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Abstract

In this paper, we propose a novel feature weighting
method to address the limitation of existing feature
processing methods for tabular data. Typically the
existing methods assume equal importance across
all samples and features in one dataset. This simpli-
fied processing methods overlook the unique con-
tributions of each feature, and thus may miss im-
portant feature information. As a result, it leads to
suboptimal performance in complex datasets with
rich features. To address this problem, we intro-
duce Tabular Feature Weighting with Transformer,
a novel feature weighting approach for tabular data.
Our method adopts Transformer to capture com-
plex feature dependencies and contextually assign
appropriate weights to discrete and continuous fea-
tures. Besides, we employ a reinforcement learning
strategy to further fine-tune the weighting process.
Our extensive experimental results across various
real-world datasets and diverse downstream tasks
show the effectiveness of TFWT and highlight the
potential for enhancing feature weighting in tabular
data analysis.

1 Introduction
Extracting feature information from data is one of the most
crucial tasks in machine learning, especially for classification
and prediction tasks [Bishop, 1995]. Different features play
varied roles in data representation and pattern recognition,
thus directly impacting the model’s learning efficiency and
prediction accuracy. Effective feature engineering can en-
hance a model’s ability to handle complex data significantly
and help capture critical information in the data.

In feature engineering, a traditional and common assump-
tion is that each feature in a dataset is equally essential. Treat-
ing all features equally important does simplify the process,
but it ignores the fact that each feature contributes uniquely
to the downstream task [Daszykowski et al., 2007]. Some
features with rich information may significantly impact the
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Figure 1: A Demonstration of feature weighting. Traditional fea-
ture weighting methods assign the same weight to one feature. Our
weighting method assigns different weights to different samples in
one feature.

model outcome, while others may contribute less or even in-
troduce noise and mislead the model [Garcı́a et al., 2015].
Treating all features with equal weight may dilute the infor-
mation of important features and cause less important fea-
tures to over-influence the model, thus diminishing the overall
effectiveness of information extraction. Feature weighting is
a technique that assigns weights to each feature in the dataset.
The main goal of feature weighting is to optimize the feature
space by assigning weights to each feature according to fea-
ture importance, thus enhancing the model performance. Fea-
ture weighting methods can be categorized based on learn-
ing strategies and weighting methods. Supervised feature
weighting uses actual data labels to determine the weights
of features [Chen and Hao, 2017a; Niño-Adan et al., 2020;
Wang et al., 2022]. Unsupervised feature weighting utilizes
the intrinsic characteristics of the dataset to assign weight
without relying on label information [Zhang et al., 2018].

Feature weighting can also be classified based on fea-
ture types or feature information. Weighting by feature
types focuses on the inherent properties of features, like
discreteness or continuity. This approach is often influ-
enced by data structure [Zhou et al., 2021; Xue et al., 2023;
Hashemzadeh et al., 2019; Cardie and Howe, 1997; Lee et
al., 2011]. Conversely, weighting by feature information em-
phasizes the informational content of features. It assesses the
importance of features based on their correlation and con-
tribution to the predictive model, typically using statistical
measures or machine learning algorithms [Kang et al., 2019;
Liu et al., 2004; Druck et al., 2008; Zhu et al., 2023a;
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Liu et al., 2019]. However, these methods do not effectively
capture the complex relationships between features and cause
risks like overfitting, local optimality, and noise sensitivity.
Moreover, as illustrated in Figure 1, these methods assign the
same weight to every sample (row) of each feature, rather
than assigning personalized weights to different samples.

In addressing the limitations of traditional feature weight-
ing methods, we adopt a new approach based on the Trans-
former model. One core feature of the Transformer is its self-
attention mechanism [Vaswani et al., 2017; Radford et al.,
2019; Luong et al., 2015; Zhou et al., 2023; Siriwardhana
et al., 2020; Hashemzadeh et al., 2019]. This mechanism
can effectively identify complex dependencies and interac-
tions among data features. In feature weighting, the self-
attention mechanism assigns attention weights by consider-
ing the relevance and contribution of features, enabling the
model to learn and adapt to specific dataset patterns during
the training process. Thus, our Transformer-based approach
can assign higher weights to features that significantly influ-
ence the model output. In this way, the model can focus on
the most critical information. With self-attention, the Trans-
former can effectively capture the contextual information and
inter-feature relationships within the tabular data.

The Transformer also employs a multi-head attention
mechanism operated with several self-attention components
operating in parallel. Each attention head focuses on differ-
ent aspects of the dataset, and captures diverse patterns and
dependencies. Thus the model can understand the feature re-
lationships from multiple perspectives. This application of
multi-head attention significantly enhances the model’s ca-
pability in determining feature weights. Thus, by integrat-
ing self-attention and multi-head attention mechanisms, our
Transformer-based method effectively identifies and assigns
feature weights. It adapts to various data patterns and com-
plicated relationships among features.

To further stabilize and enhance this weighting structure,
we need an effective fine-tuning method. Adopting rein-
forcement learning [Schulman et al., 2017; Fan et al., 2020]
for fine-tuning is a common strategy [Ziegler et al., 2019;
Fickinger et al., 2021; Ouyang et al., 2022; Zhu et al.,
2020]. Notably, the Proximal Policy Optimization (PPO) net-
work [Schulman et al., 2017] has the advantage of stability
and efficiency in fine-tuning by enhancing policies while en-
suring stable updates [Zhu et al., 2023b]. Specifically, the
PPO network fits the task of reducing information redundancy
within the data. In this scenario, information redundancy
refers to the presence of repetitive or irrelevant information.
Redundant features lead to possible overfitting in training. By
reducing redundancy, the data becomes more concise and fo-
cused on the most informative features. By minimizing re-
dundancy, learning becomes more stable and focused, which
helps to decrease classification variance.

In summary, we propose a novel feature weighting method
aiming to tackle several challenges: first, how to generate ap-
propriate weights of features; second, how to evaluate the ef-
fectiveness of feature weights; and finally, how to fine-tune
the feature weights according to the feedback from down-
stream tasks. Hence, we introduce a Transformer-enhanced
feature weighting framework in response to the challenges

outlined. This framework leverages the strength of the Trans-
former architecture to assign weights to features by captur-
ing intricate contextual relationships among these features.
We evaluate the effectiveness of feature weighting by the im-
provement of downstream task’s performance. Further, we
adopt a reinforcement learning strategy to fine-tune the output
and reduce information variance. This adjustment enhances
the model’s stability and reliability.

Our contributions are summarized as follows:

• We propose a novel feature weighting method for tabu-
lar data based on Transformer called TFWT. This new
method can capture the dependencies between features
with Transformer’s attention mechanism to assign and
adjust weights for features according to the feedback of
downstream tasks.

• We propose a fine-tuning method for the weighting pro-
cess to further enhance the performance. This fine-
tuning method adopts a reinforcement learning strategy,
reducing the data information redundancy and classifi-
cation variance.

• We conduct extensive experiments and show that TFWT
achieves significant performance improvements under
varying datasets and downstream tasks, comparing with
raw classifiers and baseline models. The experiments
also show the effectiveness of fine-tuning process in re-
ducing redundancy.

2 Related Work
2.1 Feature Weighting
Feature weighting, vital for enhancing machine learning, in-
cludes several approaches [Chen and Guo, 2015; Chen and
Hao, 2017b; Chowdhury et al., 2023; Wang et al., 2004;
Yeung and Wang, 2002]. [Liu et al., 2004], [Druck et al.,
2008], and [Raghavan et al., 2006] explored feedback in-
tegration, model constraints, and active learning enhance-
ment. [Wang et al., 2013] proposed an active SVM method
for image retrieval. Techniques like weighted bootstrap-
ping [Barbe and Bertail, 1995], chi-squared tests, TabTrans-
former [Huang et al., 2020], and cost-sensitive learning ad-
just weights through feature changes. These methods have
limitations like overfitting or ignoring interactions. Our study
focuses on adaptable weight distribution and improvement
through feedback.

2.2 Transformer
The Transformer architecture, introduced by [Vaswani et al.,
2017], has revolutionized many fields including natural lan-
guage processing. Instead of relying on recurrence like its
predecessors, it utilizes self-attention mechanisms to cap-
ture dependencies regardless of their distance in the input
data. This innovation has led to several breakthroughs in var-
ious tasks. For instance, BERT model [Devlin et al., 2018;
Clark et al., 2019], built upon the Transformer, set new
records in multiple NLP benchmarks. Later, [Radford et al.,
2019] extended these ideas with GPT-2 and GPT-3 [Brown et
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al., 2020], demonstrating impressive language generation ca-
pabilities. Concurrently, [Raffel et al., 2020] proposed a uni-
fied text-to-text framework for NLP transfer learning, achiev-
ing state-of-the-art results across multiple tasks.

3 Methodology
3.1 Problem Formulation
We consider the problem setting of classification. Let D =
{F,y} be a dataset with K features and N samples. We
define the feature matrix F = {fk}Kk=1. We use fk =
{f1

k , . . . , f
i
k, . . . , f

N
k }⊤ to denote the k-th feature, where

f i
k is the value of i-th sample on the k-th feature. y =
[y1, . . . , yN ]⊤ is the label vector. Without loss of general-
ity, we assume the first M features to be discrete, and the
remaining K −M features to be continuous.

In defining a weighting matrix W ∈ RN×K , each of
whose elements corresponds to the elements of the feature
matrix F. This weighting matrix W is applied element-
wisely to F to produce a weighted matrix Frew = W ⊙ F,
where ⊙ denotes the Hadamard product. In the weighting
problem, we aim to find an optimized W, so that Frew can
improve the downstream tasks’ performance when substitut-
ing the original feature matrix F in predicting y.

3.2 Framework
We propose TFWT, a Tabular Feature Weighting with
Transformer method for tabular data. We aim to improve
downstream tasks’ performance by effectively incorporating
the attention mechanism to capture the relations and inter-
actions between features. To achieve this goal, we design
a Transformer-based feature weighting pipeline with a fine-
tuning strategy. As Figure 2 shows, our method consists of
three components: In the Feature Alignment, we align dif-
ferent types of original features so that they are in the same
space. In the Feature Weighting, we encode the feature matrix
to get its embedding via Transformer encoders, and then de-
code the embedding into feature weights. In the Fine-Tuning,
we design a reinforcement learning strategy to fine-tune the
feature weights based on feedback from downstream tasks.

3.3 Feature Alignment
To effectively extract tabular data’s features while maintain-
ing a streamlined computation, we convert both discrete and
continuous features into numerical vectors.
Discrete Feature Alignment. We first encode the discrete
features into numerical values. The encoded numerical val-
ues are then passed to a dense embedding layer, transforming
them into vectors for subsequent processes. For each discrete
feature fk (k = 1, . . . ,M ), the encoded vector is:

vk = Dense(fk). (1)

Continuous Feature Alignment. We normalize all the con-
tinuous features with mean of 0 and variance of 1. We then
design a linear layer to align their length with discrete fea-
tures. For each continuous feature fk (k = M + 1, . . . ,K),
the encoded vector is:

uk = Linear
(
fk − µk

σk

)
, (2)

where µk and σk are the mean and standard deviation of the
k-th feature, respectively. Then the aligned feature matrix F′

is formed by concatenating these vectors:

F′ = [v1, . . . ,vM ,uM+1, . . . ,uK ]. (3)

3.4 Feature Weighting
Given aligned feature matrix F′, we aim to explore the rela-
tionships between features and assign proper feature weights.
Data Encoding. To enhance the model’s understanding and
extract latent patterns and relations from the data, we put F′

into the encoders with a multi-head self-attention mechanism.
This mechanism processes the embedded feature matrix F′

by projecting it into query (Q), key (K), and value (V) spaces.
The encoder then applies the self-attention mechanism to

capture varying feature relations in the feature matrix and as-
signs distinct attention weights to them. Assuming dk is the
dimensionality of the key vectors, the attention mechanism is
formulated as:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V, (4)

where Q = WQ ·F′, K = WK ·F′, and V = WV ·F′, WQ,
WK , WV are parameter matrices.

In our method, we adopt the multi-head attention mech-
anism, where the results of each head are concatenated and
linearly transformed. Assuming WO is an output projection
matrix and Z is the feature representation:

headi = Attention(QWQ
i ,KWK

i , V WV
i ), (5)

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO, (6)

Z = ResNet(MultiHead(Q,K, V )), (7)

where WQ
i , WK

i , and WV
i are weights for query, key, and

value. Through this process, we obtain the feature represen-
tation Z that captures feature relationships. Specifically, Z is
obtained by passing the input feature matrix through multiple
layers of the encoder, where each layer applies self-attention
and residual connection-enhanced feedforward networks.
Weight Decoding. In this process, we aim to decode a
weighting matrix W from the embedding Z. This decod-
ing process iteratively updates W until the downstream task’s
performance is satisfied. We initialize the W by setting all its
elements as 1. This is to ensure all features receive equal
importance at the beginning. In each decoding layer, we do
cross-attention on W and Z by:

CrossAttention(QW ,KZ , VZ) = softmax
(
QWKT

Z√
dz

)
VZ ,

(8)
where Qw = WQ ·W, KZ = WK · Z, and V = WV · Z,
WQ, WK , WV are parameter matrices.

By adopting a cross-attention mechanism, we generate a
contextual representation that captures various relationships
and dependencies in the feature matrix. After several weight
decoding layers, we get an updated weighting matrix W:

W = ResNet(CrossAttention(QW ,KZ , VZ)). (9)
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Figure 2: The framework consists of three components. In the alignment we convert discrete (f1 to fM ) and continuous (fM+1 to fK )
features into uniform-length vectors. In the weighting we initialize and reassign weights according to feature relationships. The fine-tuning
process employs reinforcement learning to refine the weighting model.

We finally use the the weighting matrix W to derive a
weighted feature matrix Frew by its Hadamard product with
the original feature matrix F: Frew = W ⊙ F. With this
weighted feature matrix, we reorganize the feature space and
make features optimized for the downstream task. Frew is
then used to substitute F in the downstream tasks.

3.5 Fine-Tuning
In the fine-tuning process, our primary goal is to adopt a re-
inforcement learning strategy to adjust the weighting matrix
W. This adjustment aims to reduce information redundancy
of Frew, thereby reducing the variance during training.
Weighting Matrix Refinement. We begin by evaluating the
redundancy, denoted as Rdd, using mutual information as de-
fined by [Shannon, 1948]. Rdd is calculated as follows:

Rdd =
1

|F|2
∑

fm,fn∈F

I(fm, fn). (10)

In this formula, F represents the feature matrix, with fm
and fn being the m-th and n-th features, respectively. The
function I(fm, fn) measures the mutual information between
these two features. We further define ∆Rdd to represent the
change in redundancy, where ∆Rdd = Rdd′ −Rdd, Rdd′ is
the redundancy of the feature matrix after fine-tuning.

Next, we process the input weighting matrix W through a
RL model. In this paper, we adopt a Proximal Policy Opti-
mization (PPO) as our RL model, which comprises one ac-
tor network and one critic network [Schulman et al., 2017].
While the actor network focuses on determining the actions to
take, the critic evaluates how good those actions are, based on
the expected rewards. In this content, an action is defined as
the output of the PPO network, which is an adjusted weight-
ing matrix W′. The state is the weighting matrix W and the
reward is the change of redundancy ∆Rdd.

Specifically, the actor network processes W to produce
mean and variance values. These values are then used to form

a probability distribution matrix V, which consists of Gaus-
sian distributions, represented as:

V = (V 1
k , V

2
k , . . . , V

N
k ), (11)

V i
k (µ, σ

2) =
1√
2πσ2

e−
(wi

k−µ)2

2σ2 . (12)

Here, V i
k indicates the weight distribution of wi

k, the i-th el-
ement of the k-th feature, with µ and σ2 being the mean and
variance, respectively. Here we form W′ with each element
w′i

k sampled from the probability distribution V i
k .

Actor Network Update. After refining the weighting matrix,
we update the feature matrix as F′

rew = W′ ⊙ F, and subse-
quently calculate the information redundancy Rdd′ of F′

rew.
Based on the observed change of redundancy ∆Rdd, we ad-
just the mean and variance within the probability distribution,
following the equations:

θ′ ← θ + α ·∆Rdd · ∇J(θ), (13)

∇J(θ) = 1

n

n∑
i=1

(∇ log πθ(ai|si))Ri, (14)

where θ is the parameter of the actor network, α is the learn-
ing rate, J(θ) is the objective function to maximize, ∇J(θ)
is the gradient of the objective function with respect to the
mean and variance, n is the number of state-action pairs in
the training, πθ(a|s) is the policy, and Ri is the reward of
state-action pair (si, ai). To ensure a stable fine-tuning pro-
cess, we implement a clipping mechanism for the updated
means. Specifically, we adopt each mean µi using the for-
mula: µi = clip(µi, wi + ϵ, wi − ϵ). This clipping process is
crucial for as it prevents excessive deviations from the current
weight wi, thereby maintaining the stability and reducing the
variance during downstream training.
Critic Network Update. After the update of actor network,
we continue to adjust the critic network with the reward. We
design the critic network to provide an estimate of the advan-
tage function A(s, a). This advantage function represents the
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expected future advantages under the state s and action a. We
design the function to change the policy gradually based on
the current state, so that the policy after adjustment π′

θ(a|s)
is not too biased from the previous policy πθ(a|s). We adopt
the clipping mechanism with a parameter ϵ as well as the ad-
vantage function A(s, a) in the loss function:

L(θ) = Ea,s

[
min

(
πθ(a|s)
π′
θ(a|s)

A(s, a),

clip
(
πθ(a|s)
π′
θ(a|s)

, 1− ϵ, 1 + ϵ

)
A(s, a)

]
. (15)

By minimizing L(θ), we continuously optimize the feature
matrix to obtain stable and enhanced performance.

Algorithm 1: Training of TFWT
Input: dataset D = {F,y}
Output: weighted feature matrix F′

rew
1 for iteration = 0, 1, 2, . . . , I do
2 Convert F into F′ by Eq.1 and Eq.2
3 for each encoder do
4 Q←WQ · F′, K ←WK · F′, and

V ←WV · F′

5 Compute MultiHead(Q,K, V ) by Eq.4 and
Eq.6

6 Z← ResNet(MultiHead(Q,K, V ))

7 for each decoder do
8 Qw ←WQ ·W, KZ ←WK · Z, and

V ←WV · Z
9 Compute CrossAttention(QW ,KZ , VZ) by

Eq.8
10 W← ResNet(CrossAttention(QW ,KZ , VZ))

11 Frew ←W ⊙ F
12 for each state-action pairs do
13 Get (µ, σ) by process W through PPO

network
14 Estimate V by (µ, σ) by Eq.11 and Eq.12
15 Sample W′ from V
16 F′

rew ←W′ ⊙ F
17 Compute Rdd for Frew, Rdd′ for F′

rew by
Eq.10

18 ∆Rdd← Rdd′ −Rdd

19 Update actor network parameter by Eq.13
20 Update critic network parameter by Eq.15
21 Pretrain a predictive modelM with D
22 Get ŷ by performM on F′

rew, and compute
cross-entropy loss between ŷ and y.

23 Backpropagate the loss to update parameters in the
encoders and decoders.

3.6 Training of TFWT
As Algorithm 1 shows, we first align original features by Eq.1
and Eq.2. Then, we encode the aligned feature matrix F′ into
an embedding Z and decode it into a weighting matrix W.

This encoding-decoding process is accomplished by a desig-
nated Transformer. In this way, we get a weighted feature
matrix Frew. To further fine-tune W, we adopt PPO as a rein-
forcement learning model to reduce the redundancy of Frew.
The fine-tuned W′ is sampled from the actor network of PPO.
The PPO networks are trained by the interaction data from
the sampling process. The cross-entropy loss derived from
the downstream machine learning model is used to update the
parameters of the encoders and decoders in the Transformer.

4 Experiments
In this section, we present three experiments that validate
the strength of our method. First, we demonstrate that our
method significantly enhances the performance on various
downstream tasks without fine-tuning. Second, we demon-
strate the advantages of our TFWT method over the baseline
methods. Finally, we demonstrate the effectiveness of fine-
tuning comparing with non-fine-tuning version of TFWT in
reducing the variance performance metrics. Overall, the re-
sults consistently demonstrate the superior performance of
our method.

4.1 Experimental Settings
Datasets. We evaluate the proposed method with four real-
world datasets:

• Amazon Commerce Reviews Set (AM) [Liu, 2011]
from UCI consists of customer reviews from the Ama-
zon Commerce website. Its purpose is to classify the
identities of authors of reviews by analyzing textual pat-
terns. We have randomly divided its 50 labels into two
groups, each containing 25 labels, transforming it into a
balanced binary classification task.

• Online Shoppers Purchasing Intention Dataset
(OS) [Sakar and Kastro, 2018] from UCI features mul-
tivariate data types including integer and real values. Its
purpose is to classify shoppers’ purchasing intentions
and predict purchases.

• MAGIC Gamma Telescope Dataset (MA) [Bock,
2007] from UCI reflects the simulation of high energy
gamma particles registration in a gamma telescope. Its
purpose is to classify the primary gammas from cosmic
rays.

• Smoking and Drinking Dataset with body signal
(SD) [Her, 2023] from Kaggle is collected from National
Health Insurance Service in Korea. Its purpose is to clas-
sify “smoker” or “drinker”.

Downstream Tasks. We apply the proposed model across
a diverse array of classification tasks, including Random
Forests (RF), Logistic Regression (LR), Naive Bayes (NB), K-
Nearest Neighbor (KNN) and Multilayer Perceptrons (MLP).
We compare the performance outcomes in these tasks both
with and without our method.
Baseline Models. To demonstrate the effectiveness of our
method, We compare our TFWT method with four estab-
lished baseline techniques, where the Least Absolute Shrink-
age and Selection Operator and TabTransformer are used for
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Metrics Model RF LR NB KNN MLP

Acc

AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD
Raw 0.620 0.850 0.812 0.702 0.660 0.873 0.787 0.724 0.600 0.780 0.731 0.679 0.567 0.843 0.808 0.674 0.687 0.868 0.812 0.716
USP 0.613 0.863 0.817 0.682 0.640 0.869 0.751 0.710 0.587 0.766 0.744 0.692 0.560 0.858 0.815 0.662 0.653 0.869 0.819 0.720
Lasso 0.627 0.860 0.822 0.707 0.680 0.860 0.799 0.724 0.607 0.802 0.738 0.669 0.533 0.852 0.816 0.679 0.693 0.878 0.821 0.719
WB 0.613 0.868 0.823 0.690 0.667 0.861 0.790 0.710 0.633 0.786 0.742 0.692 0.567 0.857 0.822 0.664 0.707 0.869 0.821 0.722
TabT 0.620 0.882 0.851 0.708 0.660 0.879 0.797 0.725 0.600 0.817 0.741 0.688 0.567 0.869 0.822 0.678 0.687 0.878 0.851 0.723
TFWT 0.640 0.895 0.860 0.733 0.713 0.903 0.805 0.727 0.627 0.829 0.752 0.694 0.587 0.884 0.833 0.685 0.727 0.894 0.874 0.739

Prec

AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD
Raw 0.622 0.727 0.827 0.706 0.657 0.789 0.777 0.701 0.613 0.659 0.739 0.681 0.537 0.707 0.838 0.656 0.687 0.788 0.822 0.716
USP 0.629 0.714 0.801 0.706 0.634 0.761 0.754 0.708 0.583 0.649 0.716 0.694 0.633 0.786 0.828 0.683 0.664 0.766 0.810 0.736
Lasso 0.624 0.747 0.816 0.694 0.684 0.771 0.789 0.724 0.607 0.680 0.732 0.670 0.544 0.851 0.831 0.679 0.689 0.806 0.820 0.725
WB 0.614 0.765 0.876 0.753 0.670 0.775 0.788 0.710 0.619 0.662 0.728 0.699 0.557 0.790 0.840 0.660 0.707 0.793 0.835 0.722
TabT 0.622 0.788 0.860 0.710 0.657 0.799 0.786 0.725 0.613 0.687 0.742 0.688 0.537 0.787 0.821 0.688 0.687 0.812 0.840 0.731
TFWT 0.637 0.856 0.842 0.742 0.710 0.803 0.789 0.727 0.627 0.694 0.769 0.696 0.557 0.801 0.845 0.707 0.730 0.825 0.871 0.739

Rec

AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD
Raw 0.622 0.722 0.761 0.702 0.655 0.658 0.741 0.701 0.602 0.729 0.661 0.680 0.705 0.631 0.749 0.636 0.687 0.662 0.772 0.716
USP 0.582 0.714 0.818 0.616 0.633 0.781 0.779 0.709 0.579 0.721 0.666 0.681 0.524 0.609 0.761 0.659 0.651 0.668 0.793 0.719
Lasso 0.622 0.700 0.789 0.736 0.678 0.633 0.748 0.724 0.603 0.771 0.661 0.659 0.510 0.812 0.758 0.679 0.690 0.700 0.780 0.718
WB 0.614 0.715 0.748 0.562 0.667 0.638 0.747 0.705 0.616 0.727 0.649 0.672 0.546 0.602 0.754 0.670 0.710 0.665 0.769 0.722
TabT 0.622 0.715 0.821 0.708 0.655 0.655 0.755 0.725 0.602 0.777 0.668 0.688 0.705 0.668 0.785 0.678 0.687 0.635 0.839 0.723
TFWT 0.641 0.688 0.847 0.732 0.710 0.741 0.761 0.727 0.634 0.750 0.658 0.693 0.782 0.626 0.774 0.685 0.730 0.701 0.840 0.739

F1

AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD AM OS MA SD
Raw 0.620 0.725 0.777 0.701 0.656 0.694 0.752 0.701 0.591 0.676 0.666 0.679 0.432 0.654 0.766 0.624 0.687 0.697 0.785 0.716
USP 0.556 0.734 0.807 0.658 0.633 0.770 0.746 0.709 0.578 0.664 0.677 0.687 0.418 0.637 0.779 0.650 0.646 0.699 0.800 0.714
Lasso 0.622 0.719 0.798 0.714 0.676 0.665 0.761 0.724 0.602 0.703 0.669 0.664 0.403 0.826 0.776 0.679 0.690 0.735 0.793 0.717
WB 0.613 0.736 0.772 0.644 0.666 0.671 0.758 0.708 0.617 0.680 0.658 0.685 0.532 0.629 0.776 0.665 0.705 0.700 0.787 0.722
TabT 0.620 0.743 0.834 0.707 0.656 0.693 0.765 0.725 0.591 0.712 0.677 0.688 0.432 0.703 0.797 0.674 0.687 0.673 0.839 0.720
TFWT 0.636 0.735 0.844 0.730 0.710 0.767 0.771 0.727 0.621 0.715 0.667 0.692 0.463 0.664 0.794 0.676 0.730 0.742 0.852 0.728

Table 1: Overall performance on downstream tasks. The best results are highlighted in bold, and the runner-up results are highlighted in
underline. (Higher values indicate better performance.)

Datasets Samples Features Class

AM 1,500 10,000 2
OS 12,330 17 2
MA 19,020 10 2
SD 991,346 23 2

Table 2: Datasets Description.

feature preprocessing, and Weighted Bootstrapping and Un-
dersampling handle sample weight preprocessing.

• Undersampling (USP) reduces the majority class in a
dataset to balance with the minority class, creating an
even dataset. This method minimizes majority class bias
in training. We set the undersampling ratio based on cat-
egory frequency in our experiments.

• Least Absolute Shrinkage and Selection Operator
(LASSO) is a technique for feature selection and regular-
ization, enhancing model accuracy and interpretability.
It introduces a penalty proportional to the absolute val-
ues of coefficients, encouraging sparsity by driving some
to zero. This process effectively selects crucial features,
simplifying the model and reducing data dimensionality.

• Weighted Bootstrapping (WB) [Barbe and Bertail, 1995]
is a resampling technique assigning weights to each
dataset instance, influencing their selection in the resam-
pled dataset. It’s particularly useful for balancing un-
derrepresented classes. In our experiments, weights are
determined by class frequency.

• TabTransformer (TabT) [Huang et al., 2020] is a method
designed for tabular data, inspired by Transformer tech-
nology from natural language processing. It specializes
in transforming categorical features into embeddings,
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Figure 3: Accuracy Improvement Comparison.

capturing complex relationships within the data. This
approach enhances the performance of tabular data in
downstream tasks. In our experiments, TabTransformer
processes categorical features to create enriched repre-
sentations, which are then integrated into our model.

Metrics. To evaluate our proposed method, we use the fol-
lowing metrics: Overall Accuracy (Acc) measures the pro-
portion of true results (both true positives and true negatives)
in the total dataset. Precision (Prec) reflects the ratio of true
positive predictions to all positive predictions for each class.
Recall (Rec), also known as sensitivity, reflects the ratio of
true positive predictions to all actual positives for each class.
F-Measure (F1) is the harmonic mean of precision and recall,
providing a single score that balances both metrics.
Implementation Details. We implemented TFWT using Py-
Torch and Scikit-learn. The models were trained on NVIDIA
A100. For each dataset, we randomly selected between 60%
and 80% as training data. We initialized the hyperparame-
ters for the baseline models following the guidelines in the
corresponding papers, and carefully adjusted them to ensure
optimal performance. The initial learning rate was set be-
tween 10−3 and 10−5. For model regularization, the dropout
rate was fixed at 0.2.
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Figure 4: Comparison on MLP (Accuracy and F1).
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4.2 Experimental Results
Overall Performance. Table 1 illustrates that our TFWT
method consistently surpasses baseline methods across a va-
riety of metrics and datasets. For example, when focusing on
MLP, TFWT attains an accuracy improvement ranging from
17% to 23% compared to raw downstream tasks, and from
14.6% to 39.8% improvement over the most competitive fea-
ture weight adjustment methods. Furthermore, when apply-
ing fine-tuning method, TFWT sees an additional accuracy
increase from 19% to 27%, and a variance decline from 5% to
18%. Notably, our method also consistently outperforms the
TabTransformer model, which also incorporates the Trans-
former for feature adjustment.
Enhancement over Raw Downstream Tasks. Our evalua-
tion focuses on the improvement that TFWT method brings
to various downstream tasks in terms of performance. To en-
sure a robust and reliable comparison, we execute each model
configuration five times and calculate the average metrics.
The comparative results, showcased in Figure 3 and Table 1,
clearly demonstrate that TFWT consistently boosts perfor-
mance across all four metrics in four datasets, particularly
when applied to MLP. The significant improvement incor-
porated in the TFWT method enhances the performance of
downstream tasks from multiple dimensions.
Superiority over Baseline Models. We examine the im-
pacts of our TFWT approach and conduct comparative anal-
yses against four baseline models across four performance
metrics. Our primary metric of representation is overall ac-
curacy, depicted in Figure 3. Our TFWT method consis-

tently achieves the highest accuracy on all four datasets. Par-
ticularly noteworthy is the comparison with TabTransformer
model. While TabTransformer also integrates a Transformer
structure in the feature preprocess, TFWT demonstrates a
marked superiority in accuracy and F1, showing in Figure 4,5.

Model Name Mean AUC
USP 0.678 ± 0.025
LASSO 0.697 ± 0.020
WB 0.686 ± 0.014
TabT 0.697 ± 0.020
TFWT 0.713 ± 0.019

Table 3: Comparison of Mean
AUC.
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Figure 6: Mean AUC of Models.

Superiority of Fine-Tuning Method. We further evaluate
the advantages brought by our fine-tuning methodology. The
refined results post fine-tuning not only match but in sev-
eral instances surpass the outcomes obtained without fine-
tuning, across all evaluated metrics. The key aspect is that
the fine-tuned model demonstrates its superiority in the sig-
nificant reduction of variance across these metrics. Taking
Random Forests as a specific example, in a series of five re-
peated experiments, the variance in results after fine-tuning
decreased by 5% to 11% across all four metrics compared
with the non-fine-tuned TFWT model. Furthermore, the vari-
ance decreased by 7% to 13% compared with raw random
forest, depicted in Figure 7.
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Figure 7: Standard Deviation of Metrics on Random Forest. Here
NFF stands for non-fine-tuned and FF stands for fine-tuned.

5 Conclusion
In this study, we introduce TFWT, a weighting framework de-
signed to automatically assign weights to features in tabular
datasets to improve classification performance. Through this
method, we utilize the attention mechanism of Transformers
to capture dependencies between features to assign and adjust
weights iteratively according to the feedback of downstream
tasks. Moreover, we propose a fine-tuning strategy adopting
reinforcement learning to refine the feature weights and to re-
duce information redundancy. Finally, we present extensive
testing across various real-world datasets to validate the ef-
fectiveness of TFWT in a broad range of downstream tasks.
The experimental results demonstrate that our method signif-
icantly outperforms the raw classifiers and baseline models.

6 Limitations
While TFWT shows impressive performance, there are lim-
itations including high computational demands and limited
scalability with very complex tasks, and there may be inher-
ent limitations in tasks with unique requirements.
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