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Abstract
Federated Semi-Supervised Learning (FSSL) lever-
ages both labeled and unlabeled data on clients to
collaboratively train a model. In FSSL, the hetero-
geneous data can introduce prediction bias into the
model, causing the model’s prediction to skew to-
wards some certain classes. Existing FSSL meth-
ods primarily tackle this issue by enhancing con-
sistency in model parameters or outputs. However,
as the models themselves are biased, merely con-
straining their consistency is not sufficient to alle-
viate prediction bias. In this paper, we explore this
bias from a Bayesian perspective and demonstrate
that it principally originates from label prior bias
within the training data. Building upon this insight,
we propose a debiasing method for FSSL named
FedDB. FedDB utilizes the Average Prediction
Probability of Unlabeled Data (APP-U) to approxi-
mate the biased prior. During local training, FedDB
employs APP-U to refine pseudo-labeling through
Bayes’ theorem, thereby significantly reducing the
label prior bias. Concurrently, during the model ag-
gregation, FedDB uses APP-U from participating
clients to formulate unbiased aggregate weights,
thereby effectively diminishing bias in the global
model. Experimental results show that FedDB can
surpass existing FSSL methods. The code is avail-
able at https://github.com/GuogangZhu/FedDB.

1 Introduction
Federated Learning (FL) [McMahan et al., 2017] is a dis-
tributed learning paradigm that can facilitate collaborative
model training among multiple clients while preserving data
privacy. Presently, most FL methods are confined to super-
vised learning (SL) settings, wherein it is presumed that each
client maintains a fully labeled dataset. Nevertheless, in real-
world applications, data labeling is notably laborious and
time-consuming. Therefore, a more realistic case involves

∗Jianwei Niu is the corresponding author.
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Figure 1: Class-wise test accuracy on a balanced test dataset, along
with the labeled data distribution on an individual client. (a) Test
accuracy of local model, (b) Test accuracy of global model. The
class indexes are ranked based on the labeled data distribution.

each client possessing a mix of unlabeled and labeled data.
This specific scenario, known as Federated Semi-Supervised
Learning (FSSL), has been explored in various studies [Jeong
et al., 2021; Lin et al., 2021; Diao et al., 2022] and is garner-
ing increasing interest within the FL research community.

In this study, we focus on an FSSL setting where the data
on each client are class-imbalanced. Moreover, it is assumed
that both intra-client and inter-client data heterogeneity exist.
Specifically, intra-client data heterogeneity implies that both
the labeled data and unlabeled data on an individual client
originate from diverse distributions. Inter-client data hetero-
geneity means that the overall distributions across clients are
non-independent and identically distributed (Non-IID).

In the described scenario, the model’s prediction can skew
to some certain classes during the training, i.e., prediction
bias. Figure 1 presents the experimental results conducted in
the above scenario, where the overall distributions of labeled
and unlabeled data are balanced. It can be observed that due
to class imbalance in the local client, the local model’s pre-
dictions gradually skew towards the major classes in the local
data. More importantly, this prediction bias cannot be allevi-
ated after model aggregation, even if the overall distributions
are balanced. Instead, it evolves into a different form of bias
due to the influence from other clients. This bias can disrupt
the pseudo-labeling process, further creating a ‘vicious cycle’
between pseudo-labeling and local model training.

Existing FSSL methods attribute the above issue to the di-
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Figure 2: Prior bias in class-imbalanced FSSL.

vergence across clients caused by heterogeneous data and pri-
marily address it by promoting consistency between model
parameters or outputs [Zhang et al., 2021; Jiang et al., 2022;
Liang et al., 2022]. However, as both the local and global
models are biased, merely constraining their consistency can-
not fundamentally mitigate the model prediction bias.

In this paper, we delve into the essential reason for the pre-
diction bias in FSSL from a Bayesian perspective. Based on
Bayes’ rule, the model prediction is as follows:

p(y|x) = p(x|y)p(y)
p(x)

, (1)

where p(y|x) is the model’s prediction, p(x|y) is the class
conditional likelihood, p(y) is the label prior. As shown in
Figure 2, both the label prior of local labeled data (i.e., pl(y))
and unlabeled data (i.e., p̂u(y)) are biased. Consequently,
the model can gradually absorb these biases during training.
These biases are eventually injected into the global model
through model aggregation, causing its output priors ps(y)
to skew towards certain classes. When conducting inference
on a balanced test dataset (i.e., pt(y)), the model may suffer
severe performance degradation, as ps(y) ̸= pt(y).

Nevertheless, ps(y) is commonly challenging to estimate.
On the one hand, in local clients, the ambiguity of pseudo-
labels for unlabeled data makes the label prior bias during
local training intractable. On the other hand, in the server,
model aggregation combines influences from participating
clients, further complicating the estimation of prior bias.

Taking the class-wise accuracy on a balanced test dataset
as the ground truth for prior bias, we find that the Average
Prediction Probability of Unlabeled Data (APP-U) serves as
a robust metric to approximate this bias. Figure 3 illustrates
the Jensen–Shannon (JS) divergence [Lin, 1991] between the
ground truth bias and either the labeled data distribution or
APP-U, where the solid line and shaded area represent the
mean and range across clients, respectively. Interestingly, it
reveals that for both the global and local models, prior bias
does not consistently align with the labeled data distribution.
Rather, it shows a stronger correlation with APP-U, indicat-
ing that APP-U can effectively quantify the prior bias.

Building upon the above insights, we introduce a hierarchi-
cal debiasing method for FSSL termed FedDB, to mitigate
the prior bias at both the local training and global aggrega-
tion stages. During the local training, FedDB implements
debiased pseudo-labeling (DPL) based on Bayes’ theorem,
with APP-U serving as the approximation of bias prior. This
approach promotes a more balanced pseudo-labeling process
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Figure 3: JS divergence between the ground truth bias and either
the labeled data distribution or APP-U on clients. (a) Results on the
local model, (b) Results on the global model.

for unlabeled data, substantially reducing the label prior bias
during local training. At the global aggregation stage, FedDB
utilizes APP-U from the participating clients to determine op-
timal aggregation weights. The above process, termed de-
biased model aggregation (DMA), effectively mitigates bias
within the global model. It should be noted that DPL can be
seamlessly integrated with FSSL methods that utilize pseudo-
labeling with minimal cost. This demonstrates its substantial
potential for practical application of FSSL.

The main contributions of this paper are as follows:

• We analyze the prediction bias in class-imbalanced
FSSL from a Bayesian perspective.

• We propose FedDB, a Bayesian debiasing method for
FSSL that uses APP-U as an approximation of prior bias.

• We conduct extensive experiments on multiple datasets
to demonstrate the effectiveness of FedDB.

2 Related Work
2.1 Federated Learning
Data heterogeneity is a substantial challenge in FL, which
can lead to considerable divergence across clients, thereby
degrading the model performance [Zhao et al., 2018; Li et
al., 2020a]. To address this issue, various strategies are ex-
plored, including reducing the divergence across local mod-
els [Li et al., 2020b; Acar et al., 2020; Karimireddy et al.,
2020], enhancing aggregation schemes [Wang et al., 2020;
Acar et al., 2020; Reddi et al., 2021], promoting representa-
tion consistency across clients [Tan et al., 2022; Zhu et al.,
2023; Liao et al., 2023], developing personalized models for
individual clients [Collins et al., 2021; Liu et al., 2023]. How-
ever, these methods primarily focus on SL settings, which is
impractical as data labeling is laborious and time-consuming.

2.2 Semi-Supervised Learning
SSL aims to mitigate the reliance on labeled data, which
prompts various mechanisms to leverage the latent informa-
tion within unlabeled data. Pseudo-labeling [Lee and oth-
ers, 2013; Wang et al., 2023], also known as self-training,
involves assigning pseudo-labels to unlabeled samples with
high confidence, enabling their incorporation into the train-
ing process. Consistency regularization [Miyato et al., 2018]
introduces arbitrary perturbations to unlabeled samples and
promotes the consistent predictions between different views
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of unlabeled data. Additionally, hybrid methods that amalga-
mate these approaches are also developed, such as MixMatch
[Berthelot et al., 2019], FixMatch [Sohn et al., 2020]. Re-
cently, SSL has focused on class imbalance, leading to var-
ious studies such as class-rebalancing sampling [Wei et al.,
2021], and pseudo label sampling [Guo and Li, 2022]. How-
ever, simply combining these methods with FL is challeng-
ing, as they ignore the collaboration across clients.

2.3 Federated Semi-Supervised Learning
FSSL can be divided into three distinct scenarios [Bai et
al., 2023]: (1) Labels-at-Partial-Clients, where only a few
clients have full labels, while the rest possess only unlabeled
data [Liang et al., 2022; Li et al., 2023]; (2) Labels-at-
Server, where labeled data are only available at the server,
with local clients merely having unlabeled data [Zhang et al.,
2021; Jeong et al., 2021; Diao et al., 2022]; (3) Labels-at-
Clients, where each client has mostly unlabeled data and a
few labeled samples [Jeong et al., 2021; Bai et al., 2023].

This paper focuses on the Labels-at-Clients scenario. Cur-
rently, several works have been proposed for this scenario.
For instance, SemiFed [Lin et al., 2021] assigns pseudo-
labels to unlabeled data only when multiple models provide
consistent predictions. FedMatch [Jeong et al., 2021] en-
forces prediction consistency across multiple models. How-
ever, these methods primarily concentrate on encouraging
consistency across clients, overlooking the inherent prior bi-
ases within the model — a critical factor leading to perfor-
mance degradation in FSSL with class imbalance.

3 Preliminary and Background
In this section, we present the notations used in this paper,
followed by a detailed discussion of the framework of FSSL.

3.1 Problem Setting and Notation of FSSL
We focus on a FSSL setting for K-class classification task
with totally M clients participating in the training. Each
client m maintains a labeled dataset Dm

l = {(xn,yn)}N
m
l

n=1

and an unlabeled dataset Dm
u = {(xn)}N

m
u

n=1, where Nm
l and

Nm
u are the counts of labeled and unlabeled samples, respec-

tively (typically, Nm
u ≫ Nm

l ), xn ∈ X ⊆ Rd is the input
sampled from a d-dimensional space, yn ∈ Y ⊆ {0, 1}K is
the one-hot label. For clarity, we sometimes omit the super-
script denoting the client index in the following contents.

With a slight abuse of notation, we denote Nk
l and Nk

u as
the numbers of samples in class k under Dl and Du for an ar-
bitrary client, i.e.,

∑K
k=1 N

k
l = Nl and

∑K
k=1 N

k
u = Nu. In

this paper, we assume that both Dl and Du exhibit class im-
balance, that is, ∃i, j ∈ {1, 2, . . . ,K} for which the ratio Ni

l

Nj
l

is significantly greater than 1. In other words, the label prior
distribution {p1l , . . . , pKl } shifts from a uniform distribution
{ 1
K }K . This assumption is similarly applicable for Du.
Furthermore, we consider the setting that both intra-client

and inter-client data heterogeneity exist in the FL system.
Intra-client heterogeneity refers to the varied distributions
of labeled and unlabeled data within a single client, that is,

∀m ∈ {1, 2, . . . ,M},Dm
u ̸= Dm

l . Inter-client heterogeneity,
on the other hand, pertains to the dissimilar mixture distri-
butions of both labeled and unlabeled data across clients, i.e.,
∀i, j ∈ {1, 2, · · ·M}, i ̸= j, it holds that Di

l+Di
u ̸= Dj

l +Dj
u.

The final objective of FSSL is to learn a global model
f(x;w) : X → Y parameterized by w that can generalize
well to a balanced test dataset whose label prior distribution
is { 1

K }K . Given the input xn, we denote its correspond-
ing output logits as z(xn) := f(xn;w), and the normal-
ized prediction probability after softmax layer as p(y|xn) :=
σ(f(y|xn;w)), where σ(·) is the softmax function. The de-
tailed framework of FSSL is explained as follows.

3.2 Framework of FSSL
During each global round, the server first selects a random
subset of clients S based on the activation rate C and broad-
casts the global model w to these clients. Subsequently, these
clients perform local training for E epochs using w as initial
weights, resulting in the updated local model wm. Finally,
the selected clients upload their local models wm to the server
for model aggregation. The training paradigms of labeled and
unlabeled data in local clients are as follows.

For labeled data, the standard cross-entropy loss is applied
to the weakly augmented version of samples to promote the
discriminative objective, as shown below:

Ls =
1

Nl

Nl∑
n=1

H(yn,p(y|α(xn))), (2)

where α(·) is the weak augmentation function, p(y|α(xn))
is the prediction probability for α(xn), and H(p1,p2) is en-
tropy between probability distributions p1 and p2.

For unlabeled data, the samples are pseudo-labeled using
the trained model, after which they are incorporated into the
training process. Specifically, for a given unlabeled sample
xn, the model first generates the probability on its weakly
augmented version. Then the pseudo-label is calculated by:

ŷn = argmax(p(y|α(xn))), (3)

where argmax(·) is the function that converts a probability
distribution into a one-hot label based on its maximum value.

To enhance the model generalization, the consistency loss
is applied to unlabeled data by minimizing the entropy be-
tween the pseudo-label and the prediction of its strong aug-
mented version.

During the training, only those unlabeled samples that ex-
hibit high confidence are selected to participate in further
training. Consequently, the overall optimization objective for
the unlabeled data can be expressed as follows:

Lu =
1

Nu

Nu∑
n=1

1(max(p(y|α(xn))) ≥ τ)· (4)

H(ŷn,p(y|A(xn))), (5)

where τ is the threshold, 1(·) is the indicator function, A(·)
is the strong augmentation function.

The overall optimization objective of local training on
clients is expressed as:

L = Ls + λLu, (6)
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where λ is used to balance these two loss terms.
After local training, the selected clients send the latest local

models to the server for model aggregation, as shown below:

wt+1 =
1

|St|
∑
m∈St

βm ·wt
m, (7)

where |St| is the number of selected clients in round t, wt
m is

the local model on client m in round t, βm is the aggregate
weight for wt

m, wt+1 is the global model in round t+ 1.

4 FedDB: Detaching Prior Bias in FSSL
This section details the framework of FedDB and its two key
techniques: debiased pseudo-labeling (DPL) and debiased
model aggregation (DMA).

4.1 Framework Overview of FedDB
Figure 4 illustrates the framework of FedDB. During the
training, each global round consists of the following steps:
(1) The server selects a subset of clients for training and

broadcasts the global model to these clients;
(2) The clients perform inference on unlabeled data and cal-

culate APP-U to estimate the prior bias;
(3) The clients perform DPL on unlabeled data using APP-U;
(4) The clients train the model utilizing both labeled data and

pseudo-labeled data;
(5) The clients upload local models and APP-U to the server.

The server performs DMA using APP-U from clients;
(6) Repeating steps 1-5 until the global model converges.
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Figure 4: Framework overview of FedDB.

4.2 Prior Bias Estimation
In this paper, we consider an FSSL setting where both the
labeled data and unlabeled data are class imbalanced. In
such a case, the model’s predictions can skew towards cer-
tain classes, owing to the biased label prior in the training
data. This skew contradicts the training objective of FSSL,
which is to achieve uniform performance across all classes.

To investigate the impact of class imbalance on model
training in FSSL, we conduct preliminary experiments us-
ing the CIFAR10 dataset. We establish a scenario with 10
clients, each participating in model training in every round.
The number of labeled and unlabeled samples is set to 4000
and 46000, respectively. The class imbalance is created by
the Dirichlet distribution, as declared in Section 5.

As shown in Figure 1, both the local and global models
exhibit a biased prediction towards certain classes. However,
estimating the above bias in FSSL is challenging due to the
data heterogeneity and imprecision in pseudo-labeling. By
extensive experiments, we discover that the prior bias can be
effectively approximated by the Average Prediction Probabil-
ity on Unlabeled Data (APP-U). Specifically, for client m, the
APP-U, denoted by pm, can be calculated by:

pm =

∑Nm
u

n=1p(y|α(xn
u))

Nm
u

, (8)

where Nm
u denotes the total number of unlabeled samples

on client m, p(y|α(xn
u)) is the prediction probability of the

weak augmentation of sample xn
u.

We adopt JS divergence as a metric to quantify the dispar-
ity between two distributions. A larger JS divergence indi-
cates a greater disparity between the distributions. Taking the
class-wise accuracy on a balanced test dataset as the ground
truth bias, we calculate the JS divergence between it and ei-
ther APP-U or the labeled data distribution. As shown in Fig-
ure 3, for both local and global models, the JS divergence
between APP-U and the ground truth is significantly smaller
than that between the labeled data distribution and the ground
truth. This demonstrates the effectiveness of APP-U as a met-
ric for quantifying prior bias in FSSL.

4.3 Debiased Pseudo-Labeling
In this subsection, we detail the procedure of DPL. Given an
FL model parameterized by w, we first obtain the prediction
probability ps(y|x) by applying a softmax function to unnor-
malized logits, as illustrated below:

ps(y|x) =
ez(x)[y]∑K
k=1e

z(x)[k]
, (9)

where z(x)[y] is the y-th unnormalized logit.
By applying the Bayes’ theorem to ps(y|x), we obtain:

ps(y|x) =
ps(y)ps(x|y)∑K
k=1ps(k)ps(x|k)

. (10)

Due to the class imbalance in our FSSL settings, the prior
distribution ps(k), as outputted by the model, is biased to-
wards certain majority classes. This leads to a biased predic-
tion probability ps(y|x), causing the model to be overcon-
fident in these majority classes. The objective of DPL is to
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Algorithm 1: DPL: Debiased Pseudo-labeling

Input: Confidence threshold τ

Output: Debiased pseudo-labels Ŷ , APP-U p

1 p =

∑Nu
n=1p(y|α(xn

u))

Nu
, Ŷ := {}

2 for n = 1, 2, ..., Nu do
3 p̂n :=

p(y|α(xn
u))/p∑K

k=1p(k|α(xn
u))/pk

4 if max(p̂n) ≥ τ then
5 Ŷ := Ŷ ⊕ argmax(p̂n)

6 else
7 Ŷ := Ŷ ⊕ {0}K

8 Return Ŷ , p

seek a conditional probability pt(y|x) that is robust across
all classes, given the estimation of the model’s biased prior p,
as defined in Eq. (8).

Following previous studies [Tian et al., 2020; Kairouz et
al., 2021; Hong et al., 2021], we assume that the class condi-
tional likelihoods are the same in both the biased and debiased
predictions, i.e., pt(x|y) = ps(x|y). By rearranging Eq. (9)
and Eq. (10), we have:

ln(pt(y)pt(x|y)) =z(x)[y] + ln(pt(y))− ln(ps(y))

+ ln(
∑K

k=1ps(k)ps(x|k))

− ln(
∑K

k=1e
z(x)[k]).

(11)

Recalling that:

z(x)[y] = lnps(y|x) + ln
∑K

k=1ps(k)ps(x|k). (12)

We derive the following debiased posterior probability:

pt(y|x) =
pt(y)pt(x|y)∑K
k=1 pt(k)pt(x|k)

=
ps(y|x)pt(y)/ps(y)∑K
k=1ps(k|x)pt(k)/ps(k)

,

(13)

where pt(k) is a uniform distribution that is robust for all
classes. By applying the estimated bias p as the approxima-
tion of the prior bias ps, we can obtain the debiased prediction
probability of unlabeled data as follows:

p̂ =
p(y|x)/p∑K

k=1p(k|x)/pk

. (14)

Intuitively, Eq. (14) serves as a regularization term that
smooths the prediction probabilities of the majority classes
and sharpens these of the minority classes, which can allevi-
ate the prior bias introduced by the heterogeneous data. The
detailed procedures of DPL are shown in Algorithm 1.

4.4 Debiased Model Aggregation
The objective of DMA is to computing aggregation weights
that enable the model to perform uniformly across all classes.
During each local updating round, the activated clients send

Algorithm 2: DMA: Debiased Model Aggregation

Input: Local models{wm}Mm=1, local APP-U {pm}Mm=1,
updating epochs Eaggr , learning rate ηaggr

Output: Global weight w
1 Initialize β as { 1

M
}M

2 for e = 1, 2, ..., Eaggr do
3 paggr ←

∑M
m=1 βmpm

4 Laggr =
√∑M

m=1(paggr − pt)
2

5 β ← β − ηaggr∇Laggr

6 β = σ(β)

7 w ←
∑M

m=1 βmwm

8 Return w

their accumulated APP-U pm and their latest models wm to
the server. Then we can get the aggregated APP-U as follows:

paggr =
∑

m∈St
βmpm, (15)

where βm denotes the aggregation weight for client m. To
achieve a more balanced model, we expect paggr to be more
uniform, leading to the following optimization objective:

min
β

Laggr =

√∑M
m=1(paggr − pt)

2

s.t.
∑

m∈St
βm = 1,

(16)

where pt = { 1
K }K is the uniform distribution over K classes,

identical to the test dataset. In FedDB, we utilize the gradient
descent algorithm to solve the above optimization problem.

After obtaining the aggregation weights β, we aggregate
client models and update the global model as follows:

wt+1 =
∑

m∈St
βm ·wt

m, (17)

where wt
m is the local model of client m at last round, wt+1

is the global model. wt+1 is then broadcast to the activated
client for further updates. The processes of DMA and FedDB
are presented in Algorithms 2 and 3, respectively.

5 Experiments
This section details the experimental results in various set-
tings to demonstrate the effectiveness of FedDB.

5.1 Experimental Setup
Datasets. We evaluate FedDB on three benchmark datasets,
including CIFAR10, SVHN, and CIFAR100. Initially, a bal-
anced labeled dataset is separated from the original training
dataset, with the residual data designated as the unlabeled
dataset. When distributing these training data to clients, we
sample data from a Dirichlet distribution q ∼ Dir(δp), where
p is the class-wise prior distribution and δ is a parameter that
modulates the heterogeneity among clients. A higher value
of δ correlates with reduced data heterogeneity. To enrich
the unlabeled dataset, we add the samples from the labeled
dataset to the unlabeled dataset after discarding their labels.
We conduct experiments in IID setting and Non-IID settings
with δ = {0.1, 0.3}. In the IID setting, the total number
of labeled samples is set to 4000, 1000, 10000 for CIFAR10,
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Algorithm 3: FedDB: Detaching Prior Bias in FSSL

Input: Client number M , client activate rate C, global
rounds T , update epochs E and Eaggr , learning rate
η and ηaggr , threshold τ , unlabeled loss weight λ,
momentum accumulation coefficient γ

Output: Global model wT

1 Server executes:
2 Initialize w0

3 for t = 1, 2, ..., T do
4 St ← randomly select M · C clients
5 for each client in m ∈ St in parallel do
6 wt

m, pt
m← ClientUpdate(wt−1)

7 wt ← DMA({wt
m}m∈St , {pt

m}m∈St , Eaggr , ηaggr)

8 Return wT

9 ClientUpdate(wt)
10 Ŷ ,p← DPL(τ )
11 for e = 1, 2, ..., E do

12 pe =

∑Nu
n=1p(y|α(xn

u))

Nu

13 Ls = 1
Nl

∑Nl
n=1 H(yn, p(y|α(xn

l )))

14 Lu = 1
Nu

∑Nu
n=1 1(max(Ŷ n)) ≥ τ)·

H(Ŷ n, p(y|A(xn
u)))

15 L ← Ls + λLu

16 we ← we−1 − η∇L; p← γp+ (1− γ)pe

17 Return wE , p

SVHN and CIFAR100, respectively. For Non-IID setting, the
total number of labeled data is set to 4000 for CIFAR10 and
SVHN, and 10000 for CIFAR100. The test dataset from the
original dataset is used for model evaluation.

Benchmark Methods. We compare FedDB against the fol-
lowing benchmark methods:

• FedAvg [McMahan et al., 2017]: The FedAvg method
is applied in a constrained scenario where each client
utilizes only the small labeled dataset for training.

• FixMatch [Sohn et al., 2020]: This method is a basic
adaptation of FixMatch within FedAvg framework.

• FedMatch [Jeong et al., 2021]: FedMatch introduces
the inter-client consistency loss to maximize the agree-
ment between local models.

• FedRGD [Zhang et al., 2021]: It mitigates the model
bias by reducing gradient divergence among clients.

• SemiFL [Diao et al., 2022]: SemiFL adopts alternate
training between server and clients. Here, we adopts its
client-side training due to the lack of training samples
on the server in our scenario.

• Methods combining DPL. We also conduct experi-
ments that integrate DPL with benchmark methods.
These hybrid methods are denoted as Method-FedDPL.

Implementation Details. We primarily follow the experi-
mental settings adopted in prior works of FSSL [Jeong et
al., 2021]. There are a total of 100 clients participating in
the training, with 10 active clients (C = 0.1) engaged in

each global round. The local training epoch is set to E = 5
and the epoch for updating the model aggregation weights is
set to Eaggr = 100. All experiments are executed for 800
global rounds. We employ Wide ResNet28x2 in our exper-
iments. The SGD optimizer is adopted for model training,
operating at learning rates η = 0.03 for local updating and
ηaggr = 1.0 for aggregation, complemented by a momentum
of 0.9. Due to the limited number of samples on clients, we
feed all training data simultaneously to the model during lo-
cal training. The confidence threshold for pseudo-labeling is
set to τ = 0.95. The data augmentation operation is consis-
tent with those described in FixMatch [Sohn et al., 2020]. All
experiments are repeated for 4 times and we report the mean
and standard deviation of the best accuracy during training.

5.2 Results on Benchmark Datasets
The experimental results are presented in Tables 1 - 3, where
values inside the parentheses represent the mean, and values
outside the parentheses represent the standard deviation of
multiple experiments. It can be observed that with the same
number of labeled samples, the accuracy of all methods de-
creases as δ decreases, demonstrating that data heterogeneity
is a key factor harming model performance. FedAvg, despite
its simplicity, serves as a reliable benchmark method, particu-
larly as the dataset difficulty increases (e.g., CIFAR100). This
issue is also noted by [Diao et al., 2022]. This demonstrates
that improperly incorporating unlabeled data into training can
negatively impact the model’s training. Compared with other
FSSL methods, FedDB enhances test accuracy, demonstrat-
ing the effectiveness of FedDB in the FSSL scenario. The
same conclusion can also be drawn from Figure 5.

Dataset CIFAR10 SVHN CIFAR100

FedAvg 58.42(0.61) 25.10(0.76) 32.00(0.80)

FixMatch 65.80(2.72) 87.44(1.35) 24.72(0.73)
FedMatch 39.63(1.66) 25.09(5.40) 9.44(0.66)
FedRGD 63.27(1.47) 81.04(2.43) 14.45(0.42)
SemiFL 57.24(7.96) 85.58(10.03) 22.61(3.07)

FixMatch-FedDPL 66.97(2.84) 88.00(0.67) 26.44(1.73)
FedMatch-FedDPL 43.06(3.16) 25.90(3.12) 9.47(0.79)
FedRGD-FedDPL 64.75(1.20) 81.24(5.36) 17.17(0.98)
SemiFL-FedDPL 68.46(3.61) 86.77(1.79) 27.67(0.89)

FedDB 67.32(2.31) 86.75(0.90) 26.71(0.87)

Table 1: Experimental results in the IID setting.

5.3 Effectiveness of DPL
As illustrated in Table 4, employing DPL results in substan-
tial gains for FedDB. Furthermore, DPL can be regarded as a
convenient plug-in that can be easily integrated into existing
FSSL methods utilizing pseudo-labeling. As shown in Tables
1 - 3, introducing DPL to existing FSSL methods effectively
enhances their performance. Figure 6 displays the accuracy
of pseudo-labels during training. It indicates that DPL effec-
tively enhances the accuracy of these pseudo-labels, which
in turn benefits FSSL training. Figure 7 presents the ratio
of pseudo-labeled samples in the unlabeled data. However,
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Dataset CIFAR10 SVHN CIFAR100

FedAvg 47.72(1.95) 69.44(6.21) 31.34(0.36)

FixMatch 50.99(2.49) 86.61(0.19) 25.47(0.46)
FedMatch 38.64(2.49) 26.04(4.85) 8.77(0.57)
FedRGD 51.45(2.39) 86.89(3.21) 14.83(0.34)
SemiFL 50.07(1.05) 76.11(6.3) 26.40(0.81)

FixMatch-FedDPL 53.92(3.41) 85.87(0.51) 28.47(0.13)
FedMatch-FedDPL 39.17(2.10) 27.02(3.13) 8.87(0.11)
FedRGD-FedDPL 51.57(1.67) 87.00(1.31) 19.94(0.75)
SemiFL-FedDPL 55.42(2.57) 87.61(0.91) 28.29(0.73)

FedDB 55.00(1.17) 85.99(0.49) 29.28(0.51)

Table 2: Experimental results in the Non-IID setting with δ = 0.3.
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Figure 5: Convergence curve on CIFAR100. (a) IID, (b)Non-IID
with δ = 0.3.

introducing DPL does not consistently improve the ratio of
pseudo-labeled samples, as the model in FSSL is challenging
to train, making it difficult for samples to be pseudo-labeled.
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Figure 6: Accuracy of pseudo labels on CIFAR100. (a) IID, (b)Non-
IID with δ = 0.3.

5.4 Effectiveness of DMA
As shown in Table 4, DMA generally contributes positively to
FedDB in most scenarios. However, its impact differs among
various datasets. More specifically, DMA consistently re-
sults in improved outcomes on the CIFAR10 and CIFAR100
datasets. Conversely, on the SVHN dataset, DMA can lead to
performance decline in certain scenarios. Upon detailed anal-
ysis, we ascribe this issue to the imbalanced distribution of

Dataset CIFAR10 SVHN CIFAR100

FedAvg 33.53(1.9) 32.21(1.52) 28.78(0.53)

FixMatch 35.14(1.53) 74.31(2.07) 25.90(1.06)
FedMatch 31.12(2.69) 12.66(3.34) 7.50(0.99)
FedRGD 35.33(3.73) 38.20(5.64) 18.04(1.59)
SemiFL 33.72(1.87) 72.76(6.19) 25.82(0.44)

FixMatch-FedDPL 37.13(3.22) 76.29(1.00) 27.76(0.85)
FedMatch-FedDPL 32.26(2.75) 16.94(1.28) 7.66(0.43)
FedRGD-FedDPL 35.59(3.49) 38.76(2.67) 18.98(0.58)
SemiFL-FedDPL 37.84(2.33) 74.54(7.51) 27.62(1.00)

FedDB 37.95(2.21) 76.20(1.31) 27.99(1.28)

Table 3: Experimental results in the Non-IID setting with δ = 0.1.
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Figure 7: Ratio of unlabeled samples that are finally assigned with
pseudo-labels on CIFAR100. (a) IID, (b)Non-IID with δ = 0.3.

the SVHN dataset, which contravenes the objective of FSSL
that seeks for a balanced model.

IID

DPL DMA CIFAR10 SVHN CIFAR100
- - 65.80(2.72) 87.44(1.35) 24.72(0.73)
✓ - 66.97(2.84) 88.00(0.67) 26.44(1.73)
✓ ✓ 67.32(2.31) 86.75(0.90) 26.71(0.87)

δ = 0.3

DPL DMA CIFAR10 SVHN CIFAR100
- - 50.99(2.49) 86.61(0.19) 25.47(0.46)
✓ - 53.92(3.41) 85.87(0.51) 28.47(0.13)
✓ ✓ 55.00(1.17) 85.99(0.49) 29.28(0.51)

δ = 0.1

DPL DMA CIFAR10 SVHN CIFAR100
- - 35.14(1.53) 74.31(2.07) 25.90(1.06)
✓ - 37.13(3.22) 76.29(1.00) 27.76(0.85)
✓ ✓ 37.95(2.21) 76.20(1.31) 27.99(1.28)

Table 4: Ablation studies on CIFAR10, SVHN, and CIFAR100.

6 Conclusion
In this paper, we propose FedDB to detach prior bias in FSSL
with class imbalance. At the local training level, FedDB de-
biases the pseudo-labeling using APP-U based on Bayes’ the-
orem, encouraging a more balanced training data during the
training. At the global aggregation level, FedDB leverages
APP-U across different clients to derive optimal aggregation
weights, aiming to debias the global model. Extensive exper-
iments have shown the effectiveness of FedDB.
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