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Abstract
Integrating data-driven and rule-based approaches
is crucial for therapy recommendations since they
can collaborate to achieve better performance.
Medical rules, which are chains of reasoning that
can infer therapies, widely exist. However, their
symbolic and logical forms make integrating them
with data-driven modeling technologies hard. Al-
though rare attempts have indirectly modeled rules
using data that supports them, the poor generaliza-
tion of medical rules leads to inadequate supporting
data and thus impairs the benefit of medical rules.
To this end, we propose R2V-MIF, which fills the
gap by rule-to-vector contrastive learning (R2V)
and multi-channel information fusion (MIF). R2V
is a data-free module and utilizes a hypergraph, in-
cluding condition and result nodes, to instantiate
the logic of medical rules. Each rule is reflected
in the relations between nodes, and their represen-
tations are determined through contrastive learning.
By taking rule representations as a bridge, MIF in-
tegrates the knowledge from medical rules, simi-
lar neighbors, and patient contents, and then rec-
ommends therapies. Extensive experiments show
that R2V-MIF outperforms the baselines in several
metrics using real-world medical data. Our code is
available at https://github.com/vgeek-z/r2vmif.

1 Introduction
Devising a therapy recommendation system (TRS) is hot
currently since it helps medical professionals make a more
proper treatment plan for patients [Zhu et al., 2023]. Data-
driven and rule-based approaches are two typical types of
TRS. The former is good at learning potential knowledge be-
hind data using elaborate models [Zhu et al., 2020; Min et
al., 2022] but requires high-quality data. While the latter is
authoritative and explainable and can avoid outrageous rec-
ommendations, but it has poor generalization. Thus, a com-
bination of them is wise as it can inherit the advantages from
both of them and boost their collaborations.
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Figure 1: A snippet of medical rules and its hypergraph.

However, existing TRSs rarely integrate data-driven and
rule-based approaches due to their incompatible paradigm.
Specifically, the medical rules from guidelines are chains of
reasoning that can infer therapies independently as shown in
Figure 1. Their symbolic and logical forms make integrating
them with data-driven modeling technologies hard. To over-
come this issue, the work in [Zhu et al., 2020] bypassed the
joint modeling mechanism and proposed a heuristic collabo-
rative strategy, i.e., filtering out the therapies that are recom-
mended by data-driven approaches and violate medical rules.
However, the strategy works only when the patient’s situation
matches a medical rule. Besides, DeepCtrl [Seo et al., 2021]
views supporting data, which matches the rules, as a substitu-
tion, and then applies a partial order modeling strategy on the
substitution to learn rules indirectly. Obviously, the amount
of supporting data could affect the modeling performance.

Although these efforts have a good try to integrate data-
driven and rule-based approaches, their performance still suf-
fers the following challenges: 1) Poor generalization of med-
ical rules. As aforementioned, the existing approaches re-
quire the target patient to match at least one medical rule
or the target rule to have sufficient supporting data. How-
ever, the medical rules can only apply to minimal cases in
practice, i.e., most patients can’t obtain a recommended ther-
apy through medical rules, and most medical rules have very
limited supporting data. 2) Complicated collaboration over
medical rules. Existing approaches usually consider medical
rules independently. However, the complicated collaboration
over different medical rules exists and it can help promote
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medical rules’ generalization. For instance, the most com-
mon preconditions of medical rules are sometimes enough to
infer a result. By contrast, the missing of some insignificant
preconditions might have a tiny effect on rule inference.

To this end, we propose R2V-MIF for therapy recommen-
dations via rule-to-vector contrastive learning (R2V for short)
and multi-channel information fusion (MIF for short). R2V
utilizes a hypergraph shown as the right part of Figure 1 to
organize medical rules since it can well instantiate the logic
of medical rules. For instance, the hypergraph has two types
of nodes, where the condition node represents an attribute-
relation-value tuple such as “er < 1”, and the result node
represents a therapy item such as “ec-t”. Then, each hyper-
plane is associated with a rule, and the complicated collabo-
ration over medical rules is reflected in the relations between
nodes and hyperplanes. By doing so, contrastive learning can
be applied to learn node representations, aiming at pulling the
nodes inside a hyperplane close and pushing the nodes from
different hyperplanes away. Besides, a graph convolutional
network (GCN) and a path-based attention mechanism are
applied to aggregate neighbor information. Since R2V learns
the logic of medical rules directly using the hypergraph, it is
a sample-free module and thus can avoid the influence of data
limitations.

By taking rule representations from R2V as a bridge, MIF
is proposed to integrate the knowledge from three channels:
medical guidelines, similar neighbors, and patient contents.
Specifically, in the guideline channel (GC), a representation
is modeled for a patient by summarizing their matched con-
dition nodes. It thus promotes the generalization of medi-
cal rules by extending a binary relation between patients and
rules (i.e., matching or not) to continuous scales (i.e., the sim-
ilarity between their representations). In the neighbor channel
(NC), the patient representation from GC is further utilized to
query similar patients, and then their therapy information is
used for reference. In the content channel (CC), instead of
transforming the content of patients into the rule represen-
tation space, MIF handles them directly to inherit the pure
data-driven ability. Finally, the information from the three
channels is adaptively fused for therapy recommendations.

Our contributions are summarized: 1) We propose a novel
R2V-MIF, which integrates data-driven and rule-based ap-
proaches by simultaneously modeling the information from
medical guidelines, similar neighbors, and patient contents
for therapy recommendations. 2) We devise a new rule en-
coding method, i.e., R2V, which promotes the generalization
of medical rules and supports data-driven approaches more
flexibly. 3) We conduct extensive experiments to evaluate our
approach, and the performance is superior to baselines.

2 Related Work
Incorporating rules for a data-driven approach is popular in
many domains, such as retail and healthcare [Seo et al., 2021;
Wu et al., 2023]. Recent works frequently considered two
types of rules: 1) the ones that can only provide some indirect
knowledge assisting the data-driven approach in finishing a
task, i.e., classification, and 2) the other ones that can infer a
result independently without a data-driven approach.

In the first branch, models [Yang et al., 2021; Shang et al.,
2019] usually view the rules as auxiliary or constraint infor-
mation. The contribution of these rules is limited for the final
task compared to their partner, i.e., a data-driven approach.
For example, MKHAN [Zhang et al., 2019] uses a knowledge
graph (KG) containing external regulations to enhance the in-
terpretability of medical question answering (QA). But KG
can’t conduct QA tasks independently. Besides, the already-
known drug interaction is considered as constraint rules in
[Ren et al., 2022]. Although it can restrain the model from
recommending drugs having a negative interaction, it cannot
determine a drug for patients directly. Similarly, the work
in [Zheng et al., 2020] treated the position constraints as de-
scriptive rules, e.g., “a lesion must be attached to tissues”,
and proposed a mathematical encoding to transform descrip-
tive knowledge. However, rules are treated as a regularized
item, which can only influence the final task indirectly. Most
current research falls into this branch since medical domains
have abundant such scattered prior knowledge.

In the second branch, the decision rules are more informa-
tive and can act as an independent agent. They significantly
influence the task if combined with a data-driven approach.
For example, the authors [Zhu et al., 2020] used the inferred
results from an authoritative medical guideline which is a set
of decision rules, to a data-driven approach for recommen-
dation correction. It is a filtering strategy and ensures the
recommended therapies from a data-driven approach do not
violate the authoritative guidelines. The cooperation is rough
and requires vast rules to cover as many cases as possible. Be-
sides, DeepCtrl [Seo et al., 2021] is a fusion framework that
encodes decision rules and data simultaneously. It assumes
a partial order “≻” between a sample x+, which completely
matches a rule, and a sample x−, which partially matches the
rule. If the rule infers a result y, the former is more likely to
be categorized to y than the latter, i.e., yx+ ≻ yx− , where x−

is generated for x+ using a perturbation technology. Then,
a partial order loss and a conventional classification loss are
combined for training. Since “≻” is defined on sample rela-
tions, a rule can only be considered when at least one sample
matches it perfectly.

Our work follows the second branch, and the main differ-
ence is that our approach incorporates a sample-free rule en-
coding module. The learned rule embeddings can be freely
applied to any other data-driven approach to boost their col-
laborations. Besides, based on rule embeddings, we easily
fuse multi-channel information, including a data channel, to
enhance therapy recommendations.

3 R2V-MIF Framework
In this section, we first describe the framework of our
proposed R2V-MIF, i.e., a therapy recommendation ap-
proach based on rule-to-vector contrastive learning and multi-
channel information f usion, and then introduce its two main
modules, i.e., R2V and MIF, in detail.

3.1 Overview
Our R2V-MIF comprises two main modules, i.e., R2V and
MIF, shown as Figure 2. R2V first constructs a medical
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Figure 2: The overall framework of our proposed R2V-MIF.

guideline hypergraph according to medical rules. Based on
the hypergraph, neighbor aggregating and contrastive learn-
ing are applied to learn the representation of condition nodes,
result nodes, and rules. Then, building upon the represen-
tations, MIF models patient information from guidelines,
neighbors, and contents. The guideline channel evaluates the
coincidence degree between patient information and medical
rules; The neighbor channel queries the similar patients in the
rule representation space and refers to neighbors’ results; The
content channel models patient information directly without
considering medical rules. Finally, the three channels are
fused to make therapy recommendations. Next, we introduce
each module in detail.

3.2 R2V Module
Medical Guideline Hypergraph Construction
The first step of R2V is to construct a hypergraph for rules
from medical guidelines. The hypergraph can better de-
scribe medical rules including their conditions and results,
and model their relationship. Next, we declare some defi-
nitions first.
Definition 1 (Condition and Result Node) Several condi-
tions and one result constitute a medical rule. For exam-
ple, a1 ∧ a2

infer−−−→ ti is a rule, where a1 and a2 are
two conditions, which are attribute-relation-value tuples, e.g.,
“er ≥ 1” and “tumor = 1a”, and ti is a result, which is
a recommended therapy item, e.g., “ec-t”. Accordingly, we
define two types of nodes, i.e., condition nodes and result
nodes, for all medical rules.
Definition 2 (Guideline Hypergraph) The guideline hyper-
graph is defined by G = (V , E ,R): V is a set of all con-
dition and result nodes introduced in Definition 1; E is a

set of weighted edges, and we construct them according
to the following strategy: if a condition and a result ex-
ist in the same rule, there is an edge between their cor-
responding nodes in G, and the weight is one as default;
R = {V1,V2, · · · ,Vr, · · · } is a partition of nodes according
to rules, where Vr is a node set of a sub-graph/hyperplane,
marked by rule r, i.e., the condition and result nodes of rule
r are recorded in Vr.

All medical rules are transformed into a guideline hyper-
graph according to Definition 2. Then, the relations between
sub-graphs, i.e., rules, and between nodes, i.e., conditions and
results, can be learned by hypergraph learning.

Condition and Result Embedding
Each node xi, which can be ai for a condition node and ti
for a result node, is initialized by a randomized and trainable
embedding xi ∈ RK , which is a column vector. Specially,
ai ∈ RK and tj ∈ RK are an embedding of ai and tj , re-
spectively, where K is the dimensionality. Then, we utilize
a GCN [Kipf and Welling, 2016] and a path-based attention
mechanism to capture and enhance node connections.

Regarding GCN, the representation xGCN
i , which incor-

porates the structural information of a graph to node xi, is
defined as follows:

xGCN
i = Θ⊤

∑
xk∈Ni∪{xi}

wik√
didk

xk (1)

where Ni is a set of 1-hop neighbors of node xi, wik repre-
sents the edge weight between node xi and xk, and its value
is 1 in our settings, di and dk are the vertex degrees, and
Θ ∈ RK×K is a trainable parameter of GCN. Thus, there is
an extra condition embedding aGCN

i and result embedding
tGCN
j according to Equ. (1).
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The path-based attention mechanism (PATT) considers
the path “ai ↔ tj ↔ ak”, in which tj is a bridge, to enhance
the relations between condition nodes. Inspired by a self-
attentive mechanism [Vaswani et al., 2017; Niu et al., 2021],
we treat tj as Query, and construct Key = Value = Nj as
follows:

Nj = [· · · ,ak, · · · ], ak ∈ Nj (2)

Then, a fused representation t′j is generated as follows:

t′j = softmax

(
t⊤j

Nj√
K

)
N⊤

j (3)

By fusing the bridge t′j , the connection between ai and ak in
the path “ai ↔ tj ↔ ak” is established as follows:

aPATT
i = mean([· · · , t′j , · · · ]), tj ∈ Ni (4)

Using the same way, we can obatin tPATT
i by considering

the path “ti ↔ aj ↔ tk”. Finally, the initial representation
of a condition and result node is updated by the following
weighted combination:

xi = αxi + βxGCN
i + (1− α− β)xPATT

i (5)

where α and β are two hyper-parameters balancing the con-
tributions of different embeddings.

Contrastive Learning
Contrastive learning [Hassani and Khasahmadi, 2020; Zhang
et al., 2023] can be utilized to model the position of nodes in
a hidden high-dimensional space. The distance between posi-
tions in the space reveals the relationship between the nodes
in their graph. We thus use contrastive learning to narrow the
distance between ai and tj if there exists a rule r subject to
ai ∈ Vr∧tj ∈ Vr, i.e., ai and tj belong to the same sub-graph
regarding rule r. By contrast, if ai and tj have no such a rule,
we should push ai and tj away from each other. If two con-
ditions are not necessary to be considered jointly in the same
rule, the difference between their nodes should be increased.
Besides, we also magnify the distance between result nodes.
Accordingly, we construct a set of positive pairs and a set of
negative pairs for contrastive learning as follows:

O+ = {(a+i , t
+
j ) | ∃Vr ∈ R, (ai, tj ∈ Vr)}

O− = {(x−
i , x

−
j ) | ∄Vr ∈ R, (xi, xj ∈ Vr)} (6)

We calculate the distance between nodes as a dot product,
followed by a Sigmoid transform:

ŷ = σ(x⊤
i xj) (7)

where σ(·) is a Sigmoid function mapping a scalar to a (0, 1)
scale. We then label a positive pair ei ∈ O+ as yi = 1, and
a negative pair ei ∈ O− as yi = 0. Finally, we minimize a
cross-entropy loss as follows to train node representations.

Lrule = −
∑

ei∈O+∪O−

yi log ŷi + (1− yi) log(1− ŷi) (8)

Besides, we can have a rule representation r by summariz-
ing the embedding of its condition notes.

r =
1

|Vr| − 1

∑
ai∈Vr−{tr}

ai (9)

where tr is the result node of rule r. The distance between r
and tr should be narrowed. Thus, we update Lrule as follows:

Lrule = Lrule −
∑
r

log(σ(r⊤tr)) (10)

3.3 MIF Module
Based on the node representations, i.e., ai and tj in Equ. (5),
MIF models a patient information from the guideline channel,
neighbor channel, and content channel, simultaneously.

Guideline Channel Modeling
Regarding the target patient pi, they have a set of sparse
attribute-value pairs (AVPs) denoted by

Pi = {· · · , vj , · · · } (11)

where vj is an AVP, e.g., “er value = 0.1”, and can be
viewed as a particular case of an attribute-relation-value tu-
ple in which “relation” is “=”. Thus, vj can be utilized to
match condition nodes in the guideline hypergraph. Note that
the AVP “er value = 1” can also match the condition node
“er value ≥ 0”. Then, patient pi has a set of matched condi-
tion nodes denoted by

Mi = {· · · , aj , · · · } (12)

where aj is matched by vj . The size |Mi| is usually less
than |Pi| since not all vj can be matched. However, as we
discussed before, the matched vj usually has a higher impor-
tance as it appears in medical guidelines. Thus, we generate
a representation of patient pi guided by medical guidelines.

pGC
i =

1

|Mi|
∑

aj∈Mi

aj (13)

By doing so, even if the patient can’t match a rule completely,
medical guidelines can also contribute to the decision of ther-
apies as long as Mi is not empty.

Neighbor Channel Modeling
The determined therapies of similar patients have great refer-
ence significance to the therapy decision of the target patient
[Zhu et al., 2020]. Therefore, we devise a neighbor channel
to incorporate this information. However, unlike traditional
approaches, we query similar patients using condition nodes
as a bridge. Specifically, for historical cases, each patient pm
has a pair

(pGC
m , tm)|pm (14)

where tm is equal to tmj and its j is omitted for convenience.
It is a result node embedding and matched by therapy item tm

determined for patient pm.
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Then, we query historical cases pm by evaluating their sim-
ilarities to the target patient pi:

si,m =
exp(s′i,m)∑

pm′∈Si
exp(s′i,m′)

s′i,m =
pGC
i

⊤
pGC
m

∥pGC
i ∥∥pGC

m ∥
(15)

where Si is the set of top-K patients, and K is tuned accord-
ing to datasets; ∥ · ∥ is an L2-normalization. The therapy
items of top-K most similar patients are combined to obtain a
neighbor-guided representation:

pNC
i =

∑
pm∈Si

si,mtm (16)

Content Channel Modeling
The pGC

i in Equ. (13) is formed by selecting AVPs according
to medical guidelines; thus, the AVPs that do not appear in
medical guidelines but are valuable are neglected. To address
this issue, we incorporate a traditional content-based DPCNN
[Johnson and Zhang, 2017] to model all possible patient in-
formation. DPCNN is a widely efficient deep classification
method that is pyramid-shaped, and is selected as it performs
well compared to others.

The AVPs of a patient are preprocessed according to at-
tribute types. One-hot encoding is employed for a discrete
attribute; continuous attributes are encoded to a denser repre-
sentation by a fully connected layer network (FC). The miss-
ing value of attributes is set to 0 for alignment. Then, all
outputs are concatenated, which are further fed to DPCNN to
obtain a content-based representation as follows:

pCC
i = DPCNN(fc1(concat(preproc(Pi)))) (17)

where fc1(·), concat(·), and preproc(·) represent FC, con-
catenation, and preprocessing, respectively.

For an extreme situation that there is no AVP of patient pi
matched by a condition node, i.e., |Mi| = 0, pCC

i ensures
that our approach still can provide therapy recommendations
based on a pure data-driven strategy.

Three-channel Fusion
The final representation of a patient is generated by fusing the
information from the three channels.

pi = fc2(concat(p
GC
i ,pNC

i ,pCC
i )) (18)

where fc2(·) is another FC.

3.4 Model Inference and Recommendation
The fused representation pi is utilized to generate a probabil-
ity vector yi ∈ RN for therapy recommendations as follows:

ŷi = σ(fc3(pi)) (19)
where N is the number of therapy items, and each dimension
ŷi,j represents the recommendation score of therapy item tj .

In the training phase, each patient has a one-hot label vec-
tor yi, in which yi,j = 1 if tj is the ground truth, otherwise
yi,j = 0. We then minimize the following cross-entropy loss
to train model parameters.

Lrec = −
∑

(pi,tj)

yi,j log ŷi,j (20)

Figure 3: The hypergraph whose hyperplane is omitted.

4 Experiment
4.1 Decision Rule and Dataset
We extract 23 rules for breast cancer from NCCN guidelines1

[Gradishar et al., 2018]. Then, there are 41 unique condition
nodes and 8 result nodes for constructing a medical guide-
line hypergraph shown as Figure 3. Each rule involves 16.43
condition nodes in average and one result node.

BCDB [Zhu et al., 2020] is a real-world medical dataset
recording the physical indicators and chemotherapy items
(therapies for short) of patients with breast cancer. To bet-
ter analyze the effect of medical rules, we select the records
with at least one attribute appearing in the rules to form our
dataset. Then, the final dataset contains 2,648 records, 12 at-
tributes, and 8 therapies. About 18.35% of records can match
at least one of the above medical rules completely.

4.2 Evaluation Metric
We employ commonly-used Hit Rate (HR), Mean Reciprocal
Rank (MRR), and Normalized Discounted Cumulative Gain
(NDCG) to assess R2V-MIF and the baselines’ performance.

HR is calculated as the proportion of the cases that the ac-
tual therapies are in the top-K recommendations. MRR eval-
uates the position of actual therapies in the recommendation
list. The higher the rank of the actual therapies in the rec-
ommendation list, the higher the value of MRR. NDCG is
similar to MRR but simultaneously considers the position and
predicted relevance of actual therapies.

4.3 Baseline
We compare R2V-MIF with three typical data-driven ap-
proaches without considering medical rules, i.e., Gzip, Con-
vCond, and DPCNN, and two recent neural networks consid-
ering medical rules, i.e., Filter and DeepCtrl. All data-driven
parts of baselines have the same data preprocessing as that in
our content channel modeling.

Gzip [Jiang et al., 2023] is a simple, lightweight, and uni-
versal alternative to NNs. It comprises a lossless compressor,
a compressor-based distance metric, normalized compression
distance, and a neighbor classifier.

1https://www.nccn.org/
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(a) HR Performance (b) MRR Performance (c) NDCG Performance

Figure 4: Performance comparison of different approaches.

(a) HR Performance (b) MRR Performance (c) NDCG Performance

Figure 5: Performance of variants of the proposed R2V-MIF.

ConvCond [Yang et al., 2019] uses the idea of dynamic
convolution to learn different convolution kernel parameters
for different samples, thereby increasing its modeling ability.

DPCNN [Johnson and Zhang, 2017] is a deep pyramid
neural network that emphasizes long-range associations in the
text while maintaining a lower computational complexity.

Filter adopts the filtering strategy in [Zhu et al., 2020] to
handle medical rules. But the difference is that we select
DPCNN as a data-driven approach as that in R2V-MIF for
a better comparison.

DeepCtrl [Seo et al., 2021] is a fusion framework that en-
codes medical rules and data simultaneously. A partial order
loss and a conventional classification loss are combined for
training based on a set of positive-negative sample pairs.

4.4 Performance Comparison
We first introduce some default settings in our experiments.
For all approaches, the number of epochs and the value of
batch size are tuned to 12 and 256, respectively. Since the
sample size is limited and the models converge quickly, we
set the learning rate to a fixed value of 0.01. Then, for our ap-
proach, we query 10 most similar cases in the neighbor chan-
nel modeling and the parameters α and β in Equ. (5) are both
set to 0.33 for the best performance. Then, all approaches’
performance on the BCDB dataset is shown in Figure 4. We
can have three main conclusions:

1) Over the three pure data-driven approaches, i.e., Gzip,
ConvCond, and DPCNN, DPCNN achieves the best perfor-

mance in all situations. The improvement might come from
their various network structures, which is outside the scope
of our discussion. However, we thus select DPCNN as the
data-driven part of our model.

2) Although on the top-1 recommendations, the perfor-
mance difference of all approaches is insignificant, our per-
formance line is on top of all baselines. Especially it greatly
improves the top-2 recommendations, e.g., increasing HR@2
by about 5.15% compared to the second-best performance,
i.e., Filter, and about 13.1% compared to the worst perfor-
mance, i.e., ConvCond. The observation has proven the ef-
fectiveness of our framework.

3) The performance of Filter is better than that of DPCNN.
The only difference between them is that the former considers
medical rules, showing that it is crucial for a data-driven ap-
proach to incorporate medical rules. However, the improve-
ment is limited since only 18.35% samples can completely
match a decision rule. Besides, DeepCtrl, another approach
combining rules and data, has results that are not as good as
expected. As mentioned, sufficiently matched samples must
be required for DeepCtrl to learn rules. By contrast, our R2V-
MIF is unaffected by data limitation, and the knowledge from
medical rules is modeled well.

4.5 Ablation Study
We propose six variants to verify the channel influence on
R2V-MIF by combining or eliminating different channels.
The variants’ performance is shown as Figure 5, where ALL
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(a) α : β : (1− α− β)

(b) K

Figure 6: Parameter analysis.

represents R2V-MIF in which three channels are considered;
the notation “-” represents the removal of a channel, e.g.,
Ours-GC indicates the guideline channel modeling is re-
moved from R2V-MIF. Besides, GC, NC, and CC represent
the variants that only keep the corresponding channel and
eliminate others, e.g., GC only keeps the guideline channel.

We then have the following observations: 1) ALL outper-
forms others, showing the effectiveness of its structure. 2)
Except ALL, GC achieves a better performance than others
in most situations. That means R2V has a powerful ability
to encode rules. As a result, medical rules can also infer a
suitable result for the case that partially matches the rules.

4.6 Parameter Analysis
We analyze the parameter α and β in Equ. (5) and the number
of neighbors queried in the neighbor channel, i.e., K. Others
are fixed when exploring one of them. To save space, we only
exhibit HR performance in different settings.

The influence of α and β is shown in Figure 6(a). The
setting α : β : 1−α−β = 0.33 : 0.33 : 0.33 achieves the best
performance. It is equal to combining all node embeddings by
a mean operation and indicates that GCN and PATT should be
involved for better embedding. The setting α : β : 1−α−β =
0.5 : 0.5 : 0 significantly decreases the HR value, indicating
that PATT is important.

The impact of parameter K is shown in Figure 6(b). The
best result is obtained when K is set to 6 on HR@1 and is
0.825. However, we set the value of K to 10 as default since
the other metrics, e.g., HR@2, HR@3, and HR@4, achieve a
great performance. That is why the top-1 performance of our

Figure 7: Cosine similarity between pre-trained nodes.

approach is similar to others.

4.7 Case Study

Figure 7 is a heat map2 and shows the cosine similarity
between condition and result nodes in the learned embed-
ding space. We can observe that a condition node has var-
ious similarities to different result nodes, i.e., the condition
has different importances when inferring different results.
There are some other findings. For example, the condition
“patho type:2” has a tiny influence on determining the result
“is ct:0”, but should be carefully considered when evaluating
whether “scheme:8” is appropriate for a patient. Besides, the
result node “scheme:13” is close to almost all condition nodes
because most of them appear in the same rule.

5 Conclusion
In this work, we proposed R2V-MIF, which integrates data-
driven and rule-based approaches for therapy recommenda-
tions. Specifically, based on the constructed medical guide-
line hypergraph, the relations between rules are modeled as
distances in a rule representation space. Then, the informa-
tion from guidelines, neighbors, and contents is fused by tak-
ing the rule representation, i.e., condition and result embed-
dings, as a bridge. R2V-MIF achieved excellent performance
on a real-world medical dataset, proving the effectiveness of
rule modeling and channel fusion. There are several direc-
tions for future work. For example, the relations between
conditions and results can be elaborated further by defining
more positive or negative sample types for contrastive learn-
ing. Besides, more technologies and strategies [Xu et al.,
2021] to fuse multi-aspect information can be explored.

2Generated using ChiPlot (https://www.chiplot.online/)
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