winning the tournament
by bribing the other players, while not exceeding
a given budget for the bribes. In previous work,
it was shown that the problem can be solved in
pseudo-polynomial time, and that it is in XP when
parameterized by the number of players.
We show that the problem is weakly NP-hard and
W[1]-hard when parameterized by the number of
players. On the algorithmic side, we show that the
problem is fixed-parameter tractable (FPT) when
parameterized either by the number of different
bribe values or the number of different probabil-
ity values. To this end, we establish several results
that are of independent interest. In particular, we
show that the product knapsack problem is W[1]-
hard when parameterized by the number of items
in the knapsack, and that constructive bribery for
cup tournaments is W[1]-hard when parameterized
by the number of players. Furthermore, we present
a novel way of designing mixed integer linear pro-
grams, ensuring optimal solutions where all vari-
ables are integers.

1 Introduction
Sports tournaments are ubiquitous at global events such as
World Cups and the Olympics, national events such as sports
leagues, and local events such as school competitions. While
entertaining, these sports tournaments aim to impartially
identify the most talented player, the champ, according to
specific criteria. Unfortunately, the crucial requirement of

ensuring fairness in this process is a highly complicated chal-
lenge. On top of the fact that every player aspires to become
the champ, the ongoing monetization of sports—through ad-
vertising and lucrative brand deals awarded to winners—
intensifies the competition. Accordingly, the performance
of various forms of manipulation in tournaments, such as
bribery, constitutes a significant body of research in social
choice theory and related disciplines. These works concern,
in particular, round-robin tournaments (see, e.g., [Baumeis-
ter and Hogrebe, 2021; Krumer et al., 2023; Rasmussen
and Trick, 2008]), cup tournaments (see, e.g., [Suksom-
pong, 2021; Williams and Moulin, 2016; Gupta et al., 2018b;
Russell and Walsh, 2009; Vu et al., 2009]), and challenge the
champ tournaments [Mattei et al., 2015].

The literature focuses on several prominent ways to ma-
nipulate a tournament. The (arguably) most natural one is
to offer incentives such as bribes to specific players (individ-
uals or part of a team), team coaches, or judges, persuad-
ing them to lose (or, in the case of judges, flip the outcome)
of a match deliberately [Russell and Walsh, 2009]. We fo-
cus on the standard concept of budget-constrained bribery in
tournaments [Gupta et al., 2018b; Russell and Walsh, 2009;
Vu et al., 2009], and on challenge the champ tournaments (as
well as, to some extent, cup tournaments).

Our Setting. We study the computational problem of con-
structive (budget-constrained) bribery in challenge the champ
tournaments in the (standard) probabilistic setting, termed
CONSTRUCTIVE BRIBERY FOR CHALLENGE THE CHAMP
TOURNAMENTS (CBCCT). The study of the complexity of
this problem was initiated by Mattei et al. [2015]. Chal-
lenge the champ tournaments consist of a set of n + 1 play-
ers, {e1, . . . , en, e∗}, where e∗ is the initial champ. The (ini-
tially selected) champ e∗ is repeatedly challenged by the other
players. If a player beats the champ, then that player is con-
sidered the new (current) champ. Each player in the compe-
tition challenges the current champ once in the fixed order
e1, e2, . . . , en. The champ of the last round is considered the
winner of the tournament. When we consider the possibil-
ity of manipulation in tournaments, we are supposed to pos-
sess information about the probabilities of the outcomes of
the matchings. Here, the standard probabilistic model is to as-
sume that for each pair of players that can potentially compete
against each other, we know the probability of one of them
beating the other (and, hence, we also know the probability
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of the other beating the first); see, e.g., [Mattei et al., 2015;
Kim and Williams, 2015; Vu et al., 2008; Aziz et al., 2014;
Stanton and Williams, 2011]. Constructive bribery is the most
ubiquitous form of manipulation in both competition and vot-
ing [Mattei et al., 2015; Saarinen et al., 2015; Faliszewski
et al., 2006; Faliszewski et al., 2009; Karia et al., 2023;
Tao et al., 2023], and its objective is to manipulate the selec-
tion process so that our favorite player/candidate wins. Here,
we are often supposed to have a price associated with each
possible bribing action along with a budget.

Accordingly, in CBCCT we are given, along with player
set {e1, . . . , en, e∗}:

• For every player ei, a bribe vector, which is a vector
of price-probability pairs; each pair specifies the price
of the bribe(s) required to make ei lose against e∗ with
the specified probability. We can suppose that the vector
includes a pair with price 0, which corresponds to the
probability of ei losing when no bribe is involved.

• A budget B ∈ N.
• A threshold probability t ∈ [0, 1].
The reason behind having a vector with more than two en-

tries (and, in particular, losing probabilities other than 1 when
a bribe is involved) is that various ways can affect the proba-
bility of a team or player losing, each having a different price.
For example, we can bribe a different number of players in
ei (when ei is a team), different coaches of ei, the judge(s)
of that specific match, alter various environmental conditions
(e.g., which player plays in which court), and more.

The goal of CBCCT (formally defined in Section 2) is to
determine whether the probability of e∗ winning the tour-
nament can be increased to or above t using bribes for the
matches between e∗ and e1, . . . , en based on their respective
bribe vectors, without exceeding the budget B. We remark
that our model is slightly more general than the one of Mattei
et al. [2015], since they require the probabilities to be en-
coded in unary and we do not.

The initial work of Mattei et al. [2015] proved the follow-
ing results related to CBCCT:

• CBCCT belongs to NP. This follows from [Mattei et al.,
2015, Corollary 4.4].

• CBCCT is in XP1 when parameterized by the number
of players. This result implicitly follows from [Mattei
et al., 2015, Theorem 4.9 & Corollary 4.10], since the
number of rounds of the tournament and the number of
games in every round are upper-bounded by the num-
ber n of players.

• CBCCT can be solved in O(B2n) time [Mattei et al.,
2015, Theorem 4.13], showing that CBCCT is solvable
in pseudo-polynomial time.

• They established (weak) NP-hardness of a variant of
CBCCT, where all probabilities are expressed as (nega-
tive) powers of two [Mattei et al., 2015, Theorem 4.17].

1We use the standard terminology in parameterized complex-
ity [Downey et al., 2013; Cygan et al., 2015; Niedermeier, 2006].
An overview of the concepts used in this work is given in the full
version [Chaudhary et al., 2024].

Note that their reduction requires a compact representa-
tion of the probabilities. Hence, the problem they ad-
dressed is not a special case of CBCCT, and their reduc-
tion does not imply (weak) NP-hardness of CBCCT.

Cup tournaments are extremely popular in sports com-
petitions [Suksompong, 2021; Williams and Moulin, 2016;
Vu et al., 2008; Gupta et al., 2018b; Manurangsi and Suk-
sompong, 2023], voting [Vu et al., 2009; Laslier, 1997], and
decision making [Brandt and Fischer, 2007; Rosen, 1985].
Roughly speaking, a cup tournament is conducted in log2 n
rounds: in each round, the remaining players are paired up
into matches, and the losers are knocked out of the tourna-
ment; when a single player remains, it is declared the win-
ner. (Due to space constraints, a formal definition is given
in the full version [Chaudhary et al., 2024].) Concerning
CONSTRUCTIVE BRIBERY FOR CUP TOURNAMENTS, Mat-
tei et al. [Mattei et al., 2015] established its classification
within NP. Additionally, for the deterministic setting, they
showed that CONSTRUCTIVE BRIBERY FOR CUP TOURNA-
MENTS can be efficiently solved in polynomial time using
a dynamic programming algorithm. Furthermore, they in-
troduced a variant of CONSTRUCTIVE BRIBERY FOR CUP
TOURNAMENTS, termed EXACT BRIBERY, where the goal
is to precisely spend a budget of B, keeping other things the
same. This variant was proven to be NP-complete.
Our Contribution. We start with establishing the (classi-
cal) computational complexity of CBCCT. In Section 3 we
show the following.

• CBCCT is weakly NP-hard.
This motivates developing parameterized algo-

rithms [Downey et al., 2013; Cygan et al., 2015;
Niedermeier, 2006] for the problem. We consider three
parameters: the number of players, the number of distinct
bribe values, and the number of distinct probability values.
Number of players. Tournaments often involve relatively
few players. For example, usually, Tennis tournaments in-
volve around 128 players, and boxing championships involve
around 30 players in a weight category. Hence, the number of
players is a highly practical parameter. However, in Section 3
we show the following

• CBCCT is W[1]-hard when parameterized by the num-
ber n of players.

This implies that the XP-algorithm by Mattei et al. [2015]
presumably cannot be improved to an FPT-algorithm. To
prove the result, we also show that the PRODUCT KNAP-
SACK problem is W[1]-hard when parameterized by the num-
ber of items in the knapsack. We believe this is a valuable
result in its own right: PRODUCT KNAPSACK can be a useful
source problem for reductions to additional problems in so-
cial choice that concern probabilities (and, hence, a product
of numbers) as well. Moreover, we show that our result for
CBCCT further implies that CONSTRUCTIVE BRIBERY FOR
CUP TOURNAMENTS is W[1]-hard, too, when parameterized
by the number of players. We believe that our aforemen-
tioned implication nicely extends the results of the literature
on cup tournaments, which is abundant with studies of vari-
ous forms of manipulation (including bribery) from the per-
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spective of parameterized complexity [Gupta et al., 2018b;
Zehavi, 2023; Konicki, 2019; Ramanujan and Szeider, 2017;
Aziz et al., 2014; Gupta et al., 2018a; Aronshtam et al.,
2017].
Number of distinct bribe and probability values. The number
of distinct bribes is a well-motivated parameter: often, prices
of the same action do not have that many possibilities. For
example, a certain judge or coach will ask for the same price
(or have a small range of prices) irrespective of the player or
team involved. Furthermore, it is conceivable that if, say, the
budget is thousands of dollars, then bribes that are not mul-
tiplications of one thousand will not be discussed—this, too,
reduces the number of distinct bribes possible. Moreover, the
number of distinct probabilities is likely to be small as well.
Probabilities are, essentially, rough estimations, and hence,
even if we have a wide range of them, they can be rounded
up to the closest value from a (predetermined) small-sized set
of probabilities. In Section 4, we show that these parameters
yield tractability.

• CBCCT in FPT when parameterized by the number of
distinct bribe values.

• CBCCT in FPT when parameterized by the number of
distinct probability values.

Both algorithms exhibit similarities and are derived
through mixed integer linear program (MILP) formulations
for CBCCT. To obtain the results, we develop a novel method
of designing MILPs that are guaranteed to have optimal solu-
tions where all variables are set to integer values. We believe
this technique can be useful in various application areas and
hence is of independent interest.
Application to Campaign Management. A deeper look
into the definition of the CBCCT problem shows that the or-
der of the players e1, e2, . . . , en is irrelevant to its answer—
i.e., if we reorder them, we obtain an equivalent instance in
terms of whether the answer to our specific objective is yes
or no. (Of course, reordering might affect e1, e2, . . . , en, but
not e∗, who has to play and win against all of them.) Thus,
we can, essentially, suppose that e1, e2, . . . , en are unordered.
This gives rise to other applications of our results, e.g., to
the area of campaign management [Bredereck et al., 2016;
Elkind et al., 2009; Elkind and Faliszewski, 2010]. Specif-
ically, we can think of e∗ as a candidate (person, idea, or
product) that aims to win the election/be approved, and of
each ei as a voter (possibly representing a group of individu-
als who cast a single vote), whose support/consent is essential
to e∗. Then, for each ei, a price-probability pair represents an
amount of money to invest in winning ei’s support/consent
(e.g., by advertising) and the estimated probability of that
amount being enough.

A discussion about some other related works can be found
in the full version [Chaudhary et al., 2024].

2 Problem Setting and Preliminaries
In the setting of challenge the champ tournaments, we have
n+ 1 players, say, {e1, . . . , en, e∗}. Player e∗ is initially the
champ. In each of the n rounds, player ei challenges the cur-
rent champ and is considered the new champ if they win the

e∗ e1

e2

e3

en

Round 0

Round 1

Round n

Figure 1: Illustration of a challenge the champ tournament with
players {e1, . . . , en, e∗}. Here, e∗ is the initial champ.

challenge. We formally define a challenge the champ tourna-
ment as follows. A tournament tree for a challenge the champ
tournament is visualized in Fig. 1.

Definition 1 (Challenge the Champ Tournament). A chal-
lenge the champ tournament consists of a set of n+1 players
{e1, . . . , en, e∗} and has n rounds. Initially, player e∗ is con-
sidered the champ (of round 0). In round i > 0, player ei
challenges the champ of round i − 1, say player e. If ei
beats e, then ei becomes the champ of round i. Otherwise, e
is the champ of round i. The champ of round n is considered
the winner of the tournament.

Constructive Bribery. In this paper, we investigate the
setting where players from the set {e1, . . . , en} can be in-
fluenced through bribes to reduce their chances of winning
against e∗. Our objective is to determine if a specific budget
for bribes can be allocated in such a way that player e∗ main-
tains the champ title and wins the tournament with a prede-
fined probability, called threshold value t, after facing each
player in {e1, . . . , en}. Note that since we are only interested
in cases where e∗ wins all games, the round in which each
challenger plays against the champ does not matter.

To formalize the problem, we introduce a so-called bribe
vector for each player in {e1, . . . , en}. We denote by Ci the
bribe vector for player ei. Intuitively, Ci specifies how much
it costs to bribe players into lowering their winning probabil-
ity against e∗.

Definition 2 (Bribe Vector). Let ei ∈ {e1, . . . , en} be a
player and let ℓi ∈ N be the number of different bribes that ei
accepts. Then, the bribe vector Ci ∈ (N × [0, 1])ℓi is a
vector of length ℓi with elements from N × [0, 1]. Each el-
ement Ci[j] = (bj , pj) ∈ N × [0, 1] implies that bribing
player ei with amount bj increases their losing probability
when playing against e∗ to pj . We call bj a bribe value and pj
a probability value. Furthermore, we require for all i that
Ci[1] = (0, p1), that is, the first entry of each bribe vector
contains the losing probability when playing against e∗ when
no bribes are used. Moreover, we require that if j < j′ then
bj < bj′ , where Ci[j] = (bj , pj) and Ci[j

′] = (bj′ , pj′).

Now, given a set of bribes {j1, . . . , jn} for the players
{e1, . . . , en} (where ji = 1 if player ei is not bribed), the
total cost of the bribes is

∑
i bji , and the winning probability
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of e∗ is
∏

i pji , where (bji , pji) = Ci[ji]. The main problem
that we study in this paper is formally defined as follows.

CONSTRUCTIVE BRIBERY FOR CHALLENGE THE
CHAMP TOURNAMENTS (CBCCT)

Input: A set of players P = {e1, . . . , en, e∗}, a bribe
vector Ci ∈ (N× [0, 1])ℓi for each player ei ∈
P , a probability threshold t ∈ [0, 1], and a
budget B ∈ N.

Question: Can we raise e∗’s probability of winning the
challenge the champ tournament to at least t
by bribing the players {e1, . . . , en} according
to their bribe vectors and not exceeding the
budget B?

Furthermore, we make the following observation about
bribe vectors. We call a bribe vector C monotone, if for all
j < j′ we have that pj < pj′ , where C[j] = (bj , pj) and
C[j′] = (bj′ , pj′).
Lemma 1. Given an instance of CBCCT with bribe vectors
Ci with i ∈ {1, . . . , n}, we can compute an equivalent in-
stance in polynomial time with monotone bribe vectors.

Proof. Assume that there is a player ei ∈ {e1, . . . , en} such
that Ci is not monotone, that is, for some 1 ≤ j < j′ ≤
|Ci| we have pj ≥ pj′ , where Ci[j] = (bj , pj) and Ci[j

′] =
(bj′ , pj′). Let j, j′ be such that j′−j is minimal. Note that we
must have that j = j′ − 1. Then, we create a bribe vector C ′

i
of length |Ci| − 1 such that C ′

i[ℓ] = Ci[ℓ] for all 1 ≤ ℓ ≤ j
and C ′

i[ℓ] = Ci[ℓ+ 1] for all j < ℓ < |Ci|.
We have that the CBCCT instance with the modified bribe

vector is a yes-instance if and only if the original instance is a
yes-instance. Let Ci[j] = (bj , pj) and Ci[j

′] = (bj′ , pj′). If
there is a solution to the original instance that uses value bj to
bribe player ei to have losing probability pj , then this is also
a valid solution to the modified instance. If there is a solution
to the original instance that uses value bj′ to bribe player ei to
have losing probability pj′ , then we can create a valid solution
to the modified instance by bribing player ei with value bj to
have losing probability pj . Since bj < bj′ and pj ≥ pj′ , the
budget is not violated and the winning probability of e∗ is not
decreased. If there is a solution to the modified instance, then
this solution is clearly also valid for the original instance.

By repeating the described procedure, we can create mod-
ified bribe vectors with the property such that the CBCCT
instance with the modified bribe vectors is a yes-instance if
and only if the original instance is a yes-instance.

Due to Lemma 1, we will assume without loss of generality
that the bribe vectors of all CBCCT instances are monotone.

We have expanded the concept of constructive bribery to
another well-known tournament, called cup tournament (also
known as knockout tournaments). Here also, the objective
is to manipulate the players by offering bribes, under a given
budget. Based on their assigned bribe vectors, the players can
decrease their winning probability, ensuring that a designated
favorite player, say e∗, emerges as the winner with a proba-
bility of at least a given threshold. It is essential to note that,
unlike in CBCCT, critical matches can occur among play-
ers who are not favorites. Consequently, the bribe vectors

are defined not only in relation to the favorite player but also
among the players themselves. Owing to space constraints,
the formal definition of CONSTRUCTIVE BRIBERY FOR CUP
TOURNAMENTS is relegated to the full version [Chaudhary
et al., 2024].

3 Hardness Results
Here, we present our computational hardness results. In par-
ticular, we show that CBCCT is weakly NP-hard and W[1]-
hard when parameterized by the number of players. In partic-
ular, our results imply that the XP-algorithm for CBCCT pa-
rameterized by the number of players by Mattei et al. [2015]
presumably cannot be improved to an FPT-algorithm.

Parameterized Hardness of Product Knapsack. PROD-
UCT KNAPSACK is known to be weakly NP-hard [Pferschy
et al., 2021; Halman et al., 2019]. We show that PRODUCT
KNAPSACK is W[1]-hard when parameterized by the number
of items in the knapsack. This result is of independent interest
and allows us to obtain other parameterized hardness results.

Theorem 1. PRODUCT KNAPSACK is W[1]-hard when pa-
rameterized by the number of items in the knapsack.

To prove Theorem 1, we adapt the reduction used by Hal-
man et al. [2019] to establish the weak NP-hardness of PROD-
UCT KNAPSACK. Due to space constraints, the proof details
are deferred to the full version [Chaudhary et al., 2024].

In the multicolored version of PRODUCT KNAPSACK, each
item is assigned to a specific color class, and the objective is
to select precisely one item from each color class to fill our
knapsack. More formally, it is defined as follows.

MULTICOLORED PRODUCT KNAPSACK

Input: Items j ∈ N := {1, . . . , n} with weights
wj ∈ N and profits vj ∈ N, a partition of N
into k(∈ N) setsX1, . . . , Xk, a positive knap-
sack capacity C ∈ N, and a value V ∈ N.

Question: Does there exist a subset S ⊆ N containing
exactly one item from each Xi with

∑
j∈S

wj ≤

C such that
∏
j∈S

vj ≥ V ?

In the realm of parameterized complexity, when a prob-
lem is parameterized by the solution size, it is well-known
that by applying the color-coding technique (see [Cygan et
al., 2015]), we can obtain a parameterized reduction (one-to-
many) from the original problem to its multicolored counter-
part parameterized by the number of colors. Thus, through a
straightforward parameterized reduction, we get the follow-
ing corollary of Theorem 1.

Corollary 1. MULTICOLORED PRODUCT KNAPSACK is
W[1]-hard when parameterized by the number of colors.

Hardness of CBCCT. Using the previous results, in par-
ticular, Corollary 1, we now proceed to establish our main
hardness result.

Theorem 2. CBCCT is weakly NP-hard and W[1]-hard when
parameterized by the number of players.
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Proof. We present a parameterized polynomial-time reduc-
tion from MULTICOLORED PRODUCT KNAPSACK parame-
terized by the number of colors to CBCCT parameterized by
the number of players. By Corollary 1, we have that MULTI-
COLORED PRODUCT KNAPSACK is W[1]-hard when param-
eterized by the number of colors.

Let ψ = (X1, . . . , Xk, C, V ) be a given instance of MUL-
TICOLORED PRODUCT KNAPSACK, where vi1, . . . , v

i
|Xi| de-

note the profits and wi
1, . . . , w

i
|Xi| denote the weights of the

items present in the color class Xi for every i ∈ [k]. Here,
we assume without loss of generality that wi

1 ≤ wi
2 ≤ · · · ≤

wi
|Xi|. Now, we construct an instance ϕ = (P,C, t, B) of

CBCCT with k + 1 players, where P = {e1, . . . , ek, e∗}
and C contains the bribe vectors for every player in P \{e∗},
as follows:

Player e∗ is the initial champ. Here, we informally say
that for each i ∈ [k], the player ei corresponds to the color
class Xi. Also, for each i ∈ [k], we set the bribe vector Ci

corresponding to the items in the color class Xi. Formally,
the jth entry of the vector Ci is defined as Ci[j] = (wi

j , v
i
j).

Here, note that the length of the vector Ci is |Xi|. Finally, we
set budget B = C, and we set the threshold value t = V .

This finishes the construction, which can clearly be done
in polynomial time. Note that the number of players in the
constructed instance is k + 1. Now, we claim that ψ is a yes-
instance of MULTICOLORED PRODUCT KNAPSACK if and
only if ϕ is a yes-instance of CBCCT.
(⇒): Assume that ψ is a yes-instance of MULTICOLORED

PRODUCT KNAPSACK. Let S be a solution of ψ such that∑
j∈S wj ≤ C and

∏
j∈S vj ≥ V . Now, we bribe the players

in P \ {e∗} as follows. Without loss of generality, assume
that wj and vj correspond to the weight and price of the item
in the solution that is present in the color class Xj . Then by
construction, we have that for player ej ∈ P \{e∗} there must
be some entry in the bribe vector Cj that corresponds to the
pair (wj , vj). We bribe player ej with value wj to lower their
winning probability against e∗ to vj . By construction, we do
not exceed the budget, since C = B. Furthermore, the prod-
uct of the winning probabilities vj of e∗ against players ej
equals at least the threshold t = V .

(⇐): Assume that ϕ is a yes-instance of CBCCT. Hence,
there exists a set of bribes of total cost at most B = C, such
that the probability that e∗ wins the tournament is at least
t = V . Now, for every i ∈ [k], there must be an entry in Ci

that specifies how player ei is bribed. Let player ei be bribed
according toCi[j] = (wi

j , v
i
j). We put the corresponding item

inXi into the knapsack. Thus, we have constructed a solution
for MULTICOLORED PRODUCT KNAPSACK of total weight
at most C, where the product of the values is at least V since
it equals the winning probability of player e∗.

Parameterized Hardness of Constructive Bribery for Cup
Tournaments. The following result establishes that when
the parameter is the number of players, the existence of
an FPT algorithm remains unlikely for CONSTRUCTIVE
BRIBERY FOR CUP TOURNAMENTS as well.
Theorem 3. CONSTRUCTIVE BRIBERY FOR CUP TOURNA-
MENTS is W[1]-hard when parameterized by the number of

players.

We give a parameterized polynomial-time reduction from
CBCCT to CONSTRUCTIVE BRIBERY FOR CUP TOURNA-
MENTS, with both problems being parameterized by the num-
ber of players. Due to space constraints, the proof of Theo-
rem 3 is relegated to the full version [Chaudhary et al., 2024].

4 Algorithmic Results
In this section, we present our algorithmic results for CBCCT.
We show two fixed-parameter tractability results. One is for
the number of distinct bribe values as a parameter, and the
other is for the number of distinct probability values as a
parameter. Both algorithms are similar and are obtained by
mixed integer linear program formulations for CBCCT.

MIXED INTEGER LINEAR PROGRAM (MILP)

Input: A vector x of n variables of which some are
considered integer variables, a constraint ma-
trix A ∈ Rm×n, two vectors b ∈ Rm, c ∈ Rn,
and a target value t ∈ R.

Question: Is there an assignment to the variables such
that all integer variables are set to integer val-
ues, c⊺x ≥ t, Ax ≤ b, and x ≥ 0?

Note that MILPs are also often considered to be optimiza-
tion problems where instead of requiring c⊺x ≥ t, the value
of c⊺x should be maximized. MILPs are known to be solv-
able in FPT-time when the number of integer variables is the
parameter [Lenstra, 1983; Dadush et al., 2011].

Theorem 4 ([Lenstra, 1983; Dadush et al., 2011]). MILP is
FPT when parameterized by the number of integer variables.

We build our MILP formulations in a specific way that en-
sures that there always exist optimal solutions where all vari-
ables are set to integer values. To this end, we establish a gen-
eral result concerning MILPs that, to the best of our knowl-
edge, has not been employed before. While this result can
straightforwardly be derived from known results, it may be of
independent interest.

Proposition 1. Let the following be an MILP.

max c⊺x subject to Ax ≤ b, x ≥ 0.

Let x = (xint xfrac)
⊺, where xint (resp. xfrac) denote the integer

(resp. fractional) variables of the MILP. Let A = (Aint Afrac)
where Aint are the first |xint| columns of A, that is, the coef-
ficients of the integer variables, and Afrac are the remaining
columns, that is, the coefficients of the fractional variables. If
Afrac is totally unimodular, then there exists an optimal solu-
tion to the MILP where all variables are set to integer values.

Proof. Let x⋆ be an optimal solution to the MILP. Suppose
that Afrac (as defined in Proposition 1) is totally unimodular.
Let c⋆ denote the objective value achieved by x⋆. Let x⋆int
be the assignment to the integer variables, and let x⋆frac be the
assignment to the fractional variables of the MILP in the op-
timal solution x⋆. Let c = (cint cfrac)

⊺, where cint are the
first |xint| entries of c, that is, the coefficients of the integer
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variables, and cfrac are the remaining entries, that is, the coef-
ficients of the fractional variables. Define the following linear
program (LP):

max c⊺fracxfrac subject to Afracxfrac ≤ b̂, xfrac ≥ 0,

where b̂ are the last |xfrac| entries of b − Aintx
⋆
int. Clearly, we

have that x⋆frac is a feasible solution to the LP that achieves
objective value c⋆frac = c⋆ − c⊺intx

⋆
int.

It is well known that since Â is totally unimodular, the
LP admits an optimal solution where all variables are set to
integer values [Dantzig, 1956]. Let x⋆⋆frac denote an optimal
solution for the LP that sets all variables to integer values.
Clearly, the achieved objective value of the solution x⋆⋆frac is at
least c⋆frac.

Now, if we set the fractional variables of the MILP to x⋆⋆frac
(instead of x⋆frac) and set the integer variables of the MILP to
x⋆int, we obtain a feasible solution to the MILP that achieves
objective value at least c⋆. It is feasible since otherwise, a
constraint in the LP must be violated. It has an objective value
of at least c⋆ since the objective value achieved in the LP is
at least c⋆frac = c⋆ − c⊺intx

⋆
int. The objective value achieved by

the newly constructed solution to the MILP is also at most c⋆,
since c⋆ is the objective value achieved by an optimal solu-
tion. We conclude that there exists an optimal solution to the
MILP that sets all variables to integer values.

Now, we are ready to state our results.

Theorem 5. CBCCT is FPT when parameterized by the num-
ber of distinct bribe values.

Theorem 6. CBCCT is fixed-parameter tractable when pa-
rameterized by the number of distinct probability values.

Due to space constraints, we only give a proof of Theo-
rem 5, and the proof of Theorem 6 can be found in the full
version [Chaudhary et al., 2024]. To prove Theorem 5, we
provide a mixed integer linear program (MILP) formulation
for CBCCT where the number of integer variables is upper-
bounded by a function of the number of distinct bribe values
in the CBCCT instance.

Proof of Theorem 5. We provide the MILP formulation for
CBCCT where the number of integer variables is upper-
bounded by a function of the number of distinct bribe values.
Assume we are given an instance of CBCCT. We construct
an MILP as follows.

Let v# denote the number of distinct bribe values, and V
denote the set of distinct bribe values. For each combination
of a subset V ′ ⊆ V and a value in that subset v′ ∈ V ′, we
create an integer variable xv′,V ′ that, intuitively, counts how
many times we bribe a player with value v′ that has set of
bribe values V ′. We call the set of probability values P in
the bribe vector of a player ei the player’s probability profile.
From Lemma 1 follows that if two players ei, ej have the
same probability profile P and have the same set of bribe
values V ′, we must have that |P | = |V ′| and hence bribing ei
with some value v′ ∈ V ′ and bribing ej with the same v′
increases the losing probability of ei and ej to the same p ∈
P . We denote this probability with p = p(P, v′, V ′). In other

words, players are uniquely characterized by their probability
profile and their set of bribe values.

For each combination of a subset V ′ ⊆ V , a value in
that subset v′ ∈ V ′, and a probability profile P (that ap-
pears in the CBCCT instance), we create a rational-valued
variable xP,v′,V ′ that, intuitively, counts how many times a
player that has set of bribe values V ′ and probability profile P
is bribed with value v′ (to increase its losing probability to a
uniquely determined p = p(P, v′, V ′)).

We want to maximize the following.∏
p

p
∑

P,v′,V ′|p=p(P,v′,V ′) xP,v′,V ′

This is equivalent to maximizing the logarithm of the ex-
pression. Hence, we have the following (linear) objective
function.

∑
p

log p

 ∑
P,v′,V ′|p=p(P,v′,V ′)

xP,v′,V ′


We have the following constraints. The first one ensures

that we do not violate the budget.∑
v′,V ′

v′ · xv′,V ′ ≤ B (1)

The second set of constraints ensures that the number of
times we use a value v′ to bribe a player that has the set of
bribe values V ′ (which is specified by xv′,V ′ ) is the same as
the sum of all times we use value v′ to bribe a player that has
set of bribe values V ′ and that has probability profile P .

∀ v′, V ′ :
∑
P

xP,v′,V ′ = xv′,V ′ (2)

The third set of constraints ensures that we do not use a
value v′ to bribe a player that has the set of bribe values V ′

and probability profile P too many times. Let nP,V ′ denote
the number of players that have a set of bribe values V ′ and
the probability profile P .

∀ P, V ′ :
∑
v′

xP,v′,V ′ = nP,V ′ (3)

Lastly, in the fourth set of constraints, we require that all
fractional variables xP,v′,V ′ are non-negative.

∀ P, v′, V ′ : 0 ≤ xP,v′,V ′ (4)

It is easy to observe that the overall number of variables
and constraints is in 2O(v#) ·n whereas the number of integer
variables is in 2O(v#). By Theorem 4, we can compute an
optimal solution for the MILP in FPT-time with respect to the
number v# of distinct bribe values.

In the remainder, we show that there is a solution to the
MILP with ∏

p

p
∑

P,v′,V ′|p=p(P,v′,V ′) xP,v′,V ′ ≥ t

if and only if the input instance of CBCCT is a yes-instance.
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(⇒): Assume the input instance of CBCCT is a yes-
instance. Then, it is possible to bribe players using bud-
get B such that the winning probability of e∗ is at least t.
Let player ei be bribed with value vi in the solution and let
the resulting losing probability of ei versus e∗ be pi.

We construct a solution for the constructed MILP as fol-
lows. Initially, we set all variables to 0. Now iterate over
all players. Let player ei have a set of bribe values V ′ and
probability profile P . Then we increase the value of vari-
able xP,vi,V ′ by 1. Note that after his procedure, the con-
straints (3) and (4) are clearly met.

Afterward, we set all integer values such that con-
straints (2) are satisfied. Since these are equality constraints,
this uniquely specifies how the integer variables are set. Fur-
thermore, since we set all fractional variables to integer val-
ues in the previous step, we clearly also set all integer vari-
ables to integer values.

Next, we argue that constraint (1) is satisfied. To this end,
note that every bribe with value v′ is accounted for exactly
once by increasing the value of a variable xP,v′,V ′ by 1. It
follows that the same bribe is accounted for exactly once in
the value of variable xv′,V ′ . Since the input instance is a yes-
instance, the sum of all bribes is at most B, hence, we have
that constraint (1) is satisfied.

Lastly, we argue that∏
p

p
∑

P,v′,V ′|p=p(P,v′,V ′) xP,v′,V ′ ≥ t.

Similarly as in the argument before, note that every chal-
lenge that player e∗ can win with probability p is ac-
counted for exactly once by increasing the value of a vari-
able xP,v′,V ′ such that p = p(P, v′, V ′) by 1. Hence, the
number of challenges that e∗ can win with probability p is∑

P,v′,V ′|p=p(P,v′,V ′) xP,v′,V ′ . Since the input instance is a
yes-instance, player e∗ can win all challenges with a prob-
ability of at least t. It follows that the above inequality is
fulfilled.

(⇐): Assume that we have a solution x⋆ to the created
MILP instance such that∏

p

p
∑

P,v′,V ′|p=p(P,v′,V ′) xP,v′,V ′ ≥ t.

In the following, we show how to bribe the players to increase
the overall winning probability of e∗ to at least t.

To this end, we show that there exists an optimal solution to
the created MILP where all variables are set to integer values.
We do this using Proposition 1.

Note that constraint (1) is independent of the fractional
variables. Furthermore, constraints (3) are independent from
the integer variables. We transform constraints (2) to con-
straints for the fractional variables by treating the integer vari-
ables as arbitrary constants. After that, we have a constraint
matrix for the fractional variables consisting of the modified
constraints (2) and constraints (3). In the following, we show
that the corresponding constraint matrix is totally unimodu-
lar, which then by Proposition 1 implies that there exists an
optimal solution to the MILP that sets all variables to integers.

First, note that the constraints (2) partition the set of frac-
tional variables, that is, each fractional variable is part of ex-
actly one of the constraints (2). We have the same for the

constraints (3). Furthermore, the coefficients in the constraint
matrix for each variable are either 1 (if they are part of a con-
straint) or 0. It follows that the constraint matrix is a 0-1
matrix with exactly two 1’s in every column. Additionally,
in each column, we have that one of the two 1’s appears in
a row corresponding to the constraints (2) and the other 1 is
in a row corresponding to the constraints (3). This is a suffi-
cient condition for the constraint matrix to be totally unimod-
ular [Dantzig, 1956].

Thus, from now on, we can assume that the optimal solu-
tion x⋆ to the MILP sets all variables to integer values. We
construct the bribes for the players as follows. Let V ′ be a set
of bribe values and P be a probability profile. Consider the
set EP,V ′ of all players that have the set of bribe values V ′

and that have probability profile P . For each v′ ∈ V ′ we bribe
xP,v′,V ′ players of EP,V ′ with v′. Note that constraints (3)
ensure that there are sufficiently many players inEP,V ′ . Each
bribe done this way is accounted for exactly once in the vari-
able xv′,V ′ due to the constraints (2). Since constraint (1)
is satisfied, we have that the total amount of bribes does not
exceed the budget B.

It remains to show that the winning probability of e∗ after
bribing the players is at least t. To this end, recall that a player
with the set of bribe values V ′ and probability profile P loses
with probability p when playing against e∗ if and only if they
are bribed with some v′ ∈ V ′ such that p = p(P, v′, V ′). It
follows that the number of players that have losing probabil-
ity p when playing against e∗ is∑

P,v′,V ′|p=p(P,v′,V ′)

xP,v′,V ′ .

Hence, we have that the overall winning probability of e∗ is∏
p

p
∑

P,v′,V ′|p=p(P,v′,V ′) xP,v′,V ′ ,

which by assumption is at least t.

5 Conclusion
In our work, we investigated the parameterized complexity
of CBCCT, a natural tournament bribery problem. There are
several natural directions for future research. It remains open
whether CBCCT is NP-hard when the probabilities are en-
coded in unary and bribe values are encoded in binary (this
question has already been raised by Mattei et al. [2015]). In
fact, it is open whether PRODUCT KNAPSACK is NP-hard
when the item values are encoded in unary and item sizes
are encoded in binary.

Furthermore, note that our FPT-algorithms have double-
exponential running times in the parameter. We leave the
question of whether this can be improved open. Moreover,
exploring whether our MILP formulations for CBCCT can be
extended to CONSTRUCTIVE BRIBERY FOR CUP TOURNA-
MENTS would be interesting. The main difficulty is that we
heavily exploit in our MILP formulations that the ordering
of the matches (that is, the seeding) is irrelevant in CBCCT,
which is not the case in CONSTRUCTIVE BRIBERY FOR CUP
TOURNAMENTS.
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and Hervé Moulin. Knockout Tournaments, page 453–474.
Cambridge University Press, 2016.

[Zehavi, 2023] Meirav Zehavi. Tournament fixing parame-
terized by feedback vertex set number is FPT. In Proceed-
ings of the 2023 AAAI Conference on Artificial Intelligence
(AAAI), volume 37, pages 5876–5883, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2712


	Introduction
	Problem Setting and Preliminaries
	Hardness Results
	Algorithmic Results
	Conclusion

