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Abstract
We consider the fundamental problem of design-
ing a truthful single-item auction with the challeng-
ing objective of extracting a large fraction of the
highest agent valuation as revenue. Following a re-
cent trend in algorithm design, we assume that the
agent valuations belong to a known interval, and a
(possibly erroneous) prediction for the highest val-
uation is available. Then, auction design aims for
high consistency and robustness, meaning that, for
appropriate pairs of values γ and ρ, the extracted
revenue should be at least a γ- or ρ-fraction of
the highest valuation when the prediction is correct
for the input instance or not. We characterize all
pairs of parameters γ and ρ so that a randomized
γ-consistent and ρ-robust auction exists. Further-
more, for the setting in which robustness can be a
function of the prediction error, we give sufficient
and necessary conditions for the existence of robust
auctions and present randomized auctions that ex-
tract a revenue that is only a polylogarithmic (in
terms of the prediction error) factor away from the
highest agent valuation.

1 Introduction
We revisit one of the most central topics in microeconomic
theory, namely the design of single-item auctions, under
the lens of the recent trend of learning-augmented algo-
rithms [Mitzenmacher and Vassilvitskii, 2020]. The basic
auction setting consists of a seller who has an item for sale
and potential buyers (or agents), each having private valua-
tions for the item. An auction is then used to sell the item.
The agents submit their bids to the seller, who then decides
who should get the item and at which price.

Agents are strategic; they may consider bidding non-
truthfully (i.e., submit a bid that is different than their val-
uation for the item) if this can increase their utility. Since
non-truthful bids may make reasoning about the agents’ be-
haviour and the auction’s outcome difficult, a large part of
auction design theory has focused on truthful auctions.

For single-item auctions (and, single-parameter environ-
ments, more generally), the auction designer has essentially
to define two components: an allocation rule and a payment

rule. Both are functions taking the agent bids as input. The
allocation rule returns the agent who should get the item (if
any), and the payment rule returns the payment the agents
should give to the seller.

The design of truthful auctions requires careful selection of
both the allocation and the payment rules. For example, the
celebrated second-price auction [Vickrey, 1961] allocates the
item to the agent with the highest bid, who pays the second-
highest bid to the seller. The second-price auction is truthful.
Even though proving this formally is rather easy and usually
serves as warming-up material in introductory textbooks to
mechanism design (e.g., see Roughgarden [2016]), doing so
for more sophisticated auctions can be tricky. Fortunately,
the beautiful theory of Myerson [1981] provides us with a
powerful toolset for single-item auction design (and, more
generally, for mechanism design in single-parameter environ-
ments). The infamous Myerson’s Lemma restricts the alloca-
tion rules that can be used in truthful auctions to those hav-
ing a monotonicity property. Furthermore, the allocation rule
identifies the payment function in an almost unique way.

The second-price auction has additional nice economic
properties, e.g., it maximizes social welfare. Unfortunately,
it may result in poor revenue. To get revenue guarantees,
knowledge of statistical information (e.g., in the form of the
probability distributions of the agent valuations) can be very
useful to the auction designer. Then, a usual trick is to design
auctions that use reserve prices, which can secure a high pay-
ment by the highest bidder (or the auction winner, in general),
even when the competition is low.

In this paper, we assume that no statistical information for
the potential buyers is available. Instead, we assume that their
valuations can have any value in a known interval [1, H]. An
ambitious goal would be to design truthful auctions that al-
ways extract a revenue that is close to (i.e., a multiplicative
approximation of) the highest valuation among the agents.
For the second-price auction, this is an unrealistic goal; just
imagine two bidders with valuations 1 and H . Even worse,
this is unrealistic for any deterministic auction, as the next
argument shows. To get non-zero revenue from two bidders,
both having a valuation of 1, one should get the item at a
price of at most 1. Then, the monotonicity of truthful alloca-
tion rules implies that the same agent should get the item at
the same price if her valuation was H instead (and the other
bidder still had a valuation of 1).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2687



To solve this issue keeping the ambitious goal of extract-
ing a revenue that approximates the highest valuation, we re-
sort to randomization. Randomized auctions can use alloca-
tion rules, which, for each bid profile, define the probabil-
ity that each agent will get the item. They are still bound
to Myerson’s monotonicity, which is not restrictive anymore
but rather reveals a much richer design space. For example,
randomized auctions can exploit reserve prices, which would
yield no revenue if used by deterministic auctions.

Furthermore, following the practice in the literature of
learning-augmented algorithms and the model of Xu and
Lu [2022] in particular, we assume that a prediction û of the
highest valuation is available. This means that both the range
[1, H] of valuations and the value û can be hardwired in the
definition of the auction, which should now satisfy two differ-
ent revenue guarantees, known as consistency and robustness
in the literature. First, for valuation profiles for which the pre-
diction is correct (and the highest valuation is indeed equal to
û), the auction should extract a γ-approximation of the high-
est valuation as revenue. For the remaining inputs, in which
the prediction is incorrect, a typically worse ρ-approximation
is sought. Such an auction will be said to have consistency
and robustness of γ and ρ, respectively.

Alternatively, we can allow the revenue guarantee to de-
pend on the prediction error η, denoting how far (multiplica-
tively) the highest valuation in a given valuation profile is
from the prediction û. Then, robustness is expressed as a
function ρ, with ρ(η) indicating the required lower bound on
the revenue-over-highest-valuation ratio extracted by the auc-
tion in all valuation profiles with prediction error η. Hence,
in the terminology of the setting of the previous paragraph,
the value ρ(1) is essentially a consistency guarantee.

1.1 Our Contribution
We study a class of randomized auctions with very appeal-
ing characteristics. We refer to them as intuitive auctions.
An intuitive auction is anonymous (i.e., the outcome does not
depend on the identifiers of the agents in any way) and, fur-
thermore, has the property that only the highest bidder(s) get
the item with positive probability. These properties make in-
tuitive auctions particularly simple.

For the first setting, we give an optimal trade-off between
the consistency and robustness of truthful (more precisely, of
dominant-strategy incentive-compatible) intuitive auctions.
As a corollary, we present auctions that have constant consis-
tency and robustness Ω(ln−1 H). For the second setting, we
present a sufficient and necessary condition for intuitive auc-
tions with a given function ρ of prediction error as robustness
guarantee. As corollaries, we obtain robustness guarantees so
that 1/ρ(η) is polylogarithmic in η (even for unbounded val-
uations) or (sub)logarithmic, with a small dependency on H
as well. In our proofs, we use extensively a convenient new
variation of Myerson’s Lemma.

1.2 Related Work
Learning-augmented algorithms have emerged as a very hot
topic nowadays, with numerous related contributions in re-
cent years. Many classical problems have been reconsid-
ered, and new algorithms, enhanced with (possibly erro-

neous) machine-learned predictions about their input, are de-
signed and analyzed with respect to the consistency and ro-
bustness guarantees they can achieve. Representative prob-
lem domains include data structures, online and approxi-
mation algorithms for combinatorial optimization, streaming
and sublinear algorithms, and many more. See the early sur-
vey by Mitzenmacher and Vassilvitskii [2020] as well as the
online repository algorithms-with-predictions.github.io.

In algorithmic game theory and computational social
choice, the concept of prediction has been considered for
problems related to mechanism design [Agrawal et al., 2022;
Balcan et al., 2023; Balkanski et al., 2023a; Balkanski et al.,
2023b; Istrate and Bonchis, 2022; Xu and Lu, 2022], price
of anarchy of cost sharing [Gkatzelis et al., 2022], and dis-
tortion of voting [Berger et al., 2023]. The paper by Xu
and Lu [2022] is closest to ours. Among other problems,
the authors study single-item auctions with the revenue-over-
highest valuation objective and present consistency and ro-
bustness bounds for deterministic auctions. In particular, they
present a truthful auction which is proved to have consistency
γ and per-instance robustness that is a function of γ, the pre-
diction error, and the upper bound on the valuation of agents.
We remark that the use of randomization in the current paper
allows us to obtain considerably better consistency vs. robust-
ness tradeoffs compared to the results of Xu and Lu [2022].

Our assumptions of agents with worst-case valuations are
similar in spirit to early work on competitive auctions, initi-
ated with the work of Goldberg et al. [2006]. Even though
revenue has been the main concern in that line of research,
weaker benchmarks than the highest valuation among all
agents have been mainly considered. See the related discus-
sion in the very recent paper by Lu et al. [2023], who study
competitive auctions with predictions. The more distant but
also extremely important field of Bayesian mechanism de-
sign, which uses extensively statistical information about the
agent valuations, is surveyed by Hartline [2013].

2 Preliminaries
We begin with some background on auctions and mechanism
design. The interested reader may find more information in
standard textbooks, e.g., see [Roughgarden, 2016, Chapter 3].
In single-item auctions, a set of n agents (or bidders) compete
for an item. Each agent has a private valuation vi for the item.
All valuations belong to the interval [1, H] for H > 1. An
auction mechanism (or, simply, auction) receives bids from
the agents as input (to be thought of as reportings of their
valuations) and decides the agent who will get the item (or
that no agent should get the item) and the payment that will
be received from each agent. Auctions are, in general, ran-
domized. Formally, the auction consists of an allocation rule
x = (x1, x2, ..., xn) and a payment rule p = (p1, p2, ..., pn).
Both receive the bid vector b = (b1, b2, ..., bn) as input,
consisting of one bid per agent. The allocation function
xi(b) denotes the probability that agent i gets the item while
the payment pi(b) denotes the payment by agent i. Thus,
xi(b) ∈ [0, 1] and pi(b) ≥ 0. An allocation rule x is feasible
if
∑

i∈[n] xi(b) ≤ 1 for every bid vector b.
Agents are (expected) utility maximizers. Agent i’s util-
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ity, from the outcome of an auction that uses the allocation
rule x and the payment rule p when the agents submit the
bid vector b, is defined as ui(b) = vi · xi(b) − pi(b). Ide-
ally, we would like to use auctions that motivate agents to
report their private valuations truthfully as bids. Truthfulness
requires that each agent i maximizes her utility by reporting
her valuation as bid. Formally, this requirement can be writ-
ten as ui(vi,b−i) ≥ ui(z,b−i), for every bid vector b−i

submitted by the agents different than i and for every possi-
ble bid z ∈ [1, H] agent i may consider to submit. In addi-
tion, the property of individual rationality requires that every
truthful agent i has non-negative utility ui(vi,b−i), for any
possible bids b−i by other agents. An auction that is both
truthful and individually rational is called dominant-strategy
incentive-compatible (DSIC).

One of the most fundamental results in auction theory is the
characterization of DSIC auctions by Myerson [1981], which
connects the property of truthfulness to the monotonicity of
the allocation rule. An allocation rule x is monotone if, for
every agent i and any possible bids b−i by the other agents,
the function xi(z,b−i) is non-decreasing in terms of z. We
say that an allocation rule x is implementable if there exist
a payment rule p so that the auction consisting of these two
rules is DSIC.
Lemma 1 (Myerson’s Lemma). The allocation rule x is im-
plementable if and only if it is monotone. If x is monotone,
it is implementable through the payment rule p, which, for
every agent i and any bids b−i by the other agents, it holds
xi(1,b−i) ≥ pi(1,b−i) and

pi(t, b−i)− pi(s, b−i)

= t · xi(t, b−i)− s · xi(s, b−i)−
∫ t

s

xi(z, b−i) dz

for every s, t ∈ [1, H] with s ≤ t.
We now give an alternative to Myerson’s Lemma, which

will be more convenient for our proofs. Notice that, while
Lemma 1 identifies the payment rule necessary and sufficient
to implement a monotone allocation rule, Lemma 2 does the
opposite: Given a monotone payment rule, it gives us the al-
location curve that is implemented with this payment rule.
Lemma 2. A monotone allocation rule x is implementable
through a payment rule p if and only if, for every agent i
and any bids b−i by the other agents, it holds xi(1,b−i) ≥
pi(1,b−i) and

xi(t, b−i) =
pi(t, b−i)

t
+

∫ t

s

pi(z, b−i)

z2
dz

+ xi(s, b−i)−
pi(s, b−i)

s

for every s, t ∈ [1, H] with s ≤ t.
Before proving Lemma 2, we remark that the formulas

connecting the allocation and payment functions in Lem-
mas 1 and 2 characterize truthfulness while the inequality
xi(1,b−i) ≥ pi(1,b−i) yields individual rationality. No-
tice that neither the particular version of Myerson’s Lemma
that we use here nor our Lemma 2 make any differentiability
assumptions for the allocation or payment functions.

Proof. It suffices to show that the two different formulas in
the statements of Lemmas 1 and 2 are equivalent.

For valuations s, t ∈ [1, H] with s ≤ t, let

σs(t) =

∫ t

s
xi(z, b−i) dz

t
.

By applying Myerson’s Lemma, we get

pi(t, b−i) + s · xi(s, b−i)− p(s, b−i)

= t · xi(t, b−i)−
∫ t

s

xi(z, b−i) dz = t2 · σ′
s(t)

and, equivalently,

σ′
s(t) =

pi(t, b−i)

t2
+

s · xi(s, b−i)− pi(s, b−i)

t2
.

Thus,

σs(t) = σs(s) +

∫ t

s

pi(z, b−i)

z2
dz

+

(
1

s
− 1

t

)
· (s · xi(s, b−i)− pi(s, b−i)),

implying, by the definition of σs(t), that∫ t

s

xi(z, b−i) dz = t

∫ t

s

pi(z, b−i)

z2
dz

+

(
t

s
− 1

)
· (s · xi(s, b−i)− pi(s, b−i)).

The lemma now follows after differentiating both sides with
respect to t.

We consider anonymous auctions, in which the allocation
function xi(z,b−i) and the payment function pi(z,b−i) do
not depend on i. Furthermore, we consider auctions which
give the item with positive probability to the highest bidder(s)
only, and this probability depends on the highest and second
highest bid. Due to anonymity, ties are resolved uniformly
at random among the tied agents. We use the term intuitive
to refer to such auctions. We also simplify notation for bid
vectors, and allocation and payment functions as follows. We
describe a bid vector b as the triplet (t, b, ν), where t is the
bid of a particular agent i, b denotes the highest bid among
the other agents, and ν denotes the number of agents differ-
ent than i with a bid of b. Thus, anonymity allows us to use
x(t, b, ν) and p(t, b, ν) to refer to allocations and payments in
general. Of course, for auctions with a single agent, which
will be important in our study, the bid of the agent is the only
parameter required to describe the bid vector; we use x(t) and
p(t) to refer to allocation and payments in this case.

We use the term revenue to refer to the total payment re-
ceived by all agents and aim to design auctions that extract
a high revenue. Ideally, an auction applied on agents with a
highest valuation of t should extract a revenue of as close to t
as possible. We consider the revenue-over-highest-valuation
ratio as our main objective. We assume that in addition to
parameter H denoting the upper bound on valuations, we are
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given a prediction û for the highest valuation. Then, for pa-
rameters γ and ρ, we aim to design auctions with revenue-
over-highest valuation guarantees of γ and ρ when the pre-
diction is correct and incorrect, respectively. Then, such auc-
tions will be said to have consistency of γ and robustness of
ρ. Alternatively, we can allow the robustness requirement to
be a function of the prediction error max{t/û, û/t} indicat-
ing how far the highest valuation t is from the prediction û.
The robustness requirement can then be described by a non-
increasing function ρ : [1, H] → [0, 1], asking for a revenue
that is at least ρ (max{t/û, û/t}) · t.

3 A Consistency vs. Robustness Trade-off
We devote this section to proving the following statement,
which gives sufficient and necessary conditions for the exis-
tence of consistent and robust auctions.
Theorem 3. Let 0 ≤ ρ ≤ γ ≤ 1. There exists a γ-
consistent and ρ-robust DSIC intuitive auction for bidders
with valuations from [1, H] and a prediction for the highest

bid û ∈ [1, H] if and only if γ + ρ · lnmax
{
û, H·ρ

γ

}
≤ 1.

The proof of Theorem 3 is given in Sections 3.1 and 3.2
below. As a corollary of Theorem 3, we obtain that auctions
with constant consistency and robustness Ω(ln−1 H) do exist.
E.g., notice that the parameters γ = 1/2 and ρ = 1

2(1+lnH)

satisfy the condition of Theorem 3. Even though Theorem 3
just claims the existence of the desired auction, its proof is
constructive. Once we have parameters γ and ρ satisfying the
condition in the theorem, the definition of a corresponding
auction is given explicitly in Section 3.1 below.

3.1 Proving the “If” Part of Theorem 3
We prove the “if” part of Theorem 3 by constructing a DSIC
intuitive auction which uses the allocation function x̄ and the
payment function p̄ defined below. Consider an agent i with
valuation t. Let b be the highest bid among the remaining
agents, and let ν denote the number of bidders different than
i with valuation b.

The allocation fraction x̄(t, b, ν) is defined as

x̄(t, b, ν) =


0, t ∈ [1, b)
ρ

ν+1 , t = b

ρ+ ρ · ln t
b , t ∈ (b,H]

if 1 ≤ û < b ≤ H , as

x̄(t, b, ν) =


0, t ∈ [1, û)
γ

ν+1 , t = û

γ, t ∈
(
û,min

{
γ·û
ρ , H

}]
γ + ρ · ln t·ρ

b·γ , t ∈
(
min

{
γ·û
ρ , H

}
, H

]
if 1 ≤ û = b ≤ H , and as

x̄(t, b, ν) =



0, t ∈ [1, b)
ρ

ν+1 , t = b

ρ+ ρ · ln t
b , t ∈ (b, û)

γ + ρ · ln û
b , t ∈

[
û,min

{
γ·û
ρ , H

}]
γ + ρ · ln t·ρ

b·γ , t ∈
(
min

{
γ·û
ρ , H

}
, H

]

Figure 1: The most general form of the allocation function x̄ for an
agent in terms of her valuation t, assuming 1 < b < û < γ·û

ρ
< H

and ν = 1. Notice that x̄(t, b, ν) consists of five parts: the left-
most part in which the item is not allocated to the agent, the point
corresponding to a tie for the highest bid, and three more parts in
which the allocation function has logarithmic, constant, and again
logarithmic form. The remaining cases for the relative values of b,
û, γ·û

ρ
and H do not include some of the three rightmost parts. The

black and white dots are used at points in which the allocation func-
tion “jumps”; the black dot represents the allocation value at these
points.

if 1 ≤ b < û ≤ H . See Figure 1.
Notice that, in all cases, x̄ is non-negative and non-

decreasing in t. Whenever agent i is tied as highest bidder
with a value of t = b (together with ν more agents), the total
fraction allocated is γ when b = û and ρ otherwise, i.e., at
most 1. When agent i is the unique highest bidder, she is the
only agent who gets a positive fraction of the item, which is
maximized to either ρ+ρ·ln H

b , or γ+ρ·ln û
b , or γ+ρ·ln H·ρ

b·γ .
We have

ρ+ ρ · ln H

b
≤ ρ+ ρ · lnH

≤ ρ+ ρ · lnH + ρ ·
(
γ

ρ
− 1− ln

γ

ρ

)
≤ γ + ρ · lnmax

{
û,

H · ρ
γ

}
≤ 1.

The first two inequalities follow since b ≥ 1 and using the
inequality z − 1− ln z ≥ 0 for z > 0. Furthermore,

max

{
γ + ρ · ln û

b
, γ + ρ · ln H · ρ

b · γ

}
≤ γ + ρ · lnmax

{
û,

H · ρ
γ

}
≤ 1,

by the assumption of Theorem 3. Thus, the allocation func-
tion x̄ is feasible and monotone.

The corresponding payment function p̄ is defined as

p̄(t, b, ν) =


0, t ∈ [1, b)
ρ·b
ν+1 , t = b

ρ · t, t ∈ (b,H]
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if 1 ≤ û < b ≤ H , as

p̄(t, b, ν) =


0, t ∈ [1, û)
γ·û
ν+1 , t = û

γ · û, t ∈
(
û,min

{
γ·û
ρ , H

}]
ρ · t, t ∈

(
min

{
γ·û
ρ , H

}
, H

]
if 1 ≤ û = b ≤ H , and as

p̄(t, b, ν) =



0, t ∈ [1, b)
ρ·b
ν+1 , t = b

ρ · b, t ∈ (b, û)

γ · û, t ∈
[
û,min

{
γ·û
ρ , H

}]
ρ · t, t ∈

(
min

{
γ·û
ρ , H

}
, H

]
if 1 ≤ b < û ≤ H .

It is straightforward to verify that, indeed, the payment
function p̄ implements the allocation function x̄, i.e., that x̄
and p̄ are consistent with Lemma 2. Furthermore, we can
verify that the auction’s revenue yields the required consis-
tency and robustness. When the prediction is correct, and the
highest bid is equal to û, the revenue is exactly γ · û, which
implies a consistency of γ. When the highest bid t is differ-
ent than û, the revenue is either equal to ρ · t or equal to γ · û
for t ∈

(
û,min

{
γ·û
ρ , H

}]
, i.e., for t ≤ γ·û

ρ . Notice that
γ · û ≥ ρ · t in this case, implying the bound of ρ for robust-
ness. The completes the proof of the “if” part of Theorem 3.

Before we proceed to the “only if” part of the proof, let
us attempt a “reverse engineering” of the proof above. Our
main goal has been to decide the allocation rule x̄. For in-
tuitive auctions, this means that we need to define the mono-
tone allocation curve x̄(t, b, ν) for values t ≥ b (by definition,
x̄(t, b, ν) = 0 for t ∈ [1, b)). The (unique) payment rule and,
consequently, the revenue for every highest valuation t is then
given by Myerson’s Lemma. Pictorially (e.g., see Figure 1),
this revenue is equal to the area between the vertical lines at
points 0 and t that is above the allocation curve and below the
horizontal line at point x̄(t, b, ν). Thus, to get the guarantees
of γ and ρ for consistency and robustness, the constraints are
that this area is γ ·t for t = û if û ≥ b (the case b > û suggests
that the prediction û is incorrect and we can ignore it) and at
least ρ · t for any other value of t > b. Our construction of
the allocation rule x̄ essentially optimizes the revenue under
these two constraints.

As a comparison to the work of Xu and Lu [2022], we
remark that their auction is deterministic. Hence, as Myer-
son’s Lemma and monotonicity suggest, they can only follow
a “critical bid” definition. In particular, they have to use a
threshold (possibly depending on the non-winning bids), so
that the winning bidder gets the item (with certainty) when
the value is above the threshold. This significantly constrains
the shape of their allocation rule compared to the freedom we
have with randomized auctions.

3.2 Proving the “Only If” Part of Theorem 3
We will now prove the “only if” part of Theorem 3 by con-
sidering the case of a single bidder of valuation t. We will

use the simplest univariate form of allocation and payment
functions. For the sake of contradiction, let us assume that

γ + ρ · lnmax

{
û,

H · ρ
γ

}
> 1 (1)

and, furthermore, that there is a feasible allocation rule x
which is implementable through a payment function p that
satisfies p(t) ≥ ρ · t for t ∈ [1, H] and p(û) ≥ γ · û. I.e., the
auction defined by the pair (x, p) is γ-consistent and ρ-robust.

By the robustness requirement, we have p(t) ≥ ρ · t for
t ∈ [1, û] and, hence,∫ û

1

p(z)

z2
dz ≥ ρ

∫ û

1

dz

z
= ρ · ln û.

By applying Lemma 2, we have the individual rationality con-
dition x(1)−p(1) ≥ 0 and, furthermore, for s = 1 and t = û,

x(û) =
p(û)

û
+

∫ û

1

p(z)

z2
dz + x(1)− p(1)

≥ p(û)

û
+ ρ · ln û. (2)

We now distinguish between two cases. First, if û ≥
H·ρ
γ , inequality (2) yields (using the consistency requirement

p(û) ≥ γ · û)

x(û) ≥ γ + ρ · ln û = γ + ρ · lnmax

{
û,

H · ρ
γ

}
> 1.

The strict inequality follows by assumption (1) and contra-
dicts the feasibility of the allocation function x.

In the following, we consider the second case, where û <
H·ρ
γ . Define v = γ·û

ρ and observe that v ∈ [û, H).
By the consistency requirement and payment monotonic-

ity, we have p(t) ≥ γ · û for t ∈ [û, v) and, hence,∫ v

û

p(z)

z2
dz ≥ γ · û

∫ v

û

dz

z2
= γ − γ · û

v
= γ − ρ.

Thus, by applying Lemma 2 for s = û and t = v, we get

x(v) =
p(v)

v
+

∫ v

û

p(z)

z2
dz + x(û)− p(û)

û

≥ p(v)

v
+ γ − ρ+ x(û)− p(û)

û
. (3)

Also, by the robustness requirement, we have p(t) ≥ ρ · t
for t ∈ [v,H] and, hence (using the definition of v),∫ H

v

p(z)

z2
dz ≥ ρ

∫ H

v

dz

z
= ρ · ln H

v
= ρ · ln H · ρ

û · γ
.

Thus, by applying Lemma 2 for s = v and t = H and using
the robustness requirement p(H) ≥ ρ ·H , we get

x(H) =
p(H)

H
+

∫ H

v

p(z)

z2
dz + x(v)− p(v)

v

≥ ρ+ ρ · ln H · ρ
û · γ

+ x(v)− p(v)

v
. (4)
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Now, by summing equations (2), (3), and (4), and using the
assumption û < H·ρ

γ in the second case and assumption (1),
we obtain

x(H) ≥ γ + ln
H · ρ
γ

= γ + lnmax

{
û,

H · ρ
γ

}
> 1,

again contradicting the feasibility of the allocation function.
This completes the proof of the “only if” part of Theorem 3.

4 Robustness as Function of Prediction Error
In this section, we give the formal statement and proof of our
second result.
Theorem 4. Let ρ : [1, H] → [0, 1] be a differentiable
function so that ρ(η) is non-increasing and η · ρ(η) is non-
decreasing in η. There exists a ρ-robust DSIC intuitive auc-
tion for bidders with valuations from [1, H] and a prediction
for the highest bid û ∈ [1, H] if and only if

ρ(H/û) +

∫ û

1

ρ(z)

z
dz +

∫ H/û

1

ρ(z)

z
dz ≤ 1.

The proof follows in Sections 4.1 and 4.2. Then, we
present specific robustness guarantees (i.e., functions of pre-
diction error) as applications in Section 4.3.

4.1 Proving the “If” Part of Theorem 4
We prove the “if” part of Theorem 4 by constructing a DSIC
intuitive auction, which uses the allocation function x̃ and the
payment function p̃ defined below. Of course, the definition
of both x̃ and p̃ uses the function ρ.

Again, consider an agent i with valuation t. Let b be the
highest bid among the remaining agents, and let ν denote the
number of bidders different than i with valuation b. The allo-
cation fraction x̃(t, b, ν) is defined as

x̃(t, b, ν) =


0, t ∈ [1, b)
ρ(b/û)
ν+1 , t = b

ρ(t/û) +
∫ t/û

b/û
ρ(z)
z dz, t ∈ (b,H]

if 1 ≤ û ≤ b ≤ H , and as

x̃(t, b, ν) =



0, t ∈ [1, b)
ρ(û/b)
ν+1 , t = b

ρ(û/t) +
∫ û/b

û/t
ρ(z)
z dz, t ∈ (b, û)

ρ(t/û) +
∫ û/b

1
ρ(z)
z dz

+
∫ t/û

1
ρ(z)
z dz, t ∈ [û, H]

if 1 ≤ b < û ≤ H .
The quantity x̃(t, b, ν) is clearly non-negative. We will

show that it is also non-decreasing. Let σ1(η) = η · ρ(η) and
σ2(η) = ρ(η)/η. By the definition of the allocation function
for t such that 1 ≤ û ≤ b < t ≤ H and 1 ≤ b < û ≤ t ≤ H ,
its derivative with respect to t is

x̃′(t, b, ν) =
1

t
·
(
t

û
· ρ′(t/û) + ρ(t/û)

)
=

1

t
· σ′

1(t/û). (5)

Also, for t such that 1 ≤ b < t < û ≤ H , the derivative of
the allocation function with respect to t is

x̃′(t, b, ν) = −1

t
·
(
û

t
· ρ′(û/t)− ρ(û/t)

)
= −u2

t3
· σ′

2(û/t). (6)

Furthermore, notice that, in any case, function x̃(t, b, ν) is
continuous at t = û. Thus, equations (5) and (6) imply
that x̃(t, b, ν) is indeed non-decreasing (recall that σ1(η) is
non-decreasing and σ2(η) is non-increasing in η and their
derivatives are non-negative and non-positive, respectively).
To show feasibility, it suffices to show that the highest frac-
tion of the item that is allocated does not exceed 1. Indeed, if
1 ≤ û ≤ b ≤ H , by the definition of the allocation function
and the condition of Theorem 4, we have

x̃(H, b, ν) = ρ(H/û) +

∫ H/û

b/û

ρ(z)

z
dz

≤ ρ(H/û) +

∫ H/û

1

ρ(z)

z
dz ≤ 1,

while, if 1 ≤ b < û ≤ H , we have

x̃(H, b, ν) = ρ(H/û) +

∫ û/b

1

ρ(z)

z
dz +

∫ H/û

1

ρ(z)

z
dz

≤ ρ(H/û) +

∫ û

1

ρ(z)

z
dz

∫ H/û

1

ρ(z)

z
dz ≤ 1,

as desired. Thus, the allocation function x̃ is feasible and
monotone.

The corresponding payment function p̃ is defined as

p̃(t, b, ν) =


0, t ∈ [1, b)
ρ(b/û)·b

ν+1 , t = b

ρ(t/û) · t, t ∈ (b,H]

if 1 ≤ û ≤ b ≤ H , and as

p̃(t, b, ν) =


0, t ∈ [1, b)
ρ(û/b)·b

ν+1 , t = b

ρ(û/t) · t, t ∈ (b, û)

ρ(t/û) · t, t ∈ [û, H]

if 1 ≤ b < û ≤ H .
We will show that p̃ indeed implements the allocation rule

x̃. i.e., x̃ and p̃ are consistent with Lemma 2. For t such that
1 ≤ û ≤ b ≤ t ≤ H , the RHS of the expression in Lemma 2
for t and s = b becomes

p(t)

t
+

∫ t

b

p(z)

z2
dz + x(b)− p(b)

b

= ρ(t/û) +

∫ t

b

ρ(z/û)

z
dz = ρ(t/û) +

∫ b/û

t/û

ρ(y)

y
dy

= x(t),
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as desired. The second equality follows using the substitution
y = z/û. For t such that 1 ≤ b < t < û ≤ H , the RHS of
the expression in Lemma 2 for t and s = b becomes

ρ(û/t) +

∫ t

b

ρ(û/z)

z
dz = ρ(û/t) +

∫ û/b

û/t

ρ(y)

y
dy = x(t),

as desired. The first equality follows using the substitution
y = û/z. Finally, for t such that 1 ≤ b < û ≤ t ≤ H , the
RHS of the expression in Lemma 2 for t and s = û becomes

p(t)

t
+

∫ t

û

p(z)

z2
dz + x(û)− p(û)

û

= ρ(t/û) +

∫ t

û

ρ(z/û)

z
dz +

∫ û/b

1

ρ(z)

z
dz

= ρ(t/û) +

∫ t/û

1

ρ(y)

y
+

∫ û/b

1

ρ(z)

z
dz = x(t),

as desired, again. The second equality follows using the sub-
stitution y = z/û.

Notice that, clearly, the auction’s revenue yields the re-
quired robustness. In particular, assuming, without loss of
generality, that agent i has the highest valuation (i.e., t ≥ b),
the revenue is exactly ρ(ũ/t) · t for t ∈ [b, û) and exactly
ρ(t/ũ) · t for t ∈ [û, H]. The proof of the “if” part of Theo-
rem 4 is now complete.

4.2 Proving the “Only If” Part of Theorem 4
Like in the corresponding proof for Theorem 3, we will prove
the “only if” part of Theorem 4 by considering the case of a
single bidder. For the sake of contradiction, let us assume that

ρ(H/û) +

∫ û

1

ρ(z)

z
dz +

∫ H/û

1

ρ(z)

z
dz > 1 (7)

and, furthermore, that there exists a feasible and monotone
allocation function x which is implementable through a pay-
ment function p that satisfies p(t) ≥ ρ(û/t) · t for t ∈ [1, û]
and p(t) ≥ ρ(t/û) · t for t ∈ [û, H].

By applying Lemma 2, we have the individual rationality
condition x(1)− p(1) ≥ 0 and, for s = 1 and t = û,

x(û) =
p(û)

û
+

∫ û

1

p(z)

z2
dz + x(1)− p(1)

≥ p(û)

û
+

∫ û

1

ρ(û/z)

z
dz. (8)

By applying Lemma 2 for s = û and t = H and using our
assumptions for the payment function p, we get

x(H) =
p(H)

H
+

∫ H

û

p(z)

z2
dz + x(û)− p(û)

û

≥ ρ(H/û) +

∫ H

û

ρ(z/û)

z
dz + x(û)− p(û)

û
. (9)

By inequalities (8) and (9), we have

x(H) ≥ ρ(H/û) +

∫ û

1

ρ(û/z)

z
dz +

∫ H

û

ρ(z/û)

z
dz

= ρ(H/û) +

∫ û

1

ρ(y)

y
dy +

∫ H/û

1

ρ(y)

y
dy

> 1,

contradicting the feasibility of the allocation function x. The
equality follows by the substitution y = û/z and y = z/û
in the two integrals and the second inequality uses our as-
sumption (7). The proof of the “only if” part of Theorem 4 is
complete.

4.3 Applications of Theorem 4
We now present applications of Theorem 4. In particular,
in Corollary 5, we present robustness functions that satisfy
the condition of Theorem 4. These are just indicative of
what Theorem 4 can give us, and have the characteristic that
the quantity 1/ρ(η) depends polylogarithmically, logarithmi-
cally, and sublogarithmically on the prediction error, respec-
tively. The explicit allocation and payment functions of the
corresponding auctions then follow by applying the machin-
ery of Section 4.1. We remark that for the first ρ-function in
Corollary 5, which does not depend on H , the correspond-
ing auction satisfies the claimed robustness requirement even
when it is applied to settings with agent valuations from the
interval [1,∞).

Corollary 5. Let H > 1. For the functions

ρ(η) :=
1

(π/ε+ 1) · (1 + ln1+ε(η))
, with ε ∈ (0, 1],

ρ(η) :=
1

1 + 2 ln (1 + lnH)
· 1

1 + ln η
, and

ρ(η) :=
1− ε

2(1 + lnH)1−ε

1

(1 + ln η)ε
, with ε ∈ (0, 1),

there exist ρ-robust DSIC intuitive auctions for bidders with
valuations from [1, H] and a prediction for the highest bid.

We omit the proof due to lack of space.

5 Conclusion
We have presented an optimal trade-off for the consistency
and robustness of DSIC intuitive single-item auctions that use
predictions. This result gives us auctions with constant con-
sistency and robustness Ω(ln−1 H), where H upper bounds
the agent valuations. We have also given a sufficient and nec-
essary condition for DSIC intuitive auctions with a robust-
ness guarantee that is a function of the prediction error. As
a corollary, we have obtained auctions with a robustness that
depends only on the prediction error η (e.g., as Ω(ln−2 η) and
even better) and not in H , or auctions that have a small (log-
arithmic or sublogarithmic) dependence on H and better de-
pendence on the prediction error. An obvious extension of our
work would be to explore trade-offs between consistency and
robustness in more general single-parameter mechanism de-
sign environments. In addition to the revenue extracted, these
can also involve the social welfare. We expect that our variant
of Myerson’s Lemma will find more applications there.
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