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Abstract

Semantic annotation for points of interest (POIs)
is the process of annotating a POI with a cate-
gory label, which facilitates many services related
to POIs, such as POI search and recommendation.
Most of the existing solutions extract features re-
lated to POIs from abundant user-generated content
data (e.g., check-ins and user comments). How-
ever, such data are often difficult to obtain, espe-
cially for newly created POIs. In this paper, we
aim to explore semantic annotation for POIs with
limited information such as POI (place) names and
geographic locations. Additionally, we have found
that the street view images provide extensive visual
clues about POI attributes and could be an essential
supplement to limited information of POIs that en-
ables semantic annotation. To this end, we propose
a novel multimodal model for POI semantic anno-
tation, namely M3PA, which achieves enhanced se-
mantic annotation through fusing a POI’s textual
and visual representations. Specifically, M3PA ex-
tracts visual features from street view images using
a pre-trained image encoder and integrates these
features to generate the visual representation of a
targeted POI based on a geographic attention mech-
anism. Furthermore, M3PA utilizes the contex-
tual information of neighboring POIs to extract tex-
tual features and captures their spatial relationships
through geographical encoding to generate the tex-
tual representation of a targeted POI. Finally, the vi-
sual and textual representations of a POI are fused
for semantic annotation. Extensive experiments
with POI data from Amap validate the effectiveness
of M3PA for POI semantic annotation, compared
with several competitive baselines.

1 Introduction
A point of interest (POI) is a specific place that individuals
may find helpful or interesting, such as a park, restaurant, or
university. In recent decades, services related to POIs have
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become increasingly popular on the web. Despite the abun-
dance of POIs being generated, the quality of POI data re-
mains questionable. The prevalent problem of missing prop-
erties for POIs is particularly challenging, with key informa-
tion such as categories often missing or incorrect due to un-
certainties in the human annotation processes for POIs. POI
semantic annotation, which annotates POIs with the most
likely category from all categories, not only helps users bet-
ter understand the characteristics of POIs but also aids in dis-
covering relatedness or similarities between different POIs.
Consequently, POI semantic annotation can facilitate many
downstream applications, such as POI search, recommen-
dation and the profiling of urban areas [Sun et al., 2021;
Huang et al., 2023; Bing et al., 2023; Li et al., 2024;
Xu et al., 2023b; Chen et al., 2021; Chen et al., 2020].

Many existing methods for POI semantic annotation gener-
ally extract sequential, textual, and visual features from user-
generated content data (e.g., check-in logs [Li et al., 2020;
Xu et al., 2022], POI descriptions [Lagos et al., 2020;
Villegas and Aletras, 2021], and users’ comments [Yang et
al., 2023]) relevant to a given POI, in order to estimate how
probable each category is for annotating the POI. However,
these methods heavily depend on abundant user-generated
content on POIs, which may be difficult to obtain in reality,
particularly for newly created POIs. This raises the need for
semantic annotation for POIs with limited information such
as POI (place) names and geographical data. In this vein,
Zhang et al. [2023] address this issue by developing a GCN-
based spatial encoder to model spatial correlations among
POIs and an attention-based text encoder for POI names.
However, their approach struggles to capture the spatially
varying context, such as the names of nearby POIs, which
are crucial for understanding POI semantics.

With the prosperity of various emerging geospatial data
sources, new angles have surfaced to address this problem
in ways that more closely align with human perception. Un-
doubtedly the text information that is intrinsically carried by
POIs (in particularly POI names) are indicative to POI seman-
tics and thus categories. From another perspective, when a
POI name is inadequate to determine the category of a POI, it
is useful to simply look around visually, to help the inference
with urban contextual information. In this vein, the emerging
urban visual data (e.g., street view images) provide extensive
visual clues about POI attributes in the built-up areas. With
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such data, we can then mimic human perception using “ma-
chine eyes”, i.e., analyzing the street view images to enhance
the determination of POI categories. Consequently, we be-
lieve that the street view images could be an essential supple-
ment of POI names to help semantic annotation for POIs.

In this context, we aim to extract semantic features of POIs
based on street view images around the POIs and the names
of their spatial neighbors, which presents two challenges:

1) Visual representation: Presently, current methods us-
ing street view images primarily concentrate on streets [Wo-
jna et al., 2017; Li et al., 2022] or a particular area [Liu et al.,
2023; Lee et al., 2021]. Many of these methods emphasize
the correlation between street view scenes and surrounding
environmental factors or the linguistic depiction of street view
scenes. Nevertheless, our goal is to extract more detailed se-
mantic information associated with POIs, which poses a sig-
nificant challenge.

2) Texutal representation: There are currently many pre-
trained language models (PLMs) available for successfully
extracting textual features. However, it is difficult to effec-
tively capture the spatial semantic information of POIs us-
ing these existing models or their extensions. This is because
POIs exist in geographic space with their spatial relationships
(such as distance and direction), and their distribution does
not follow a context linearization representation that is easy
for PLMs to understand. Additionally, the established lan-
guage models pre-trained on general domain corpora need to
be adjusted or processed for data on POI names.

To tackle the aforementioned challenges, we propose a
multimodal model for POI semantic annotation (M3PA) with
two key designs. 1) We create a pre-trained street view image
encoder to obtain the feature vector of an image aligned to
its surrounding POIs’ distribution, and use geographic atten-
tion to combine visual feature vectors of nearby POIs around
the targeted POI, generating the visual representation. 2) We
introduce GeoBERT, a language model constructed based on
BERT, which combines the name of a targeted POI with its
neighbors’ names and adds geographical encoding to capture
the spatial relationship between POIs, generating the textual
representation. Ultimately, we integrate the visual and textual
representations for POI semantic annotation.

The contributions of this paper are as follows:

• We introduce street view images to help understand the
characteristics of POIs. Such image data is an impor-
tant supplement to limited POI information (geographic
locations and textual names) that enables semantic an-
notation. To this end, we present a multimodal model
(M3PA) which incorporates the textual and visual repre-
sentations for POI semantic annotation.

• We propose a geographic language model (GeoBERT)
which encodes textual names of nearby POIs and the
spatial relations between POIs, producing a spatially
context-aware representation for each POI.

• We validate the proposed M3PA using two POI datasets
obtained from AMap and evaluate its performance
through the task of POI semantic annotation. M3PA
shows significant performance improvements com-
pared to various baseline methods, as verified by the
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(a) Haidian data
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(b) Lixia data

Figure 1: Relationship between categories of POIs and those of their
visually similar neighbors in the Haidian and Lixia datasets.

paired t-test. Data and source codes are available at
https://github.com/zdbasdxz/M3PA.

2 Preliminaries
2.1 Problem Statement
Definition 1 (Point of Interest). The information of a POI
pi consist of a POI ID idi, 2D geographic coordinates gi,
and a POI name represented as a set of words Wi, denoted
as pi = {idi, gi,Wi}. The coordinate gi = (lngi, lati) is
comprised of longitude and latitude information.

Definition 2 (Street View Image). A street view image si is
captured alongside the road network in urban areas to de-
pict the surrounding and environmental details from a visual
perspective, and it is associated with geographic coordinates.

Street view images are primarily captured by vehicles in
urban areas and offer a perspective from a human point of
view. Usually, these images are collected from four different
directions at a given location, in order to obtain comprehen-
sive coverage.

Definition 3 (POI Category). A POI category, denoted as ci
(e.g., University or Dessert House), signifies the specific top-
ics of the activities afforded at the POI pi.

Definition 4 (POI Semantic Annotation). Using the geo-
graphical coordinates (locations) and names of POIs, as well
as urban street view images, we aim to predict category labels
for unlabeled POIs.

2.2 Data and Motivation
We use the public POI dataset obtained from AMap1 in Bei-
jing’s Haidian District and Jinan’s Lixia District [Zhang et
al., 2023]. Each POI includes an ID, latitude and longitude,
a name, and a category. Furthermore, we gather street view
images (sized at 1024×512 pixels) from Baidu2, a Chinese
Internet service company. We obtain a total of 185,388 im-
ages from Haidian District and 91,672 images from Lixia
District. To aid in understanding POI semantics from images,
we filter out POIs without street view images within a 100-
meter radius. After preprocessing, the Haidian dataset con-
tains 89,055 POIs across 248 categories, and the Lixia dataset
contains 44,514 POIs across 140 categories.

1https://lbs.amap.com/api/webservice/guide/api/search/
2https://lbsyun.baidu.com/

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2534



Constructing pseudo sentences using neighbors

Images around the targeted POI

[CLS] Pizza Hut [SEP] Garden Bar 
[SEP] Crosstown Diner [SEP] Jenavie 
Cafe [SEP] Healthy Fresh [SEP]

Text
Encoder

(GeoBERT)

Image
Encoder

Geo
Attention

Street view images 
POIs

Garden Bar 

Pizza Hut

Crosstown 
Diner Healthy 

Fresh

Jenavie Cafe

Visual Feature Learning

Visual
Representation

Textual
Representation

Fusion ModelRepresentations

Final
Representation

Train and Prediction

Cross Entropy 
Loss

(labeled POIs)

Prediction
(unlabeled POIs)

Representation Learning Process (Step 1) Evaluation Process (Step 2)
Textual Feature Learning

Figure 2: The framework of M3PA.

We posit that street view images surrounding POIs can ef-
fectively convey semantic information on POIs. In this con-
text, we have undertaken an analysis of the data to ascertain
whether POIs with similar street view images in their vicinity
are more likely to share the same category. To obtain the
visual feature for each POI, we initially establish a buffer
zone (e.g., 100m) for the POI and identify the two closest
street view images within the buffer. Subsequently, we utilize
ResNet [He et al., 2016] to encode these images and obtain
the average visual feature vectors. Furthermore, we employ
the visual vector of each targeting POI pi to calculate the Nk

nearest neighbors based on the cosine distance and determine
the proportion of neighbors that share the same category as
pi. Similarly, we randomly select Nk POIs from the POI set
and compute the ratio of the selected Nk POIs with the same
category as pi. Finally, we calculate the average ratios of all
POIs and report the results in Figure 1. We observe that the
number of visually similar POIs with the same category as
the targeted POI is greater than that of random POIs in the
Haidian and Lixia datasets. This observation indicates that
the street view images around a POI indeed contain semantic
information related to the POI category label, which serves as
a crucial motivation for modeling the images to enhance the
semantic annotation performance.

3 Multimodal Semantic Annotation Model

3.1 Model Overview
We present an overview of our proposed framework in Fig-
ure 2, which is comprised of two primary steps: the represen-
tation learning process and the evaluation process. Specifi-
cally, we utilize urban images to identify surrounding images
for a targeted POI and employ a pre-trained image encoder to
produce the visual representation. Additionally, we leverage
the POI information to identify geographically neighboring
POIs and utilize the newly designed text encoder (GeoBert)
to encode the text names and geographical information of
these neighboring POIs to create the textual representation.
Subsequently, we develop a fusion model to integrate the fea-
ture representations from two different perspectives. During
the training stage, we optimize the model using cross-entropy
loss with the labeled POIs, and during the testing stage, we
predict the category labels for the unlabeled POIs.

3.2 Extracting Visual Representations of POIs
We initially develop a pre-trained image encoder to extract
visual features from street view images and then combine the
visual features of spatially nearby POIs based on an attention
mechanism to create the visual representations.

Pre-trained Image Encoder
We have observed that street view images around a POI can
convey semantic information related to its category label. As
such, we extract street view images within a specified buffer
zone (e.g., 100m) of a targeted POI and learn the visual fea-
tures. Although we could utilize an existing well-trained
ResNet to extract visual features from street view images, this
type of image encoder is designed to capture general features
rather than the semantic functionality of the specific zone
where the image is captured. POIs, which denote locations
associated with human activity in populated areas, can pro-
vide insight into the characteristics of a given zone. Conse-
quently, we propose utilizing the POI information surround-
ing a street view image to inform the learning process of the
image encoder, thereby capturing the inherent semantic func-
tionality of the street view image.

For an image si, we first use ResNet to extract its visual
feature Vi,

Vi = ResNet(si). (1)
Next, we create the POI semantic feature for si. Specifically,
we build a buffer zone for si based on its geographical coor-
dinates and calculate the category distribution of POIs within
the buffer zone as the semantic feature, denoted as Fi ∈ RNc .
Here, Nc represents the total number of POI categories, and
each dimension in Fi corresponds to the number of POIs with
a specific category in the zone.

We proceed to employ a two-layer MLP to transform Vi

into a new feature Ṽi with identical dimensions as Fi. During
the learning phase, we utilize the semantic feature Fi as labels
to fine-tune the ResNet-based image encoder and define the
loss function as

Limage =

|S|∑
i=1

KL(Fi, Ṽi),

Ṽi = W2 · ReLU(W1 ·Vi + b⃗1) + b⃗2,

(2)

where KL(·) denotes the Kullback Leibler (KL) divergence,
|S| represents the total number of street view images, and
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𝐏𝐎𝐒0 𝐏𝐎𝐒1 𝐏𝐎𝐒2 𝐏𝐎𝐒3 𝐏𝐎𝐒4 𝐏𝐎𝐒5 𝐏𝐎𝐒6 𝐏𝐎𝐒𝑛−2 𝐏𝐎𝐒𝑛−1 𝐏𝐎𝐒𝑛…

𝐆𝐄0 𝐆𝐄𝑖 𝐆𝐄𝑖 𝐆𝐄0 𝐆𝐄1 𝐆𝐄1 𝐆𝐄0 𝐆𝐄𝑘 𝐆𝐄𝑘 𝐆𝐄0…

𝐓[𝐶𝐿𝑆] 𝐓𝑖
1 𝐓[𝑆𝐸𝑃]𝐓𝑖

2 𝐓1
2 𝐓[𝑆𝐸𝑃] 𝐓[𝑆𝐸𝑃]…

𝐄[𝐶𝐿𝑆] 𝐄𝑖
1 𝐄𝑖

2 𝐄[𝑆𝐸𝑃] 𝐄[𝑀𝐴𝑆𝐾] 𝐄1
2 𝐄[𝑆𝐸𝑃] 𝐄[𝑆𝐸𝑃]…

Token Embedding

Geographical Embedding

Position Embedding

𝐄𝑖
𝑡𝑒𝑥𝑡𝑢𝑎𝑙

POIs

Garden Bar 

Pizza Hut

Crosstown 
Diner

Healthy 
Fresh

Jenavie Cafe

average

Multi-Head Attention

Feed Forward

N×

Neighboring POIsTargeted POI

Masked Token 
Prediction

Masked POI 
Prediction

Constructing Pseudo Sentences

stacked transformer layers

𝐓[𝑀𝐴𝑆𝐾] 𝐓[𝑀𝐴𝑆𝐾] 𝐓[𝑀𝐴𝑆𝐾]

𝐄[𝑀𝐴𝑆𝐾] 𝐄[𝑀𝐴𝑆𝐾]

Figure 3: The architecture of GeoBERT.

W1, W2, b⃗1 and b⃗2 are model parameters. Given that the
semantic feature Fi represents a distribution of categories,
the KL divergence, which quantifies the distinction between
probability distributions, stands as an appropriate selection
for the loss function. Throughout the training process, we
optimize the model using the SGD method. After training, we
use the fine-tuned ResNet to encode each street view image
and generate the initial visual feature Vp for each POI by
averaging the features of images within the buffer zone.

Geo Attention
The consideration of nearby POIs holds significant impor-
tance in semantic annotation for the targeted POI [Zhang et
al., 2023]. In line with the spatial interpolation assumption,
it is established that closer POIs in the neighborhood hold
more weights in determining the category label of the tar-
geted POI compared to those located at a distance. Building
on this premise, we introduce a geographic attention mech-
anism (Geo Attention), which allocates weights to neighbor-
ing POIs based on their geographic distance from the targeted
POI. Specifically, it takes the geographic coordinates (gi) of
POI pi and its k neighboring POIs (pi,1, pi,2, · · · , pi,k) as in-
put. The geographic distance between gi and gi,j is computed
using the Gaussian kernel function,

d(gi, gi,j) = exp(−geodist(gi, gi,j)σ
2/2), (3)

where geodist(·) denotes the geodesic distance and σ repre-
sents the hyper-parameter governing the decay of similarity
with respect to distance.

The distances between pi and its k neighbors are computed
based on Equation (3), denoted as Di. Then we calculate the
normalized geo-attention weight w(pi, pi,j) for each neigh-
boring POI based on the distances Di,

w(pi, pi,j) = exp(Hij)/(
k∑

j′=1

exp(Hij′)),

Hi = W3 ·Di + b⃗3,

(4)

where W3 and b⃗3 are the parameters of a fully-connected
layer. Lastly, the visual representation of pi is calculated as

Evisual
i = Vp

i +W4 ·
k∑

j=1

w(pi, pi,j)[V
p
j ||c⃗j ], (5)

where Vp
i and Vp

j are the visual features of POIs generated
with the pre-trained image encoder, c⃗j is the one-hot repre-
sentation of the category label of neighboring POI pj , || de-
notes concatenation, W4 is the weight matrix. The result-
ing vector Evisual

i is hence the weighted sum of the visual
features concatenated with the category labels of neighboring
POIs weighted by the learned geo-attention weights.

3.3 Extracting Textual Representations of POIs
We present GeoBERT, built on a language model, which ini-
tially combines a POI’s name with its neighbors’ names to
create a pseudo sentence and then encodes the spatial rela-
tions between POIs to generate a spatially context-aware rep-
resentation for each POI.

Constructing Pseudo Sentences Using POI Names
For a targeted POI, we first identify the k nearest geographical
neighbors and transform their names into a BERT-compatible
input sequence to create a pseudo sentence. In the example
illustrated in Figure 3, the pseudo sentence is constructed as

[CLS] Pizza Hut [SEP] Garden Bar [SEP] Crosstown
Diner [SEP] Jenavie Cafe [SEP] Healthy Fresh [SEP]

This sequence begins with the name of the targeted POI, fol-
lowed by the names of the spatially neighboring POIs. The
arrangement of the names is based on their spatial proximity
to the targeted POI, in accordance with the first law of geog-
raphy. Furthermore, we employ the same BERT tokenizer to
tokenize the sentence, with [CLS] positioned at the beginning
and [SEP] separating the name of each POI.

Encoding Spatial Relations
In order to represent the pseudo sentence, we employ two dis-
tinct types of position embeddings in conjunction with token
embeddings (cf. Figure 3). The sequence position embedding
serves to denote the token order, akin to the original position
embedding in BERT. Additionally, we introduce a geograph-
ical embedding, designed to capture the spatial relationship
between a POI and its neighboring POIs. Specifically, we
utilize a multidimensional continuous geographical encoding
technique [Li et al., 2021] to map a 2D point to an encoded
vector of dimension M based on its coordinate.
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We define the geographical embedding GEi of POI pi as

GEi =
1√
M

[cos gi ·WT
g || sin gi ·WT

g ], (6)

where || denotes concatenation, gi represents the latitude and
longitude information of pi, and Wg ∈ RM

2 ×2 denotes the
linear projection matrix. It is important to note that Wg is
initialized with a Gaussian distribution following indepen-
dent and identically distributed properties, denoted as Wg ∼
N(0, γ−2), where γ controls the spatial kernel bandwidth.

This geographical embedding offers the advantage that the
dot product of the embeddings of any two POIs approximates
the Gaussian kernel of their original latitude and longitude
information, i.e., GEi · GEj ≈ exp(−∥gi − gj∥2 × γ−2).
Consequently, the similarity between the geographical em-
beddings of two POIs could reflect their spatial proximity.
Furthermore, we employ an embedding GE0 generated by a
special coordinate, which is positioned far away from all the
POIs in the dataset, to separate different POIs in the sentence.

Similar to Bert, the token embedding, sequence position
embedding, and geographical embedding are summed and
then input into stacked Transformer layers, where each layer
includes a multi-head self-attention layer and a feedforward
layer [Vaswani et al., 2017]. Following this encoder, an out-
put embedding E is computed for each token.

Pre-training GeoBERT
To train the GeoBERT, we design two tasks to adapt the orig-
inal BERT backbone to the POI pseudo sentences.

Masked token prediction. The task is designed to sense
fine-grained POI semantics in geographic proximity (i.e., par-
tial POI name), in which it completes the full POI names from
pseudo sentences with randomly masked tokens. Each to-
ken (excluding [CLS] and [SEP]) has a 15% chance of being
masked by the special token [MASK], and the masked token
is predicted using the remaining tokens and their spatial co-
ordinates. The following example demonstrates the masked
input for the masked token prediction task.

[CLS] Pizza [MASK] [SEP] Garden Bar [SEP]
[MASK] Diner [SEP] Jenavie Cafe [SEP] [MASK]
Fresh [SEP]

Masked POI prediction. Furthermore, taking into ac-
count the spatial co-occurrence patterns of POIs, we predict
the name of a POI by utilizing the names of its neighboring
POIs. In this context, we formulate the task of predicting
masked POIs, where we mask all tokens of a random selected
POI (with 15% probability) in a pseudo sentence and pre-
dict the masked POI name by capturing the spatial relation
between the masked POI and its neighboring POIs. The fol-
lowing example illustrates the masked input for the masked
POI prediction task.

[CLS] Pizza Hut [SEP] [MASK] [MASK] [SEP]
Crosstown Diner [SEP] [MASK] [MASK] [SEP]
Healthy Fresh [SEP]

As we only need to predict the masked tokens, we col-
lect a subset based on the output embedding E (generated

by stacked Transformer layers) to form the representations
of masked tokens Emask. Subsequently, we proceed to map
Emask into the vocabulary space in order to forecast the prob-
ability distributions p across the entire vocabulary,

p = softmax(WmEmask), (7)
where Wm is a linear projection matrix. Finally, we define
the cross-entropy loss as

Lmask = − 1

Nm

Nm∑
i=1

ai logpi, (8)

where ai represents the actual one-hot distribution over the
entire vocabulary for the ith masked token and Nm denotes
the number of masked tokens in a pseudo sentence.

We optimize the GeoBERT model using stochastic mini-
batch gradient descent method. After training, we average
the output embeddings E of tokens belonging to the targeted
POI pi to generate the textual representation Etextual

i .

3.4 Training Objective
We now proceed to merge the visual and textual represen-
tations to create a more comprehensive final representation
for use in the semantic annotation task. We employ three
fusion methods (concatenation-based fusion, wide & deep
network-based fusion, and attention-based fusion) as delin-
eated in [Zhang et al., 2023] to produce the final representa-
tion Efinal

i of the targeted POI pi. Subsequently, we input
Efinal

i into a two-layer MLP to generate the predicted output
ŷi, which denotes the probability that pi is associated with
each category label. This is calculated as follows,

ŷi = softmax(W6 · ReLU(W5 ·Efinal
i + b⃗5) + b⃗6), (9)

where W5, W6, b⃗5, and b⃗6 represent the parameters.
During the training stage, we use the classification objec-

tive and minimize the cross-entropy loss function,

L = − 1

|P|

|P|∑
i=1

|C|∑
j=1

yij log(ŷij), (10)

where |P| and |C| represent the number of unique POIs and
categories in the dataset, yij represents whether POI pi is la-
beled with the jth category, and ŷij represents the predicted
probability that pi is labeled with the jth category. During
the prediction stage, we simply choose the element with the
maximum value in ŷi as the predicted category label of pi.

4 Experiment
4.1 Experimental Settings
Datasets. We utilize the public Haidian and Lixia POI data
from AMap as our datasets. Both datasets are randomly di-
vided into two sets, with an 8:2 ratio for training and testing.
We perform 5 model runs and present the average results.

Model Parameters. In our experiments, we utilize
ResNet18 as the initial image encoder with an output dimen-
sion of 512. The weight and tokenizers of GeoBERT are ini-
tialized from BERTBase

3, and GeoBERT has an output dimen-
sion of 768. We employ the same optimization parameters for

3https://huggingface.co/bert-base-chinese
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pre-training tasks on GeoBERT as in [Kenton and Toutanova,
2019], using the AdamW optimizer. To optimize M3PA, we
utilize the Adam optimizer and initialize the learning rate at
0.0001 with a linear decay.

Evaluation metrics. POI semantic annotation is a multi-
class classification problem. We use the well-known metrics
(Accuracy and Macro-F1) to evaluate model performance.
Additionally, using ŷi, we can create a ranking list of pre-
dicted category labels. Therefore, we also utilize the met-
ric MRR, which considers the position of real labels in the
ranking lists. MRR = [

∑|Ptest|
i=1 (1/ranki)]/ |Ptest|, where

|Ptest| is the number of POIs in the test set Ptest and ranki
is the rank of the real category in the predicted list for POI pi.

Baselines. In their study on semantic annotation for
POIs with geographic locations and POI names, Zhang et
al. [2023] introduce baselines including textual view meth-
ods (WTF), spatial view methods (GSF, GPS2Vec [Yin et
al., 2021]), and multi-view methods (EHC [Liu et al., 2020],
WTF+GPS2Vec, and SPTA [Zhang et al., 2023]). Detailed
information about these methods can be found in [Zhang et
al., 2023]. Additionally, we incorporate BERT [Kenton and
Toutanova, 2019] as a new textual view method, extracting
textual features from POI names using a pre-trained Bert.
Furthermore, we compare M3PA with visual view methods.

• ResNet: We utilize a pre-trained ResNet18 [He et al.,
2016] on ImageNet data to encode street view images
and obtain the visual representation of a POI. We then
train a two-layer MLP for semantic annotation.

• GeoCLR:It generates contrastive samples considering
both self-similarity and geographical-similarity across
urban images, and trains a contrastive learning model for
visual representations [Li et al., 2022]. Subsequently,
we acquire the visual representation of a POI and train a
two-layer MLP for annotation.

• MM-Gated-XAtt: It combines textual features ex-
tracted from a tweet and visual features extracted from
the twitter image using a cross-attention mechanism for
POI annotation, irrespective of the geographic location
of POIs [Villegas and Aletras, 2021]. In our setting, we
extract textual features from the POI name and visual
features for a POI from its nearest street view image.

4.2 Comparison with Baselines
We report the comparative results in Table 1 and observe that:

1) Both the spatial view and visual view methods yield
poor performance, as the geographic information or urban im-
ages lack sufficient semantic information for POI annotation.
GPS2Vec uses the MLP network to encode POI coordinates,
leading to the worst performance; GSF utilizes the category
information of other POIs in the same grid and outperforms
GPS2Vec. ResNet and GeoCLR perform poorly because they
only extract urban contextual visual features related to POIs,
without considering the semantic features of POI names.

2) The textual view method outperforms the spatial view
and visual view methods because the textual features ex-
tracted from POI names are more indicative of POI seman-
tics and thus categories. Moreover, BERT performs better

Data View Method Accuracy Macro-F1 MRR

Haidian

Textual
WTF 60.35 47.88 72.56
BERT 64.60 56.88 75.81

Spatial
GSF 13.59 4.49 23.36

GPS2Vec 5.19 0.25 12.26

Visual
ResNet 6.21 0.15 13.12

GeoCLR 6.12 0.65 13.11

Integrated

EHC 61.18 49.38 73.25
WTF+GPS2Vec 60.92 48.77 73.07
MM-Gated-XAtt 68.05* 58.20 77.96*

STPA 67.26 61.75* 77.83
M3PA 69.43 63.62 79.54

Improvements 2.03 3.03 2.03

Lixia

Textual
WTF 61.49 52.70 73.90
BERT 63.53 55.12 75.41

Spatial
GSF 13.31 5.34 24.61

GPS2Vec 6.97 0.34 15.87

Visual
ResNet 10.27 1.27 20.40

GeoCLR 11.06 1.76 21.41

Integrated

EHC 61.50 53.21 73.91
WTF+GPS2Vec 61.62 53.21 74.00
MM-Gated-XAtt 65.65* 54.27 76.32

STPA 65.46 59.72* 76.90*
M3PA 68.51 63.00 78.91

Improvements 4.36 5.49 2.61

Table 1: Performance comparison of different methods (in percent-
age), where the performance improvements of M3PA are compared
with the best results of these baselines, marked by the asterisk.

than WTF, confirming the effectiveness of using BERT as the
backbone to capture textual features from POI names.

3) The integrated view methods demonstrate superior per-
formance compared to single view methods. M3PA ex-
hibits the best performance. For instance, compared with
MM-Gated-XAtt, M3PA achieves an average improvement
of 4.46% on the Haidian data and 7.95% on the Lixia data
across three metrics. Moreover, the results of the superiority
paired t-test confirm that M3PA’s improvement over baselines
is statistically significant, with a p-value less than 0.01.

4.3 Ablation Study and Parameter Analysis
Study of Different Variants
We design two variants to explore how each of our modules
affects the performance of M3PA: 1) M3PA w/o Textual: it
removes the textual feature learning component and only uti-
lizes the visual representation for POI annotation; 2) M3PA
w/o Visual: it removes the visual feature learning component
and only utilizes the textual representation for POI annota-
tion. As shown in Figure 4, M3PA w/o Textual performs
poorly, as urban images offer some but not sufficient infor-
mation for understanding POI semantics; M3PA outperforms
M3PA w/o Visual, indicating that urban images could be a
useful supplement to POI names that enables POI annotation.

Study of Different Fusion Methods
Figure 5 illustrates the results of three fusion methods intro-
duced in Section 3.4. We observe that the attention-based
fusion method slightly outperforms the other two, as it can
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Figure 4: Performance comparison in different variants (HD: Haid-
ian data, LX: Lixia data).
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Figure 5: Performance comparison of different fusion methods (HD:
Haidian data, LX: Lixia data).

automatically determine the weights of each representation,
thus effectively integrating the visual and textual representa-
tions to produce the final representation.

Study of Parameter Sensitivity
We analyze how the model’s performance is affected by the
number of spatial neighbors (k) of a targeted POI. We incre-
ment k from 5 to 40 in steps of 5. The results are presented in
Figure 6. We note that the performance improves as we raise
k from 5 to 15, and then stabilizes as we further increase it.

5 Related Work
Traditional POI semantic annotation methods mainly model
users’ check-ins to predict the category labels of POIs with
manually designed features [Li et al., 2020; Ye et al., 2011].
Further, several studies [Wang et al., 2017; Xu et al., 2022;
Xu et al., 2023a] proceed to generate representations of POIs

5 10 15 20 25 30 35 40
number of spatial neighbors

0.55

0.60

0.65

0.70

0.75

ra
tio

Accuracy
Macro-F1

(a) Haidian Data

5 10 15 20 25 30 35 40
number of spatial neighbors

0.55

0.60

0.65

0.70

0.75

ra
tio

Accuracy
Macro-F1

(b) Lixia Data

Figure 6: Effect of number of spatial neighbors.

and categories by modeling check-in sequences using embed-
ding techniques. They annotate POIs by calculating the sim-
ilarity between POI representations and category representa-
tions.

In addition to users’ check-ins, some studies utilize ex-
ternal semantic data (e.g., POI descriptions and users’ com-
ments including texts and images) to identify POI seman-
tics for enhanced POI annotation. For instance, Meng et
al. [2017] model the text-image pairs and predict the category
labels of venues using a feature-level fusion method. Yang et
al. [2023] presents a multimodal model to extract the textual
and visual features of POIs from user comments for POI tag-
ging. However, these methods do not capture the spatial rela-
tionships among POIs and the urban contextual information
inherent in street view images.

Meanwhile, several studies have addressed the issue of se-
mantic annotation for POIs using only geographic locations
and textual names [Liu et al., 2020; Zhang et al., 2023]. They
fail to model the names of spatially adjacent POIs and urban
street view images to help better understand POI semantics.

6 Conclusion
In this study, we present a multimodal POI semantic annota-
tion model (M3PA) that utilizes street view images as a cru-
cial supplement to the limited POI information such as POI
names and geographic locations. M3PA consists of two key
components: 1) it employs a pre-training strategy to guide the
image encoder in extracting visual features from street view
images and integrates the visual features of nearby POIs to
generate the visual representations; 2) it combines the POI
names of spatially adjacent POIs and generates the textual
representations of POIs via a geographic language model.
The two types of representations are fused for POI seman-
tic annotation. We conduct comprehensive experiments us-
ing POI data from Amap to demonstrate the effectiveness of
M3PA. We find that POI names are more informative than
street view images in POI semantic annotation, with the latter
serving as a useful supplement.
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