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Abstract
The prevalent issue in urban trajectory data us-
age, notably in low-sample rate datasets, revolves
around the accuracy of travel time estimations, traf-
fic flow predictions, and trajectory similarity mea-
surements. Conventional methods, often relying
on simplistic mixes of static road networks and
raw GPS data, fail to adequately integrate both
network and trajectory dimensions. Addressing
this, the innovative GRFTrajRec framework offers
a graph-based solution for trajectory recovery. Its
key feature is a trajectory-aware graph represen-
tation, enhancing the understanding of trajectory-
road network interactions and facilitating the ex-
traction of detailed embedding features for road
segments. Additionally, GRFTrajRec’s trajectory
representation acutely captures spatiotemporal at-
tributes of trajectory points. Central to this frame-
work is a novel spatiotemporal interval-informed
seq2seq model, integrating an attention-enhanced
transformer and a feature differences-aware de-
coder. This model specifically excels in handling
spatiotemporal intervals, crucial for restoring miss-
ing GPS points in low-sample datasets. Validated
through extensive experiments on three large real-
life trajectory datasets, GRFTrajRec has proven its
efficacy in significantly boosting prediction accu-
racy and spatial consistency.

1 Introduction
Low-sampling rate datasets present a formidable obstacle
when it comes to analyzing and utilizing trajectory data in
urban settings. Such limitations often lead to significant in-
accuracies and spatial disparities in vital tasks such as esti-
mating travel times [Wang et al., 2022; Zhang et al., 2018],
forecasting traffic flow [Li and Zhu, 2021; Lan et al., 2022]
and trajectory similarity measurement [Yao et al., 2022;
Han et al., 2021]. Therefore, it becomes imperative to de-
velop methods for enhancing the sampling rate by effectively
recovering the missing points within a trajectory.

∗The Corresponding Author

Figure 1: An example demonstrating the significance of attributing
dynamic trajectory information to road network representation.

Recently, there has been a surge in deep learning-based
models for trajectory recovery, such as MTrajRec [Ren et
al., 2021] and RNTrajRec [Chen et al., 2023]. These meth-
ods adopt a sequence-to-sequence [Sutskever et al., 2014] ar-
chitecture, featuring an encoder model responsible for gen-
erating representations of the input trajectory and a decoder
model tasked with recovering the trajectory point by point.
Representation learning, a deep learning technique that auto-
matically discovers meaningful patterns from raw data, has
been widely used to model trajectory data [Jiang et al., 2023]
and road networks [Zhang and Zhao, 2021; Fu and Lee,
2020], in a wide range of downstream tasks [Li et al., 2018;
Yang et al., 2021]. Furthermore, it plays a vital role in trajec-
tory recovery. For instance, RNTrajRec utilizes road network
representation learning and trajectory representation learning
within the encoder to effectively capture both temporal and
spatial features for each GPS point in the trajectory.

Nevertheless, it is important to note that all existing works
still grapple with three significant limitations: (1) Ignorance
of dynamic trajectory-road network interactions: Much
of the existing research tends to either overlook the road net-
work entirely or solely focus on static road networks, which
contain only the fixed topology of the road network and do
not account for the dynamic trajectory information travers-
ing it. However, this trajectory-aware road network interplay
plays a crucial role in the task of trajectory recovery. For in-
stance, as illustrated in Figure 1, when provided with the road
segments where the blue trajectory points are located, it be-
comes necessary to recover the missing road segments where
the purple trajectory points circled in red are situated. In this
context, road segments passing through or close to the blue
trajectory gain higher consideration for selection compared
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to other road segments farther away from the blue trajectory
points. (2) Neglect of extracting the overall and synergis-
tic spatiotemporal trajectory representation: Most stud-
ies solely rely on grid information or raw GPS points as in-
put, resulting in extracted trajectory representations that lack
comprehensiveness and synergy. (3) Failure of consider-
ing the crucial spatiotemporal intervals when employing
a seq2seq: Many prior studies have relied on simple seq2seq
models, often overlooking the crucial role of spatiotemporal
intervals between trajectory points. However, it is essential
to recognize that these intervals hold significance. For in-
stance, smaller intervals between the first and second points
within a trajectory imply similar embeddings, while larger in-
tervals between the first and last points indicate weaker corre-
lations. Failing to account for these spatiotemporal intervals
between points can impede the effective extraction of com-
prehensive spatiotemporal contextual information among tra-
jectory points, thereby hindering the recovery accuracy.

To overcome the three limitations inherent in existing tra-
jectory recovery methods, we introduce a groundbreaking
graph-based representation framework with a spatiotempo-
ral interval-informed seq2seq model, known as GRFTrajRec.
GRFTrajRec takes its first stride by harnessing trajectory-
aware graph representation, enhancing the understanding of
trajectory road network interactions and facilitating the ex-
traction of detailed embedding features for road segments
while considering dynamic trajectory information. Further-
more, it employs trajectory representation to capture over-
all and synergistic spatiotemporal features at each trajectory
point. Finally, accounting for spatiotemporal intervals be-
tween points, GRFTrajRec utilizes a spatiotemporal interval-
informed seq2seq model to effectively integrate and leverage
both road and trajectory representations, thereby enabling the
precise recovery of missing GPS points. In summary, our key
contributions can be outlined as follows:

• We propose a novel framework, namely GRFTrajRec1.
To the best of our knowledge, GRNTrajRec is the first
attempt to use trajectory-road network interaction for the
task of trajectory recovery.

• We introduce a trajectory-aware graph representation for
extracting advanced road embedding, enabling a deep
understanding of the interplay between trajectories and
roads, considering dynamic trajectory information. Ad-
ditionally, we leverage trajectory representation to cap-
ture the spatiotemporal features of each trajectory point.

• We propose a spatiotemporal interval-informed seq2seq
model that combines an attention-enhanced transformer
and a feature differences-aware decoder, all considering
the spatiotemporal intervals between points. This model
enhances the integration of road and trajectory represen-
tations, extracting comprehensive spatiotemporal con-
textual information between trajectory points.

• Extensive experimental results obtained from three real-
life datasets conclusively and unequivocally demon-
strate that GRFTrajRec outperforms all competitors in
both prediction accuracy and spatial consistency.

1Source codes: https://github.com/zhaoyaya1234/GRFTrajRec.

2 Related Work
Road Network Representation Learning. Many existing
works consider the road network as a directed graph. Mod-
els like Node2vec [Grover and Leskovec, 2016] and Deep-
Walk [Perozzi et al., 2014] have been introduced to represent
road segments as latent embeddings. With the rapid advance-
ment of graph neural networks (GNNs), various graph con-
volutional networks, such as GCN [Kipf and Welling, 2017],
GraphSage [Hamilton et al., 2017], and GAT [Veličković et
al., 2018], have proven to be suitable for road network repre-
sentation. Recent studies have focused on road network rep-
resentation learning, notably SGMP [Zhang and Zhao, 2021]
and Trembr [Fu and Lee, 2020]. SGMP offers a framework
for spatial network representation, while Trembr’s Road2Vec
model learns embeddings for road segments by understand-
ing the relationships among these segments.

Trajectory Representation Learning. In recent years, tra-
jectory representation learning has garnered widespread at-
tention, as evidenced in [Li et al., 2023; Jarboui and
Perchet, 2021]. Prominent models in this field include
DeepTTE [Wang et al., 2022], T2vec [Li et al., 2018],
ST2vec [Fang et al., 2022], and Start [Jiang et al., 2023].
DeepTTE employs LSTM modules to capture temporal de-
pendencies and generate trajectory representations. T2vec
introduces a pioneering deep learning model for trajectory
similarity learning, utilizing BiLSTM [Graves and Graves,
2012] to model temporal dependencies. ST2vec [Fang et
al., 2022] focuses on encoding both spatial and temporal
information within trajectories. Most recently, Start [Jiang
et al., 2023] presents a graph-based trajectory representa-
tion method, complemented by an innovative spatial network
based on GAT [Veličković et al., 2018].

Trajectory Recovery. Various studies, including [Xia et
al., 2022; Zhang et al., 2022; Si et al., 2023; Chen et al.,
2023], have proposed innovative solutions to address the tra-
jectory recovery challenge. Notably, DHTR [Wang et al.,
2020] proposes a two-stage solution that first recovers a high-
sample trajectory and then uses a map matching algorithm
(i.e., HMM [Newson and Krumm, 2009]) to recover the ac-
tual GPS locations. Another significant advancement, MTra-
jRec, as detailed in [Ren et al., 2021], employs a sequence-to-
sequence model [Sutskever et al., 2014]. It has outperformed
two-stage techniques and is widely adopted in subsequent
trajectory recovery research. However, most of these stud-
ies overlook the crucial road network structure aspect, which
could enhance accuracy. RNTrajRec [Chen et al., 2023] ad-
dresses this by introducing GridGNN for road segment fea-
ture learning and GPSFormer for detailed trajectory analysis.
These components enable a multi-task decoder to efficiently
reconstruct missing GPS points using encoder outputs.

3 Preliminaries
Definition 1 (Road Network). A Road Network is modelled
as a directed graph G = (V, E), where V represents the set
of road segments and E ⊆ V ×V captures the connectivity of
these road segments.
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Figure 2: The framework of GRFTrajRec. (a) Trajectory-Aware Graph Representation: Enabling road segment representation enriched with
missing point information through CandiGNN. (b) Spatiotemporal Trajectory Representation: Extracting nuanced and synergistic initial low-
sampling trajectory representation information. (c) Spatiotemporal Interval-Informed Seq2Seq: Extracting the representation from (a) and
(b), allowing for precise recovery of missing GPS points point by point by accounting for spatiotemporal intervals at different points.

Definition 2 (Trajectory). A trajectory τ can be defined as
a sequence of GPS positions with timestamps, i.e., τ =

(p1, p2, · · · , pn), where pi = ⟨lat(i), lng(i), t(i)⟩, ∀i, 1 ≤ i ≤
n, which captures the latitude and longitude of the GPS posi-
tion at timestamp t(i).

Definition 3 (Road Segment Candidate Probability (RCP τ )).
Given a raw trajectory τ = (p1, p2, · · · , pn) and a specified
radius R, the road segment candidate frequency Nτ

j for road
segment vj ∈ V is defined as follows: Nτ

j =
∑n

i=1 I[vj is
within a radius of R from pi], where I[·] is the identity func-
tion. The standardized Nτ

j is defined as the road segment

candidate probability RCP τ
j , with

∑|V|
j=1 RCP τ

j = 1.

Definition 4 (Map-matched Trajectory Point). Given a tra-
jectory point pj and a map-matching function M(·), the
map-matched trajectory point aj for pj is defined as aj =

M(pj) = ⟨e(j), r(j), t(j), lat(j)pre , lng
(j)
pre ⟩, where e(j) is the

matched road segment, r(j) is the moving ratio (represent-
ing the ratio of moving distance over the length of the road
segment), and t(j) is the timestamp. The coordinates ⟨lat(j)pre ,
lng

(j)
pre ⟩ are the map-matched latitude and longitude on e(j).

Definition 5 (Map-matched ϵ-Sampling Rate Trajectory). A
map-matched trajectory τ̃ with ϵ-sampling rate is a sequence
of map-matched trajectory points, i.e., τ̃ = (a1, a2, · · · , am),
where aj = ⟨e(j), r(j), t(j), lat(j)pre , lng

(j)
pre ⟩, ∀j, 1 ≤ j ≤ m

and aj+1.t
(j+1) − aj .t

(j) = ϵ. For simplicity, we name τ̃ as

ϵ-MM trajectory ,with ϵ representing the sampling rate.

Definition 6 (Trajectory Recovery). Given a low-
sampling-rate trajectory τ = (p1, p2, · · · , pn) with
corresponding map-matched road segment sequence
τ ′ = (M(p1),M(p2), ...,M(pn)) and a target sampling rate
ϵ, we aim to recover the real map-matched ϵ sampling-rate
trajectory τ̃ = (a1, a2, · · · , am). This is to say, for each
low-sampling-rate trajectory, we will infer its missing points
and map match it onto the road network simultaneously.

4 Methodology
In this section, we detail the components of the proposed
framework GRFTrajRec for trajectory recovery, depicted in
Figure 2. (1) We employ the Figure 2.(a) trajectory-aware
graph representation and Figure 2.(b) spatiotemporal trajec-
tory representation to derive an overall representation Zτ for
the low-sampling trajectory. (2) Using the attention-enhanced
transformer encoder described in the Figure 2.(c) spatiotem-
poral interval-informed seq2seq model with Zτ , we generate
the initial GRU hidden cell h(0)

gru. (3) Utilizing the feature
differences-aware decoder in the Figure 2.(c) based on h

(0)
gru,

we decode the high-sampling trajectory τ̃ point by point.

4.1 Trajectory-Aware Graph Representation
In this subsection, we initially analyze the static road network
topology to derive a geographical graph representation. Next,
we introduce CandiGNN (Candidate Graph Neural Network)
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to acquire a candidate road network representation. This en-
ables a more profound and nuanced comprehension of the in-
tricate relationship between trajectories and roads by lever-
aging dynamic trajectory information. Lastly, we integrate
the geographical representation with the dynamic candidate
representation to obtain the ultimate trajectory-aware graph
representation.
Geographical Representation: GeoGAT. The topology of
the road network plays a crucial role in the formation of a
trajectory. To capture the structural information, we first uti-
lize Node2Vec [Grover and Leskovec, 2016] to obtain a ge-
ographical representation gi for road segment vi. Next, we
feed gi to a graph attention network (GAT [Veličković et al.,
2018]) step by step to obtain a smoothed road geographical
representation g̃i ∈ Rdhid .
Candidate Representation: CandiGNN. While GeoGAT
effectively captures the geographic characteristics of road
segments, it has limitations in extracting dynamic recovery
information from the original trajectory sequence. To address
this limitation, we introduce road segment candidate proba-
bility (RCP) in Definition 3. This probability represents the
likelihood that a road segment either passes through a trajec-
tory point or is close to a trajectory point. The higher the
RCP value for a road segment, the greater the probability that
it will pass through a trajectory point, and subsequently, the
greater the probability that it will be selected as the road seg-
ment where the missing points are located.

To extract the candidate representation of the graph effec-
tively, we propose a novel graph neural network called Can-
diGNN. In its message-passing process, CandiGNN lever-
ages candidate probability in measuring the correlations be-
tween candidate road segments. First, we take random vector
c
(0)
i ∈ Rdin as the initialized candidate representation for

node vi. We use the difference in candidate probabilities to
represent the information mobility between road segments,
then the attention weight α(l)

ij between nodes vi and vj in the
l-th update are computed as:

D
(l)
ij =

(
RCP τ

j −RCP τ
i

)
∗ (c(l)j − c

(l)
i ),

e
(l)
ij = ReLU

(
D

(l)
ij W

(l)
0

)
W

(l)
1 ,

α
(l)
ij =

exp(LeakyReLU(e
(l)
ij ))∑

k∈Ni
exp(LeakyReLU(e

(l)
ik ))

,

(1)

where c
(l)
i , c

(l)
j ∈ Rdin represent the candidate representa-

tions for nodes vi and vj respectively during the l-th update
of parameters, W (l)

0 ∈ Rdin×din ,W
(l)
1 ∈ Rdin×1 are learn-

able parameters. The negative input slope of LeakyReLU is
set to 0.2 [He et al., 2015]. Then we obtain the road candidate
representation c̃i ∈ Rdhid for node vi through combining the
features of its neighbors using the attention weights αl

ij as:

O
(l)
i = c

(l)
i W

(l)
2 +

∑
j∈Ni

α
(l)
ij c

(l)
j W

(l)
3 ,

c̃
(l+1)
i =

(
ReLU

(
O

(l)
i W

(l)
4

))
W

(l)
5 ,

(2)

where W
(l)
2 ,W

(l)
3 ∈ Rdin×dmid ,W

(l)
4 ∈ Rdmid×dmid and

W
(l)
5 ∈ Rdmid×dhid are the learnable parameters.

Graph Fusion Layer. We propose a co-attention fusion
module to fuse the geographical representation and candidate
representation to get the final trajectory-aware graph repre-
sentation. Given a raw trajectory τ with corresponding map-
matched road segment IDs src, for simplicity, its static ge-
ographical representation and dynamic candidate representa-
tion acquired by src are denoted by Gτ = (g̃1, g̃2, . . . , g̃n)
and Cτ = (c̃1, c̃2, . . . , c̃n), where Gτ ,Cτ ∈ Rn×dhid .
We integrate Gτ ,Cτ to get final road segment representa-
tion. Specifically, we concatenate Gτ and Cτ to get Hτ ∈
Rn×2×dhid and calculate the fusion attention:

HτW (l)
q ≜ Q(l)

g , HτW
(l)
k ≜ K(l)

g , HτW (l)
v ≜ V (l)

g ,

Attention(Q(l)
g ,K(l)

g ,V (l)
g ) = Softmax

Q(l)
g K

(l)
g

T

√
d

V (l)
g ,

(3)
where W (l)

q ,W
(l)
k ,W (l)

v ∈ Rdhid×dhid are learnable pa-
rameters. Denote the fusion result as H̃

τ ∈ Rn×2×dhid

and we obtain the final output Hτ
road ∈ Rn×dgraph , where

dgraph = 2dhid, using a feedforward network FNN(·) and
batch normalization Norm(·) as does in [Vaswani et al.,
2017]:

Hτ
road = Reshape(Norm(FFN(H̃

τ
) + H̃

τ
)). (4)

4.2 Spatiotemporal Trajectory Representation
In this subsection, building upon existing approaches relying
on grid information or raw GPS points, integrating overall
spatial sequences and relative positions in high-sampling tra-
jectories, we present a spatiotemporal trajectory representa-
tion meticulously designed to capture overall and synergistic
spatiotemporal information inherent in trajectory sequences.
Time-Aware Representation. To capture the temporal in-
formation of a trajectory τ , we first convert its timestamp se-
quence (t1, t2, · · · , tn) into a sequence in seconds and nor-
malize each timestamp to the range of [0, 1] using min-max
normalization. Denote (ts1 , ts2 , · · · , tsn) as the standardized
time sequence. Then, we obtain the time representation of the
sequence T τ ∈ Rn×dtime via linear projection:

T τ = (ts1∥ . . . ∥tsn)W
(l)
t , (5)

where W
(l)
t ∈ R1×dtime are learnable parameters.

Spatial-Aware Representation. To enhance the extrac-
tion of spatial information from the raw sequence τ =
(p1, p2, · · · , pn), we divide the entire road network area into
grids identified by coordinates ⟨xi, yi⟩. In this way, each
point pi is located in a specific grid. We also define tidi =⌊
t(i)−t(0)

ϵ

⌋
as the index for the points in the target ϵ-MM tra-

jectory τ̃ , where ϵ denotes the desired sampling rate and t(i)

is the timestamp of i-th point in the low-sampling-rate trajec-
tory τ . Consequently, each raw point pi is represented as a
triplet ⟨xi, yi, tidi⟩ , ∀i, 1 ≤ i ≤ n.

Initially, we retrieve the spatial grid representation Gridi ∈
R1×dgrid using the grid coordinates ⟨xi, yi⟩:

gidi = xi +max(x)× (yi − 1),

Gridi = Embedding(gidi),
(6)
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where max(x) represents the maximum value among all x
coordinates within the area, and Embedding refers to the
embedding technique in [Mikolov et al., 2013]. Then we use
tidi to get the spatial positional encoding POSi ∈ R1×dpos

using the following equation:

POSi[2j] = sin
(
tidi/10000

2j/dpos
)
,

POSi[2j + 1] = cos
(
tidi/10000

2j/dpos
)
.

(7)

In conclusion, note dsp = dgrid + dpos + 3, the final spatial-
aware representation Sτ ∈ Rn×dsp , is obtained by:

Sτ
i = Gridi∥xi∥yi∥tidi∥POSi,

Sτ = Concatenate(Sτ
i ), i = 1, 2, · · · , n.

(8)

We concatenate the spatial-aware representation Sτ and
temporal-aware representation T τ to obtain the spatiotem-
poral representation of trajectory τ , denoted by Hτ

traj ∈
Rn×dtraj , where dtraj = dsp + dtime.

4.3 Spatiotemporal Interval-Informed Seq2Seq
In this subsection, we present a spatiotemporal interval-
informed seq2seq model that combines an attention-enhanced
transformer with a feature-aware decoder. This model lever-
ages spatiotemporal intervals between points to enhance
the extraction of contextual information between trajectory
points, effectively integrating road and trajectory representa-
tions for improved performance.
Attention-Enhanced Transformer Encoder. For trajec-
tory τ , we concatenate its graph representation Hτ

road,
trajectory representation Hτ

traj , road features RF ∈
Rn×dRF , road segment IDs src ∈ Rn×1, and trajectory
velocity speed ∈ Rn×1, culminating in the formation of
the full representation of the trajectory τ , i.e., GST τ ∈
Rn×(dgraph+dtraj+dRF+2). Then we apply a linear layer
on GST τ and add the position embedding [Vaswani et al.,
2017] to obtain the spatial-temporal input Zτ ∈ Rn×dhid

to the transformer encoder. Considering the time inter-
val ∆tid = |tidi − tidj | and geographic distance inter-
val dis = distance(⟨lat(i), lng(i)⟩, ⟨lat(j), lng(j)⟩) between
samples in the trajectory, we propose an enhanced self-
attention mechanism to obtain the contextual trajectory rep-
resentation Z̃

τ
=

(
Z̃

τ

1 , Z̃
τ

2 , . . . , Z̃
τ

n, Z̃
τ

i ∈ R1×dhid

)
:

ZτA
(l)
Q ≜ Q(l), ZτA

(l)
K ≜ K(l), ZτA(l)

v ≜ V (l),

Z̃
τ
= Attention(Q(l),K(l),V (l))

= Softmax

(
Q(l)K(l)⊤

√
d

+ αf(∆tid) + βg(dis)

)
V (l),

where A
(l)
Q ,A

(l)
K ,A

(l)
V ∈ Rdhid×d′

are learnable parameters,
d′ = dhid/hnum, hnum is the number of attention heads, α
and β are hyperparameters, f and g are the corresponding
probability transformation function.
Feature Differences-Aware Decoder. When decoding the
j-th point aj in τ̃ , the spatiotemporal interval between the
(j − 1)-th predicted map-matched trajectory point aj−1 =

⟨e(j−1), r(j−1), t(j−1), lat
(j−1)
Pre , lng

(j−1)
Pre ⟩ and an input raw

point pi = ⟨lat(i), lng(i), t(i)⟩ varies across all i in the range
1 ≤ i ≤ n. To take this into account, we define a spatiotem-
poral feature difference vector fi ∈ R1×3, which represents
differences in sequence position, spatial location, and road
segment candidate probability:

fi = Concat(⟨tidi − (t− 1)⟩, ⟨RCP τ
M(pi) −RCP τ

e(t−1)⟩,

distance(⟨lat(i), lng(i)⟩, ⟨lat(t−1)
pre , lng(t−1)

pre ⟩)),
(9)

where RCP τ
e(t−1) and RCP τ

M(pi) are the candidate proba-
bilities for road segment e(t−1) and matched road segment
M(pi) for pi. We propose a differences-aware decoder that
incorporates a GRU model [Cho et al., 2014] with the fea-
ture difference vector fi. In the GRU model, the hidden-
state vector at timestamp j is denoted as h

(j)
gru, initially set

to h
(0)
gru = Mean(Z̃

τ
) ∈ R1×dhid . To capture the correlation

between aj−1 and pi, we introduce an attention mechanism
attn(j) ∈ R1×dhid based on the feature difference fi:

u
(j)
i =

(
W

(l)
tf

T
(
tanh

(
h(j−1)
gru ∥Z̃τ

i ∥fi
)
W

(l)
attn

))
,

α
(j)
i = exp

(
µ
(j)
i

)
/

n∑
i=1

exp
(
µ
(j)
i

)
, attn(j) =

n∑
i=1

α
(j)
i Z̃

τ
i ,

(10)
where W

(l)
tf ∈ Rdhid×1, W (l)

attn ∈ R(2dhid+3)×dhid are learn-

able weights. The hidden-state vectors h(j)
gru is updated by:

h(j)
gru = GRU

([
p(j−1)

∥∥∥r(j−1)
∥∥∥RF (j−1)∥attn(j)

])
, (11)

where j ∈ [1, 2, · · · ,m] , p(j−1) ∈ R1×did is the embedding
for the predicted road segment e(j−1), r(j−1) ∈ R1×1 is mov-
ing ratio at the (j − 1)-th timestamp, RF (j−1) ∈ R1×dRF is
corresponding road features, attn(j) is the attention value.

4.4 Training
We employ a multi-task loss for training the model. Specif-
ically, we consider predicting both the road segment ID and
the moving ratio. In accordance with MTrajRec [Ren et al.,
2021], we employ the cross-entropy loss L1(θ) for the road
segment ID prediction task and mean squared error (MSE)
loss L2(θ) for the moving ratio prediction task:

L1(θ) = −
∑
τ,τ̃

m∑
j=1

|V|∑
ℓ=1

1 {aj .e = eℓ} log
(
Pθ

(
âj .e = eℓ | h(j)

gru

))
L2(θ) = −

∑
τ ′,τ̃

m∑
j=1

(
aj · r −Rθ

([
p(j)∥h(j)

gru

]))2
.

(12)
where m is the length τ̃ , |V| is the size of road seg-

ments, aj .e is the ground truth of road segment ID, âj is
the prediction,D means the testing dataset consisting of low-
sampling-rate trajectories and ϵ-MM trajectories, aj .r is the
ground truth of the real moving ratio, p(j) represents the road
segment embedding for the predicted road segment at the j-th
timestamp,Pθ and Rθ represents the neural network for pre-
dicting road segments and the moving ratio. Overall, the final
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Dataset road network latitude range road network longitude range road segments trajectories sample ratio Size of training area (km2)

Porto [41.121621,41.167815] [-8.644531,-8.596830] 5121 67919 15 5.31*5.13

NanJing [32.115211,32.215211] [118.69454,118.84454] 3582 10267 15 11.49*16.13

YanCheng [33.1696824,33.4401188] [120.1070088,120.3560447] 7061 95420 15 27.72*29.99

Table 1: Dataset statistics.

Method
Porto (missing rate = 7/8) YanCheng (missing rate = 7/8)

Accuracy ↑ Recall↑ Precision↑ F1 Score↑ MAE↓ RMSE↓ RN_MAE↓ RN_RMSE↓ Accuracy↑ Recall↑ Precision↑ F1 Score↑ MAE↓ RMSE↓ RN_MAE↓ RN_RMSE↓
HMM+linear 0.3045 0.4071 0.4195 0.4087 531.1619 1334.9815 649.3775 1407.1458 0.4119 0.4293 0.5745 0.4668 1040.6785 1916.1261 1354.5195 2223.4461

T2vecRec 0.5058 0.6047 0.7553 0.6716 81.2392 157.6399 794.2771 1223.3410 0.5591 0.5869 0.7307 0.6508 311.0731 997.0443 437.8637 1404.1595
ST2vecRec 0.5413 0.6423 0.7600 0.6961 66.0460 107.1436 85.3169 159.0711 0.5875 0.6107 0.7656 0.6793 194.7927 458.6835 289.1499 782.6099
TFTrajRec 0.5688 0.6602 0.7820 0.7159 59.0613 93.4612 671.4545 1120.5507 0.5928 0.6171 0.7578 0.6801 178.9251 382.5703 277.4743 802.5729
MTrajRec 0.5727 0.6625 0.7935 0.7221 60.2961 95.1038 667.9603 1117.0204 0.5931 0.6195 0.7648 0.6844 171.3210 351.2522 270.8849 771.2905
RNTrajRec 0.5584 0.6521 0.7737 0.7077 64.2907 103.0239 82.1912 152.7678 0.5813 0.6100 0.7663 0.6791 188.9081 405.8747 244.0889 436.1330

StartRec 0.5635 0.6554 0.7741 0.7098 60.5565 95.2924 77.4765 144.1988 0.5896 0.6122 0.7771 0.6847 178.4308 388.6332 235.6051 424.8397
GRFTrajRec 0.6143 0.6993 0.8044 0.7481 55.7317 99.6640 70.1900 142.0160 0.6641 0.6596 0.8079 0.7261 153.1712 396.9333 195.7864 375.9991

Method
Porto (missing rate = 15/16) YanCheng (missing rate = 15/16)

Accuracy↑ Recall↑ Precision↑ F1 Score↑ MAE↓ RMSE↓ RN_MAE↓ RN_RMSE↓ Accuracy↑ Recall↑ Precision↑ F1 Score↑ MAE↓ RMSE↓ RN_MAE↓ RN_RMSE↓
HMM+linear 0.1857 0.2882 0.2983 0.2883 714.1581 1554.1832 879.1707 1641.2111 0.2924 0.3328 0.4608 0.3616 1611.9585 2469.8164 1924.9359 2733.0449

T2vecRec 0.4727 0.5816 0.7434 0.6526 90.4906 170.6969 853.8686 1271.1728 0.5366 0.5585 0.7422 0.6372 362.9485 1081.0936 876.3498 1283.9178
ST2vecRec 0.5110 0.6152 0.7464 0.6745 74.0351 119.8142 96.0490 176.2229 0.5746 0.5883 0.7775 0.6697 202.1533 415.6524 303.6573 831.5196
TFTrajRec 0.5322 0.6348 0.7614 0.6923 67.1900 109.0267 736.9071 1176.2382 0.5828 0.6094 0.7762 0.6826 182.2594 354.7263 779.6341 1205.4420
MTrajRec 0.5326 0.6241 0.7804 0.6935 70.4774 116.2203 742.8772 1181.4727 0.5890 0.6097 0.7797 0.6841 180.1026 359.1027 769.6789 1197.5423
RNTrajRec 0.5140 0.6163 0.7578 0.6797 73.7399 117.6378 94.7133 171.6858 0.5750 0.6011 0.7759 0.6772 198.6109 418.9837 254.3493 451.0068

StartRec 0.5263 0.6291 0.7497 0.6841 68.6396 109.1803 88.8423 162.4110 0.5785 0.6003 0.7779 0.6775 193.8829 389.5013 252.9964 439.1763
GRFTrajRec 0.5614 0.6572 0.7763 0.7118 63.6366 108.3740 81.5393 158.1223 0.6090 0.6080 0.7847 0.6850 185.5892 442.4354 235.8697 433.7974

Table 2: Performance evaluation for different methods in trajectory recovery (random missing).

objective function is a weighted sum of the two functions:

Lt = L1(θ) + λL2(θ). (13)

5 Evaluation
5.1 Experimental Setup
Datasets. We validate the effectiveness of our model on
three real-world trajectory datasets along with their corre-
sponding road networks sourced from OpenStreetMap2. The
Porto dataset3 are openly available, while the YanCheng and
NanJing datasets are provided by a company partner. De-
tailed statistics of these datasets are presented in Table 1. For
each dataset, we divided the data into training, validation,
and testing sets, following a 7:2:1 split ratio. To obtain low-
sample trajectories, we set three distinct data missing types:
random missing (where the missing trajectory points are scat-
tered randomly), uniform missing (where the missing points
are uniformly distributed across the entire trajectory), and
block missing (where the missing points form a continuous
sub-trajectory segment within the trajectory). Additionally,
our experiments adopt two missing rates: 7/8 or 15/16 in line
with the rates used in RNTrajRec [Chen et al., 2023].

Baselines. To evaluate the effectiveness of GRFTrajRec,
we implement in total seven baselines. i) HMM + Lin-
ear [Hoteit et al., 2014] uses linear interpolation to ob-
tain a high sample trajectory, and then uses HMM algo-
rithm to obtain a map-matched ϵ-sampling rate trajectory. ii)

2https://www.openstreetmap.org
3https://www.kaggle.com/c/pkdd-15-predict-taxi-service-

trajectory-i/data

t2vec [Li et al., 2018] proposes a deep learning network for
trajectory similarity learning with a BiLSTM [Graves and
Graves, 2012] model. iii) ST2vec [Fang et al., 2022] encodes
spatial and temporal information of trajectories. iv) Trans-
former [Vaswani et al., 2017] learns the representation with
temporal dependency. v) MTrajRec [Ren et al., 2021] solve
the map-constrained trajectory recovery problem via seq2seq
multi-task learning. vi) RNTrajRec [Chen et al., 2023] is
the state-of-the-art method for trajectory recovery task. vii)
Start [Jiang et al., 2023] is the state-of-the-art method for tra-
jectory representation in spatial networks which is applicable
for many trajectory-based downstream tasks.

Parameter Settings. We implemented all the baseline
models on a machine equipped with an Intel(R) Xeon(R) 32-
core CPU E5-2620 v4 @ 2.10GHz and a 12GB NVIDIA TI-
TAN V GPU. All models were trained using the Adam op-
timizer for at most 50 epochs, with a batch size of 128 and
a learning rate of 1e-3. For the Porto dataset, we config-
ured the hidden-state size hyperparameter d to be 512. For
the YanCheng and NanJing datasets, we set it to 128. We
explore (alpha ∈ {1,10,100,1000}, beta ∈ {1,10,100,1000},
lambda ∈ {10,20,30,40,50}). The optimal model parameters
are Porto (100, 100, 10), YanCheng (1, 1, 10) and NanJing (1,
1, 10) while the worst model parameters are Porto (1, 1, 20),
YanCheng (1000, 1000, 20) and NanJing (1000,1000,20).

Metrics. Following RNTrajRec [Chen et al., 2023], we
adopt the accuracy, recall, precision, f1score of the road
segments recovered and the RN_MAE,RN_RMSE of dis-
tance on road network, as well as MAE and RMSE of
the euclidean distance between predicted and actual points
to evaluate the performances of different models.
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Method
Porto (missing rate = 7/8) YanCheng (missing rate = 7/8)

Accuracy↑ Recall↑ Precision↑ F1 Score↑ MAE↓ RMSE↓ RN_MAE↓ RN_RMSE↓ Accuracy↑ Recall↑ Precision↑ F1 Score↑ MAE↓ RMSE↓ RN_MAE↓ RN_RMSE↓
GRF-ATF 0.6033 0.6904 0.8030 0.7425 58.6858 104.4425 73.0209 144.6467 0.6281 0.6321 0.7791 0.6979 180.6887 461.0387 225.0187 421.0963
GRF-FD 0.5726 0.6721 0.7929 0.7275 61.1597 99.7132 76.1045 141.7228 0.6193 0.6270 0.7892 0.6987 163.9825 370.1132 214.0067 393.5901
GRF-GR 0.5866 0.6752 0.7878 0.7272 58.1021 96.9891 75.0917 147.3024 0.6257 0.6345 0.7720 0.6964 171.0569 422.4033 221.6208 423.0005

GRF-CG+ 0.5713 0.6700 0.7803 0.7209 59.5166 96.8129 76.0747 143.8126 0.6480 0.6425 0.7983 0.7118 150.2455 364.1130 196.8299 371.7215
GRF-TR 0.6047 0.6900 0.7961 0.7393 56.6704 95.1261 70.0992 134.4768 0.6457 0.6505 0.7965 0.7160 162.0133 389.6058 211.7423 397.5213

GRFTrajRec 0.6143 0.6993 0.8044 0.7481 55.7317 99.6640 70.1900 142.0160 0.6641 0.6596 0.8079 0.7261 153.1712 396.9333 195.7864 375.9991

Table 3: Performance evaluation of ablation experiments (random missing).
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Figure 3: Further performance results for different methods (b: block missing, u: uniform missing, r: random missing, missing rate = 7/8).

5.2 Overall Performance
We conducted a comprehensive performance evaluation in
the scenario of random missing data using the Porto and
YanCheng datasets, as summarized in Table 2. The fig-
ures highlighted in bold signify the top-performing models.
Notably, GRFrajRec consistently outperforms the baseline
models across all datasets, demonstrating significant advan-
tages across most metrics. Meanwhile, Linear+HMM consis-
tently underperforms across all datasets. Notably, both TFra-
jRec and MTrajRec demonstrate superior performance on
ID prediction metrics (accuracy, f1score), showcasing their
ability to capture spatiotemporal information in low-sample
trajectories. However, they fall short in segment prediction
error metrics (RN_MAE,RN_RMSE) due to their lack of
consideration for the road network’s topological aspects. In
contrast, RNTrajRec and StartRec incorporate the topological
characteristics of the road network, resulting in improved per-
formance in segment prediction error metrics. Remarkably,
their ID prediction performance is on par with the previous
two models. Our framework, GRFrajRec, emerges as the
standout performer, excelling in both ID prediction metrics
and road network segment prediction error metrics.

5.3 Further Experiments
We extend our experimentation to include the Nanjing
dataset and introduce two additional missing types: uniform
missing and block missing. This broader scope allows us
to assess the generalizability and robustness of our model
across various scenarios and datasets with differing distribu-
tions and complexities. The results, as depicted in Figure 3
alongside Table 2, consistently reaffirm the superior perfor-
mance of GRFTrajRec across all missing types and datasets.
This robust performance underscores the adaptability, versa-
tility and reliability of GRFTrajRec in diverse real-world set-
tings. These findings bolster confidence in the effectiveness
of GRFTrajRec and highlight its potential for real-world ap-
plications across different contexts and real data distributions.

5.4 Ablation Study

To further verify the effectiveness of different modules in
our model, we have devised five variants of GRFTrajRec:
i) GRF-ATF removes the spatiotemporal interval considera-
tion in the attention-enhanced transformer encoder and uses
the traditional transformer. ii) GRF-FD removes the spa-
tiotemporal interval consideration in the feature differences-
aware decoder and uses the traditional GRU. iii) GRF-GR
removes the trajectory-aware graph representation. iv) GRF-
CG+ removes CandiGNN but add the traditional GCN [Kipf
and Welling, 2017] to the trajectory-aware graph representa-
tion. v) GRF-TR removes the spatiotemporal trajectory rep-
resentation. The experimental results are detailed in Table 3.
It’s evident from the data that GRFTrajRec consistently sur-
passes all its variants across the majority of settings, high-
lighting the importance and effectiveness of these modules.

As discussed in subsection 4.1, the importance of
trajectory-aware graph representation (GR) becomes evident
in extracting advanced road embeddings. Removing GR from
GRFTrajRec leads to a significant decline in overall per-
formance. Notably, GRFTrajRec consistently outperforms
GRF-CG+, only when replacing CandiGNN with the tradi-
tional GCN, highlighting the necessity of a dedicated graph
neural network for trajectory recovery. Moreover, the omis-
sion of the spatiotemporal interval consideration in the feature
differences-aware decoder results in a notable drop of over
0.4 across all datasets. This highlights the effectiveness of
considering spatiotemporal interval in the decoder, reaffirm-
ing its importance in enhancing recovery accuracy. Across
various metrics, GRFTrajRec consistently outperforms both
GRF-ATF and GRF-TR, demonstrating the contributions of
the attention-enhanced transformer and spatiotemporal rep-
resentation learning in improving recovery accuracy. Over-
all, the trajectory-aware graph representation and the feature
differences-aware decoder emerge as the two most crucial
components within GRFTrajRec, underscoring their indis-
pensable roles in achieving superior recovery performance.
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Figure 4: A case study for trajectory recovery on Porto dataset with missing rate 7/8 (horizontal coordinates: latitude, vertical coordinates:
longitude). GRFTrajRec is our model, and StartRec is the current state-of-the-art model, and RNTrajRec is the other top-performing model.

5.5 Case Study

We conduct the visualization comparison experiment on the
trajectory recovery task. The input is a low-sampling trajec-
tory, while the ground truth is the actual trajectory at a higher
sampling rate. We provide the trajectory recovery results of
our model, GRFTrajRec, as well as two of the current best-
performing models, RNTrajRec and StartRec.

As illustrated in Figure 4, while all three models can re-
cover the approximate high-sampling trajectory, our model’s
trajectory recovery closely aligns with the ground truth. In
contrast, RNTrajRec and StartRec exhibit noticeable devia-
tions from the ground truth, particularly at the trajectories’
ends. Our model’s precision in achieving seamless recov-
ery from start to finish is bolstered by its holistic consider-
ation of the interaction between road networks and trajecto-
ries, along with the spatiotemporal intervals between trajec-
tory points. The dynamic interaction effectively incorporates
missing information into the representation of low-sampling
trajectories. Additionally, the spatiotemporal intervals be-
tween points facilitate a nuanced understanding of the spe-
cific spatiotemporal relationships among missing points and
other data points. This comprehensive analysis enhances our
ability to accurately pinpoint the spatiotemporal positions of
each missing point, reducing overall recovery errors and no-
tably enhancing trajectory recovery accuracy.

5.6 Efficiency Study

In addition to evaluating method effectiveness, we also assess
efficiency from two perspectives: inference time for recover-
ing a trajectory and the number of model parameters.

As shown in Figure 5, when compared to RNTrajRec and
StartRec, which share similar inference times and model pa-
rameters, GRFTrajRec demonstrates superior performance
in both accuracy (ACC) and mean absolute error (MAE) met-
rics. Many other models, despite having relatively fewer
parameters or shorter runtimes, often compromise accuracy
(ACC) or substantially increase mean absolute error (MAE).

Our model’s longer inference time is due to the considera-
tion of spatiotemporal intervals in seq2seq modelling, which
significantly improves prediction accuracy (ACC) and re-
duces prediction error (MAE), as revealed in our ablation ex-
periments in subsection 5.4. Thus, we believe that the little
increase in the inference time is a worthwhile trade-off, con-
sidering it leads to enhanced ACC and reduced MAE.
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Figure 5: Efficiency analysis on Porto (random missing rate = 7/8).

5.7 Assessment of Trajectory Recovery Necessity
Assessing the necessity of trajectory recovery is paramount
across various tasks, scenarios and different data densities,
to effectively optimize predictive models based on trajectory
data and ultimately save costs. For instance, by evaluating the
impact of trajectory data of varying densities on model perfor-
mance, we can determine when trajectory recovery is advan-
tageous. We predict driver IDs using trajectory representation
from the model in subsection 4.2. We employ 10,000 trajec-
tories (sample one point per second), adjusting the missing
rate to control trajectory data density. We observe a signif-
icant drop in model performance when the missing rate ex-
ceeds 0.75 (sample 0.25 points per second). (1) In scenar-
ios with several points sampled per second below 0.25 due to
data collection limitations, indicating excessively sparse sam-
pling, trajectory recovery may enhance model performance.
(2) Conversely, if the number of points sampled per second
is above 0.25, and the data density is relatively high, model
optimization takes precedence over trajectory recovery.

6 Discussion and Conclusion
In this paper, we introduce a new graph-based framework
for trajectory recovery with spatiotemporal interval-informed
seq2seq, GRFTrajRec. Experiments demonstrate that GRF-
TrajRec outperforms current methods by better integrating
trajectory-road network interactions and considering spa-
tiotemporal intervals. For future work, we aim to focus on ad-
vancing trajectory-network interaction analysis beyond only
using road segment candidate probability modelling and ex-
plore calculating spatiotemporal intervals for selected points
rather than all to speed up the computational speed.
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