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Abstract
Predicting the size of message cascades is critical in
various applications, such as online advertising and
early detection of rumors. However, most existing
deep learning approaches rely on cascade observa-
tion, which hinders accurate cascade prediction be-
fore message posting. Besides, these approaches
overlook personalized retweeting behaviors that re-
flect users’ inclination to retweeting specific types
of information. In this study, we propose a univer-
sal cascade prediction framework, namely Cascade
prediction regarding Multiple Stage (CasMS), that
effectively predicts cascade popularity across mes-
sage generation stage as well as short-term and
long-term stages. Unlike previous methods, our
approach not only captures users’ personalized
retweeting behaviors but also incorporates tempo-
ral cascade features. We perform the experiments
in datasets collected ourselves as well as public
datasets. The results show that our method signifi-
cantly surpasses existing approaches in predicting
the cascade during the message generation stage
and different time periods in the cascade dynamics.

1 Introduction
In the realm of online social platforms such as Twitter, Sina
Weibo, and Facebook, users generate and share various types
of information with their friends/fans. Certain information
messages have the potential to follow social connections and
spread rapidly to a large number of users. This cascade
phenomenon has been extensively utilized in viral market-
ing [Leskovec et al., 2007; Robles et al., 2020], recom-
mendations [Wu et al., 2019; Wu et al., 2020] and rumor
detection [Bian et al., 2020]. Predicting the cascade popu-
larity is a key problem in these applications. Although deep
learning-based methods have been employed to address this
challenge, existing approaches primarily focus on analyz-
ing the temporal cascade paths while disregarding personal-
ized retweeting behaviors [Li et al., 2017; Cao et al., 2017;
Chen et al., 2019]. In reality, different users possess distinct
preferences when retweeting or sharing different messages,
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which significantly impacts the accuracy of information cas-
cade prediction. Besides, in the message generation stage,
users also want to evaluate the potential popularity and opti-
mize the message contents based on the evaluation feedback.
Hence, how to effectively predict the popularity in the mes-
sage generation stage and the cascade dynamics is a perma-
nent problem in social network analysis.

The cascade process relies on both the diffusion model of
messages and social connections, making diffusion model-
based approaches a natural choice. To enhance diffusion
model-based approaches, some studies utilize the Hawkes
point process to model message cascades [Zhao et al., 2015;
Mishra et al., 2016]. Inspired by traditional machine learn-
ing techniques, feature regression is employed to forecast the
message cascades, where the features can be extracted from
message contents, social connections, and even the prior do-
main knowledge [Cheng et al., 2014; Shulman et al., 2016;
Gao et al., 2019]. In recent years, deep learning-based meth-
ods have been introduced to identify complex features in so-
cial graphs and temporal cascade snapshots [Cao et al., 2017;
Chen et al., 2019; Lu et al., 2023]. However, most exist-
ing deep learning-based methods overlook the significance
of personalized retweeting behaviors regarding some specific
kinds of messages, which are crucial for accurate cascade pre-
diction [Xu et al., 2021; Sun et al., 2023a].

The challenges associated with cascade prediction can be
categorized into three classes: (1) Extracting complex fea-
tures from multimodal data poses a significant challenge.
Users generate and share diverse types of data such as so-
cial graphs, tweet text, images and videos. Effectively ex-
tracting features from this multimodal data is a challenge.(2)
Accurately characterizing the diffusion model is a problem
in cascade prediction. Recent deep learning-based methods
overlook the underlying model of the diffusion process and
have small prediction accuracy when the observed data is in-
sufficient. (3) Extracting the temporal features of cascades is
a challenge. The dynamics of cascades are influenced by both
the static graph structure and the temporal cascade. How to
combine different features is a problem.

In this paper, we present a universal framework, called
Cascade regarding Multiple Stage (CasMS), to forecast the
size of message cascades. Our proposed CasMS first lever-
ages the retweeting history of users to extract their behav-
ioral patterns. By incorporating a Graph Convolutional Net-
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work (GCN) module [Kipf and Welling, 2016], our approach
effectively captures both static graph features and temporal
cascade features, enabling simultaneous cascade prediction
in the message generation stage and in long-term time period.
The primary contributions of CasMS are as follows:

• Characterizing personalized retweeting behavior: We
explicitly capture users’ preferences in retweeting spe-
cific types of messages, in contrast to existing methods
that overlook the importance of personalization.

• Cascade-driven graph convolutional network: We intro-
duce a graph convolutional network that combines the
diffusion model and personalized retweeting behaviors.
This integration facilitates the joint description of the
diffusion model and the users’ personalization.

• Real-world dataset experiments: To validate our frame-
work, we conduct extensive experiments using datasets
collected ourselves as well as publicly available datasets.
The results unequivocally demonstrate that CasMS out-
performs state-of-the-art baselines.

2 Related Work
The task touches on the diffusion model of cascade, feature
engineering, and deep learning-based cascade prediction.
Cascade model & prediction: Typical cascade models, such
as the independent cascade model and the linear threshold
model, are commonly used to describe the process of infor-
mation propagation [Chen et al., 2022; Ling et al., 2022b;
Ling et al., 2022a]. These models rely on prior knowl-
edge and involve calculating parameters based on cascade
snapshots. By evaluating these parameters, it becomes pos-
sible to predict based on the diffusion model. However,
it is worth noting that the current models primarily focus
on predicting the outbreaks of information that are charac-
terized by the thresholds of graphs [Shulman et al., 2016;
Xia et al., 2021].
Feature-based prediction: This type of approach utilizes
various features for cascade size prediction, including infor-
mation content, user characteristics, social graphs, and tem-
poral cascade features [Cheng et al., 2014; Szabo and Hu-
berman, 2010]. These features are then fed into a discrim-
inative machine learning algorithm to facilitate prediction.
Therefore, the extraction and integration of features play a
pivotal role in the cascade prediction. Tsur et al. [Tsur and
Rappoport, 2012] demonstrated the informativeness of user
features from early adopters as predictors, while Pinto et
al. [Pinto et al., 2013] emphasized the substantial impact of
temporal features. It is important to note that the marginal
gain diminishes as more diverse features are combined. In-
spired by this, the models of Poisson process and Hawkes
process have been incorporated into cascade prediction [Shen
et al., 2014], where only a limited set of features are utilized.
In the Hawkes process, content features are used to evalu-
ate the content virality, temporal cascade features are used
to evaluate the memory decay, and the social graph features
are used to evaluate user influence. Later on, various meth-
ods have been proposed to extract and combine different fea-
tures [Gao et al., 2019].

Deep learning-based prediction: Deep learning methods
have demonstrated remarkable achievements in natural lan-
guage processing and computer vision. Leveraging their abil-
ity to automatically extract and fuse diverse features, as well
as perform end-to-end tasks, deep learning has also been ap-
plied to cascade prediction. One notable instance is Deep-
Cas [Li et al., 2017] that is the pioneering use of deep learn-
ing as a cascade predictor. Subsequently, several traditional
methods have been adapted to achieve end-to-end prediction
through the integration of deep learning techniques. For in-
stance, Deephawkes [Cao et al., 2017] utilizes deep learning
to extract features from the node sequences of the cascade and
determine the decay parameters of the Hawkes process. Chen
et al. [Chen et al., 2019] employ graph convolutional neural
networks to extract temporal features from the cascade. Sun
et al. [Sun et al., 2023b] introduce Transformer to capture
both the spatio-temporal features and users’ characteristics.

Our work shares similarities with the cascade predic-
tion approach proposed in references [Chen et al., 2019;
Lu et al., 2023]. In these studies, the authors employ GCN to
capture temporal characteristics within the cascade snapshots.
In contrast, our approach first learns the retweeting patterns
of users. We incorporate users’ retweeting features, along
with the users’ states throughout the cascade process, into
our graph convolutional network. Unlike previous works that
roughly extract temporal features, our novel GCN aims to de-
scribe personalized behavior in the implicit diffusion models,
implying better interpretation. More importantly, our method
could predict the popularity not only in the short-term and
long-term periods but also in the message generation stage.

3 Preliminaries
3.1 Motivation
Existing popularity prediction approaches in the field of so-
cial media suffer from the following problems:

• How to predict the popularity during the message gener-
ation stage? While large language models(LLMs), such
as GPT [Brown et al., 2020], PaLM [Chowdhery et al.,
2023] and LLaMA [Touvron et al., 2023], and multi-
modal software assist in generating high-quality mes-
sages, they do not guarantee popularity. To address this
issue, the prediction of popularity during the message
generation stage necessitates consideration of users’ so-
cial position, personalized preferences, and the spread-
ing model. However, existing methods mostly rely on
the early cascade paths, which are not applicable during
the message generation stage.

• How to perform long-term prediction of the message
cascade? Most existing works either employ Hawkes
processes or graph neural networks that are suitable for
smoothly spreading processes. However, these meth-
ods do not explicitly account for the underlying cas-
cade models, resulting in poor performance in predicting
burst cascades for popular messages.

• How to incorporate users’ personalized retweeting pref-
erences and cascade models in the popularity predic-
tion models? In social networks, each user possesses

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2599



a personalized preference for retweeting specific types
of messages(depending on message content), which in
turn affects cascade models and popularity prediction.
While personalized behaviors in social networks have
been extensively studied, incorporating them into pop-
ularity prediction remains an open question.

To tackle the above problems, we put forward an innova-
tive framework for predicting popularity that effectively in-
tegrates users’ personalized behaviors with cascade models.
By bridging the gap between micro-level user behaviors and
macro-level cascade processes, our approach enables accu-
rate popularity prediction across message generation, short-
term, and long-term periods.

3.2 Problem Formulation
Let G = (V,E) be a static social network, where V de-
notes the the set of users and E ⊆ V × V denotes the
set of edges. Suppose we have M messages, denoted by
M = {mi, i ∈ [1,M ]}. For each message mi, we use a
cascade Ci = {(uij , vij , tij)} to record the diffusion process
of message mi, where the triple (uij , v

i
j , t

i
j) corresponds to

the j−th retweet, meaning that user vij retweets message mi

from user uij , and the time elapsed between the original post
and the j−th retweet is tij . The popularity Rit of the mes-
sage mi up to time t is defined as the number of retweets,
i.e., Rit = |{(uij , vij , tij)|tij ≤ t}|. The problem of popularity
prediction in this paper is then formulated as follows:
Problem definition(Popularity prediction): Given a mes-
sage mi, the observation time window [0, t] and the predic-
tion time ∆t, the objective is to predict the increment of the
size of cascade Ci until time t + ∆t, which is denoted as
∆Rit = Rit+∆t −Rit.
Prediction task in message generation stage: In the mes-
sage generation stage, the corresponding cascade set Ci is
empty. Therefore, our approach relies solely on the content
of a message, the static social graph, and the cascade model to
make predictions, in contrast to previous works that are based
on early cascade paths. Hence, it is essential to carefully ex-
tract and fuse the features into the prediction model.
Prediction task in short-term and long-term periods: In
the problem definition, the parameter t determines the earli-
ness of the prediction, while ∆t represents the time period
for the prediction. Specifically, when ∆t is small, we focus
on short-term popularity prediction. Conversely, when ∆t is
larger, we shift our attention to long-term prediction.

In the prediction task, we only consider the popularity
in static social networks. But in reality, the social network
evolves over time. This exclusion of network structure evolu-
tion helps to avoid any undesired effects that may arise from
new edges influencing the information cascades.

3.3 Challenges
The cascade prediction is actually to find a function f that
maps (G,mi, Ci) to ∆Rit, f : (G,mi, Ci) → ∆Rit. There
are three challenges to calculate the function f : (1) In
the message generation stage, most computer-aided software
uses the network buzzwords as the prompt of large language

(or multimodal) models to generate potential popular mes-
sages. However, predicting the popularity based solely on
the network buzzwords fails to consider the message con-
tent and users’ social influence. Additionally, we recognize
that different types of messages may require different ap-
proaches to measure social influence. For instance, a sports-
related tweet from a famous athlete may have a higher impact
compared to a traffic-related tweet from the same user. In-
tegrating these features effectively remains a challenge. (2)
In the long-term prediction, though existing frameworks ap-
ply deep node/network embedding and temporal feature ex-
traction methods to predict the popularity, they fail to con-
sider the diversity of diffusion models for different message
types, hindering the accuracy of long-term prediction. Fur-
thermore, traditional prediction models may experience a sig-
nificant performance decline when the topic of the message
changes on the Internet (concept drift). (3) The retweeting be-
havior of users heavily relies on the content of the messages
in the cascade model. Extracting behavior preference features
from sparse data and incorporating them into the correspond-
ing prediction framework remain significant challenges.

4 Proposed CasMS Framework
In this section, we propose a novel and comprehensive frame-
work CasMS to predict popularity, which tackles the afore-
mentioned challenges simultaneously. The CasMS frame-
work, as depicted in Figure 1, consists of four essential com-
ponents: (1) Modeling Personalized Retweeting Behav-
iors: We dedicate this component to extracting the feature
of personalized retweeting behaviors. (2) Learning Cascade
Snapshot Feature: This component integrates the personal-
ized retweeting behaviors with message diffusion models to
extract the cascade snapshot feature. (3) Learning Multi-
Resolution Temporal Feature: Leveraging a temporal con-
volutional network, this component facilitates the learning of
the temporal feature of the message cascade. (4) Joint Pre-
diction Module: This component takes the temporal cascade
features as input and uses multi-layer perceptrons (MLPs) to
predict popularity. In the subsequent sections, we provide de-
tailed explanations of each component.

4.1 Learning Personalized Retweeting Behavior
To extract the personalized retweeting behavior feature, we
need the features of messages and the users’ social influence.
Message feature extraction: The potential popularity of a
message is determined by its contents. Additionally, users
tend to retweet messages that revolve around specific topics
reflecting his/her interests. To extract the features of mes-
sage contents, we have employed Bidirectional Encoder Rep-
resentations from Transformers (BERT) [Devlin et al., 2018],
an esteemed semantic model in the natural language process-
ing field. While alternative more complex pre-trained mod-
els like XLNet [Yang et al., 2019] and UniLM [Dong et
al., 2019] also exist for extracting message features, their
marginal gains in our specific task are minor. Therefore,
BERT is sufficient for the feature extraction task. In our
experiments, we utilized the RoBERTa-wwm-ext-large 1 (an

1https://github.com/ymcui/Chinese-BERT-wwm
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Figure 1: The framework of the proposed CasMS method. It consists of a personalized retweeting behavior module, a cascade snapshot
module, a multi-resolution module, and a prediction module to predict future popularity.

open enhanced version of BERT) as the input module, from
which we extracted the feature hi of message mi as

hi = BERT (mi). (1)

User feature extraction: Users’ characteristics can be de-
rived from profile tags, such as age, gender, and interests, as
well as the social network structure. In our dataset, we only
have access to the network structure. Therefore, we utilize
this structural feature alone to represent users’ characteristics.

To obtain the node embeddings, we adopt the Skip-gram-
based model [Mikolov et al., 2013]. Let us consider a net-
work G = (V,E), where V represents the set of nodes and E
represents the set of edges. The objective function [Perozzi
et al., 2014; Grover and Leskovec, 2016] optimized by the
Skip-gram model with negative sampling is as follows:

Lembed = maxΘ
∑

(u,v)∈E

log σ(θTu ·θv)+kEv′∼P [log σ(θTu ·θv′)],

(2)
where σ(x) = 1/(1 + exp(−x)) denotes the sigmoid func-
tion, k signifies the negative sampling rate and P indicates the
negative sampling distribution (We use the uniform distribu-
tion in the experiments). The objective of the above equation
is to learn a d-dimensional representation θv ∈ Rd for each
user v. We employ a |V | × d matrix Θ to represent the social
influence representations of all users.

In our framework, the social representation is initially com-
puted based on Eq. 2 and serves as input for the next module.
Characterizing personalized retweeting behavior: The
retweeting behavior of users is influenced by both textual
features of messages and user features derived from net-
work structures. In order to quantify the likelihood of a user
retweeting a message, we employ the dot product between
the message feature and the user feature. However, since the

dimensions of the message feature and user feature differ, it
is necessary to align the two dimensions. We employ a neu-
ral network module to first compress each feature to the same
dimension - namely, hi for the message feature and θv for the
user feature. This compression is achieved using multilayer
perceptron modules in Eq. 3, parameterized by ϕ and ψ, both
of which yield an output dimension of 64. After compressing,
the normalized features undergo dot product computation in
Eq. 4, followed by a sigmoid function σ(·) to ensure simi-
larity values in the range of (0, 1). The resulting output sv,i
signifies the probability that user v will retweet message i.

h
(c)
i = Encoderϕ(hi), θ(c)v = Encoderψ(θv), (3)

h
(n)
i = Norm(h

(c)
i ), θ(n)v = Norm(θ(c)v ), (4)

sv,i = σ(θ(n)v · h(n)
i ). (5)

The parameters in the module of users’ personalized
retweeting behavior are trained together with the popularity
prediction task.

4.2 Learning the Cascade Snapshot Feature
The cascade snapshot of a messagemi records the cascade se-
quence of activated nodes until time t, i.e., {(uij , vij , tij)|tij ≤
t}. In the cascade model, each user has personalized retweet-
ing behavior and is influenced by his/her neighbors.

In this module, the GCN [Kipf and Welling, 2016] is
utilized to describe the cascade model and extract snapshot
features. Let av = 1(0) represents whether node v is acti-
vated(inactivated). The input attribute of a node v is the con-
catenation of node (user) embedding feature, activation state
av , personalized retweeting behavior sv,i, and other hidden
parameters (denoted by η ∈ Rr×1),

xv,0 = [θTv , η
T , av, sv,i], (6)
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where xv,0 has dimension (d+ r + 2)× 1. The feature ma-
trixX0 of all nodes is constructed, where each row represents
a user’s attribute. In the GCN, the features are aggregated
from the local neighborhood and combined as,

ol = A(l)(Xl−1;Wl), Xl = C(l)(ol;bl), ∀1 ≤ l ≤ K,
(7)

where Xl represents features in different layers and we set
Xl(l ̸= 0) the same dimension with X0, A(l)(·) and C(l)(·)
are the aggregation function and combine function parameter-
ized byWl and bl respectively,K = 5 in the experiment. The
elements sv,i denote the likelihood of a user towards a mes-
sage, while η encodes the unknown features in the snapshot.
GCN has been widely applied in various tasks, including
information diffusion estimation [Chamberlain et al., 2021;
Xia et al., 2021; Ko et al., 2020], graph source localiza-
tion [Wang et al., 2022; Ling et al., 2022b], and graph ana-
logical reasoning [Ling et al., 2022a]. In the module, GCN is
leveraged to characterize the underlying diffusion model and
extract the snapshot features.

Notably, the element av in Xl represents the probability
of user v being activated. Let Xl(av) represent the element
av in Xl. To consider the activation probability increment
caused by neighbors, an additional variable av,l is introduced
for each node v and each layer l. The activation probabil-
ity av,l is calculated as the sum of av,l−1 and Xl(av), con-
strained to be no greater than 1,

av,l = min{av,l−1 +Xl(av), 1}, l = 1, 2, ...,K. (8)

In fact,Xl(av) represents the probability increment of user v.
Theorem 1 (Monotonicity of activation probability ele-
ments av,l). For any GCN-based diffusion model, the ac-
tivation probability elements av,l are monotonic and non-
decreasing for all nodes and all layers, assuming that C(l)(·)
in Eq. 8 is a non-negative function.
Proof: The graph convolutional network can be represented
as the iteration A(1)◦(C(1)◦A(2)◦C(2)...◦A(K)◦C(K)). Since
C(l)(·)∀l = 1, 2, .., k are non-negative, Xl = C(l)(ol;bl) ≥
0 and Xl(av) ≥ 0. Given that y = min{x, 1} is a non-
decreasing function, we can conclude that av,l is monotonic
and non-decreasing.□

It is worth noting that many neural units, such as sigmoid,
ReLU, satisfy the non-decreasing and non-negative properties
of C(l)(·) in Theorem 1. The cascade snapshot feature mod-
ule takes cascade snapshots, users’ features, and personalized
retweeting behavior as inputs, and extracts the snapshot fea-
tures using the stacked GCN. The output of the module is the
concatenation of nodes’ feature in the last layer Xl of GCN
and the potential activation probability vector of the last layer
al = [a1,l, ..., av,l, ..., a|V |,l].
Remark: The cascade snapshot feature module differs from
the classical GCN in three perspectives: (1) Users’ person-
alized retweeting behavior is explicitly included in the input.
(2) The input user features are pretrained from the network
embedding module, as opposed to being optimized by the fi-
nal task in prior works. (3) The activation probability av,l
is ensured to be monotonic and non-decreasing by utilizing
non-negative neural units.

4.3 Learning Multi-resolution Temporal Feature
The temporal feature of the cascade dynamics is crucial for
predicting popularity. In this module, we employ a Tempo-
ral Convolutional Network (TCN) [Lea et al., 2017] to ex-
tract multi-resolution temporal features. Unlike previous re-
searches that mainly used LSTM [Hochreiter and Schmidhu-
ber, 1997] for processing time series data, recent studies have
demonstrated that TCN outperforms LSTM. This is because
TCN, based on the traditional convolutional neural network,
possesses a longer effective memory than LSTM. As a result,
TCN is capable of capturing more distant and comprehensive
information in time series data.

To handle the temporal cascade data, we first split the cas-
cade records into q time-interval uniform snapshots. For each
snapshot, denoted by g(t) = [Flatten(Xl), al], we calculate
the snapshot feature. Here, g(t) represents the concatenation
of the last layer of Graph Convolutional Network (GCN) and
the activation probability vector al. The resulting number q of
snapshot features construct the time series input of the TCN,
namely, g(1),g(2), ...,g(t), ...,g(q).

Next, we use the classical dilated causal TCN on the time
series input. Let f = (f1, f2, ..., fz) be the convolution ker-
nel, and d be the expansion factor of the dilation convolution.
The dilated causal convolution is given by the equation

F (t) = (g ∗d f)(t) =
z∑
i=1

fi · g(t− d · i). (9)

4.4 Joint Prediction Module
Joint feature extraction: The proposed framework incorpo-
rates three key components: message content features, users’
social influence, and a multi-resolution temporal cascade.
Firstly, the users’ social influence feature is computed based
on social network embedding using Eq. 2. Importantly, this
social influence feature is shared among all cascades and is
only calculated once within the framework. Secondly, given
a set of temporal cascade records, we extract the content fea-
ture using the message feature module. Additionally, we
leverage Eqs. 3–5 to determine users’ personalized retweet-
ing behavior in relation to the message. Thirdly, we split the
cascade records into uniform snapshots and extract the multi-
resolution temporal feature jointly using the cascade snapshot
module and the multi-resolution temporal module. The out-
put of the multi-resolution temporal module is fed into the
final prediction module to predict the popularity.
Prediction module: We employ the multi-layer perceptrons
(MLPs) as our prediction module. The MLPs take the out-
put from the multi-resolution temporal module as input and
consists of two hidden layers. Its output has only one neural
unit activated by ReLU function and corresponds to the pre-
dicted popularity increment, denoted as ∆̂Rit. We adopt the
Mean Squared Logarithmic Error (MSLE) as the loss func-
tion, which is defined as follows:

Lpred =
1

N

N∑
i=1

(
log2 (∆R

i
t)− log2 (̂∆R

i
t)
)2

+ λLreg,

(10)
where Lreg is the regularization term for the parameters.
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Regarding prediction in message generation stage: In the
message generation stage, we assume that a user v generates a
message mi and aims to evaluate the popularity prior to post-
ing it. Within our framework, we set that the cascade record
consists of only one element, denoted as Ci, specifically as
Ci = {(vi0, vi0, ti0 = 0)}. To ensure consistency in our anal-
ysis, we divide the cascade records into q time-interval uni-
form snapshots. In this process, we designate the first q − 1
snapshots as empty, while allowing the last snapshot to con-
tain one element from Ci. By implementing these precise
settings, our framework is capable of predicting the potential
popularity during the message generation stage.
Regarding prediction in short-term and long-term peri-
ods: To predict the popularity across different time periods,
distinct sets of model parameters are trained under differ-
ent ∆t. The experiment involves training three categories of
model parameters specifically for short-term, medium-term,
and long-term time predictions, respectively.

5 Experiment
5.1 Datasets
We use four real-world datasets in the experiments, including
three public datasets and a private dataset collected by our-
selves: (1) Twitter [Weng et al., 2013] contains the tweets
published between Mar 24 and Apr 25, 2012 on Twitter and
their retweets during this period. (2) Weibo2016 [Cao et
al., 2017] was collected on Sina Weibo in China on July 1,
2016. Every cascade in this dataset represents the cascade
process of a post. (3) APS 2 is the citation relationships be-
fore 2017 on American Physical Society (APS). The cascade
in this dataset represents citation behavior. (4) Weibo2022 is
a Sina Weibo dataset we collected ourselves between Decem-
ber 1, 2022 and June 1, 2023. For all datasets, we randomly
sample 70% as training data, 15% for validation, and the rest
for testing. Table 1 shows the statistics of the datasets.

5.2 Baselines
We compare our approach with 10 baseline methods: (1)
Feature-Linear is a feature-based approach that takes the
features of users and messages as input and uses the linear
classifier to predict the popularity. (2) Feature-Deep is also
a feature-based approach. It uses the multilayer perceptron to
predict the popularity, with neural layers 64-16-1. (3) Deep-
Cas [Li et al., 2017] is the first end-to-end model for the
problem. (4) DeepHawkes [Cao et al., 2017] integrates deep
learning and point processes to predict cascades. (5) CasCN
[Chen et al., 2019] treats each cascade as a graph sequence
and uses the GCN and LSTM to learn cascade representa-
tions. (6) TempCas [Tang et al., 2021] designs a sequence
model to learn macroscopic temporal patterns on the cascade
graph. (7) CasFlow [Xu et al., 2021] combines the users’ rep-
resentations and cascade features based on GRU and VAE to
get representations of cascades. (8) TCAN [Sun et al., 2023a]
integrates the explicit time embedding and attention mecha-
nism to fully learn the representation of cascade graphs and
cascade sequences. (9) CasTformer [Sun et al., 2023b] uti-
lizes the transformer mechanism to capture diverse cascade

2https://journals.aps.org/datasets

#Datasets #Users #Cascades #Retweets

Twitter 578,913 88,440 7,998,380

Weibo2016 6,738,040 119,313 15,311,973

APS 616,316 207,685 3,304,400

Weibo2022 2,171,833 746,826 8,435,052

Table 1: Statistics of the Datasets

prediction. (10) CTCP [Lu et al., 2023] uses a continuous-
time graph learning method for cascade prediction.

5.3 Evaluation Metrics
We choose three widely used evaluation metrics: Mean
Squared Logarithmic Error (MSLE), Mean Absolute Percent-
age Error (MAPE) and R-Squared (R2) [Sun et al., 2023b].

5.4 Experimental Settings
In the temporal feature module, we utilize two convolutional
layers with expansion factors d = {2, 3} respectively to ex-
tract multi-resolution temporal features. In the prediction
module, we utilize the traditional l2 norm as the regular-
ization function Lreg and set λ = 0.001. In short-term
prediction, the time ∆t are 4 days for Twitter, 3 hours for
Weibo2016, and 3 years for APS. As for long-term pre-
diction, the time ∆t are 32 days for Twitter, 24 hours for
Weibo2016, and 20 years for APS. The code is available on
https://anonymous.4open.science/r/CasMS-B8F7.

5.5 Performance Comparison
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Figure 2: Prediction accuracy in message generation stage on the
dataset of Weibo2022.

Prediction in the message generation stage: In the stage
of message generation, the observation cascade is empty,
hence the prediction can only rely on the message content
feature and social graph feature. Among the baseline meth-
ods, only Feature-Linear and Feature-Deep are applicable in
this scenario. Figure 2 shows the predictive performance of
our proposed approach, compared with Feature-Linear and
Feature-Deep methods, in the dataset Weibo2022. In fig. 2,
our method demonstrates a significant improvement over the
baseline methods in the message generation stage. By cap-
turing users’ personalized retweeting behavior, our approach
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Dataset Twitter Weibo2016 APS

Time t 1 Day 2 Days 0.5 Hour 1 Hour 3 Years 5 Years

Metrics MSLE MAPE R2 MSLE MAPE R2 MSLE MAPE R2 MSLE MAPE R2 MSLE MAPE R2 MSLE MAPE R2

Feature-Linear 7.615 0.672 0.376 5.778 0.641 0.405 3.517 0.297 0.372 3.325 0.283 0.402 1.583 0.254 0.356 1.496 0.223 0.381
Feature-Deep 6.983 0.632 0.397 5.366 0.613 0.426 2.928 0.289 0.411 2.746 0.277 0.438 1.511 0.231 0.387 1.466 0.209 0.406
DeepCas2017 11.587 0.691 0.081 9.283 0.665 0.095 4.142 0.301 0.242 3.829 0.288 0.261 1.966 0.289 0.072 1.785 0.256 0.089
DeepHawkes2017 6.045 0.605 0.529 4.295 0.581 0.574 2.819 0.295 0.482 2.632 0.279 0.512 1.388 0.246 0.405 1.213 0.211 0.421
CasCN2019 6.520 0.661 0.418 5.187 0.631 0.450 2.635 0.306 0.426 2.522 0.295 0.453 1.684 0.257 0.348 1.421 0.219 0.373
TempCas2021 4.071 0.606 0.579 3.977 0.577 0.610 2.583 0.312 0.541 2.497 0.289 0.575 1.534 0.262 0.327 1.396 0.223 0.353
CasFlow2021 3.956 0.589 0.586 3.794 0.559 0.627 2.232 0.297 0.567 2.160 0.282 0.598 1.483 0.255 0.375 1.253 0.217 0.401
TCAN2023 3.671 0.574 0.607 3.529 0.537 0.638 2.152 0.289 0.584 2.007 0.276 0.603 1.365 0.244 0.412 1.121 0.206 0.427
CasTformer2023 3.517 0.536 0.616 3.401 0.515 0.649 2.115 0.276 0.613 1.956 0.264 0.641 1.434 0.254 0.423 1.227 0.218 0.451
CTCP2023 3.474 0.529 0.621 3.387 0.506 0.655 2.009 0.285 0.639 1.800 0.269 0.664 1.313 0.247 0.429 1.112 0.211 0.469

CasMS (ours) 3.171 0.512 0.655 3.044 0.484 0.683 1.821 0.264 0.684 1.606 0.246 0.734 1.159 0.235 0.477 0.971 0.197 0.502
Improvement 8.7% ↑ 3.2% ↑ 5.4% ↑ 10.1% ↑ 4.4% ↑ 4.2% ↑ 9.4% ↑ 4.3% ↑ 7.1% ↑ 10.8% ↑ 6.9% ↑ 10.5% ↑ 11.8% ↑ 3.9% ↑ 11.1% ↑ 12.7% ↑ 4.6% ↑ 7.1% ↑

Table 2: Prediction accuracy on datasets of Twitter, Weibo2016, APS. Smaller MSLE and smaller MAPE are better, and larger R2 is better.
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Figure 3: The cascade evolution and prediction of an example mes-
sage from Weibo2022. (a) The cloud of example messages. (b)
The size evolution of an example message in the panel a. Only our
method could precisely predict the sharp surge at ∆t ∈ [24, 32].

excels at predicting the popularity of different messages dur-
ing the message generation stage.
Prediction in the short-term and long-term periods: Table
2 presents the prediction comparison of our method against
10 baseline methods. Table 2 clearly indicate that our method
consistently outperforms the existing approaches with error
bars less than 1%. Our method achieves an average improve-
ment of over 10% for the MSLE metric. This notable im-
provement can be attributed to the characterization of per-
sonalized retweeting behavior and the incorporation of multi-
resolution temporal feature extraction in our model. Notably,
our method outperforms all other methods across various ob-
servation time windows and prediction time periods. Consid-
ering the consistent agreement of the results for other predic-
tion time periods ∆t with those presented in Table 2, we omit
them due to space limitations.
A case study: We chose one popular message from
Weibo2022 with burst cascades and predicted its popular-
ity at different prediction time periods in fig. 3. In fig. 3,
the number of real retweets (colored red line) experiences a
sharp surge during the time interval [24, 32]. Traditional ap-
proaches, which predict a smooth increase in popularity, fail
to capture this sudden burst. In contrast, our method intrigu-
ingly anticipates such a burst during the aforementioned pe-
riod, which indicates the effectiveness of our model.
Ablation study: We examine the predictive performance
of CasMS by comparing it with various modifications on

Twitter Weibo2016 APS0
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Figure 4: Ablation study on Twitter, Weibo2016, and APS.

Twitter, Weibo2016, and APS. Here, we explore the impact
of submodules on the overall prediction performance: (1)
CasMS-UF removes user feature extraction. (2) CasMS-
PR removes personalized retweeting behavior module. (3)
CasMS-LT replaces the TCN of CasMS with LSTM.

From fig. 4, we observe that: (1) Based on CasMS-UF, the
user feature module provides a comprehensive depiction of
users, thereby improving predictive performance. (2) Based
on CasMS-PR, users’ personalized retweeting behaviors al-
low us to decipher their preferences for different kinds of
messages. (3) Based on CasMS-LT, TCN demonstrates a sub-
stantial advantage over LSTM in effectively capturing cas-
cade temporal features.

6 Conclusion

In this study, we studied the problem of cascade prediction
in the message generation phase, as well as predictions for
different time periods. Our methodology initially captures
users’ personalized retweeting behavior. We combine GCN
and TCN to generate the multi-resolution features. Specifi-
cally, GCN extracts cascade features in social graphs, while
TCN captures temporal features. The proposed method’s ef-
fectiveness is demonstrated through extensive experiments
conducted on four real-world datasets.

Our present model primarily accommodates static graphs
and purely textual communications. We plan to generalize
the model to dynamic, evolving graphs, as well as messages
enriched with images and a broader spectrum of multimedia
content. and future research.
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