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Abstract
Most Graph Neural Networks (GNNs) are based on
the homophily assumption, where nodes with the
same labels or similar features tend to be connected
to each other. However, real-world graphs often
do not adhere to this homophily assumption. Cur-
rently, most researches aggregate multi-hop neigh-
bor information to discover more potentially rele-
vant nodes. However, in the aggregation process
of GNNs, the difference in modeling global and lo-
cal information is not considered, inevitably lead-
ing to information loss. Motivated by this limita-
tion, we propose LG-GNN, a local-global adaptive
graph neural network for modeling both homophily
and heterophily. Specifically, we model the long-
range structural similarity and local feature sim-
ilarity between nodes from global and local per-
spectives, in order to capture distant dependencies
in highly heterophilic networks while reducing the
mixing of locally dissimilar feature nodes, thereby
increasing the effectiveness of information aggre-
gation in highly heterophilic graphs. Extensive ex-
periments on a wide range of real-world datasets
demonstrate that our proposed approach performs
well in both heterophilic and homophilic graphs.

1 Introduction
Graph (i.e., network) is an important data structure that is
widely used to model the relationships and interactions of
complex systems, such as social graphs, recommendation
systems, and knowledge graphs, etc. Graph analysis [Wang et
al., 2016] has developed rapidly as a key means of studying
graph topology and node features. Recently, Graph Neural
Networks (GNNs) have been successfully applied to various
tasks on graph, including node classification, graph classifi-
cation, link prediction, and so on [Kipf and Welling, 2017;
Errica et al., 2020; Zhang and Chen, 2018; Yu et al., 2021;
Wang et al., 2022b; Zhang et al., 2022].

The typical GNNs and their variants usually follow the
message passing mechanism, where in each round of aggre-
gation process, each node aggregates the information of its
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Figure 1: An illustrative example of an academic graph with high
structural similarity.

neighbor nodes, and then updates its self-node representation.
These works are built on the assumption of homophliy, that
is, nodes connected to each other tend to have the same class
labels [Hamilton et al., 2017]. However, real-world graphs
often do not comply with this homophily assumption. On the
contrary, in highly heterophilic graphs, most neighbor nodes
belong to different classes and have different features. For
example, polices are often associated with criminals, and in
protein networks, amino acids of one type tend to be linked
to amino acids of another type. Under these circumstances,
traditional GNN models will mix different types of infor-
mation during the aggregation process, leading to poor per-
formance on highly heterophilic graphs. Moreover, exper-
imental studies [Chien et al., 2021] show that in highly het-
erophilic graphs, multi-layer perceptron (MLP) that only uses
node features as input may even perform better than GNNs.
One possible explanation is that the low-pass filter of ag-
gregating neighbor information to update self-representation
hurts the performance of GNNs on heterophilic graphs.

At present, some researches have been devoted to solv-
ing the homophily limitation of GNNs. These methods can
be mainly divided into two types [Zheng et al., 2022]. 1)
Expanding the neighborhood aggregation range and captur-
ing potentially relevant nodes of the anchor node, such as
H2GCN [Zhu et al., 2020] and UGCN [Wang et al., 2020].
These works expand the neighborhood range by aggregating
multi-hop neighborhoods. Other studies [Wang et al., 2022a;
He et al., 2022] typically construct a matrix that expands the
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neighborhood to the global graph to capture more potentially
relevant nodes. 2) Refining the architecture of GNNs, includ-
ing adaptive message aggregation and inter-layer representa-
tion combination. Adaptive message aggregation [Bo et al.,
2021; Zhu et al., 2021] is to assign different weights of neigh-
bor nodes during the aggregation process. Inter-layer repre-
sentation combination [Zhu et al., 2020; Chien et al., 2021]
exploits different neighbor ranges by combining intermediate
representations of each layer.

These existing methods alleviate the homophily assump-
tion of GNNs to some extent, but they ignore the difference
between global information and local information in the ag-
gregation process of GNNs. This causes the aggregation in
GNNs fail to provide optimal weights to all potentially rele-
vant nodes, leading to information loss during the aggregation
process. For example, MixHop [Abu-El-Haija et al., 2019]
and H2GCN [Zhu et al., 2020] consider 2-hop neighbors to
aggregate local information. HOG-GCN [Wang et al., 2022a]
and BM-GCN [He et al., 2022] consider all neighbors to ag-
gregate global information. However, for local information,
the weight distribution of each neighbor node is more easily
affected by the local graph topology, resulting in the limited
aggregation of local information. For global information, the
weight distribution of each neighbor node is more easily af-
fected by the entire graph topology. Therefore, it is important
to address the differences between local and global informa-
tion in the aggregation process of GNNs.

So an intriguing yet important question is how to model the
local and global information within graph by making full use
of topology and features. Considering the limited information
contained in local topology, we innovatively introduce feature
similarity to filter out irrelevant nodes. Meanwhile, consider-
ing the structural similarity between distant nodes [Jeh and
Widom, 2002], we propose a topology-based iterative strat-
egy to capture the global information. Taking an academic
graph (shown in Figure 1) as an example, we can find that
two professors from the same university are likely to belong
to the same labels as they have similar neighborhood topol-
ogy, such as the students they teach. Moreover, the other two
students may also belong to the same labels as they have simi-
lar neighborhood topology, such as the papers they published.
Not only that, the similarity is transitive, which propagates re-
cursively upward from the low-level similarity topology, and
finally infers the high-level professors belong to the same la-
bels. These further illustrates that the node similarity can be
inferred through structural similarity.

On the basis of the above-mentioned, we propose a local-
global adaptive graph neural network, namely LG-GNN, for
modeling both homophily and heterophily. Specifically, in
local modeling, neighbors are divided into high-correlated
node sets and low-correlated node sets based on cosine sim-
ilarity. Then, we use the cosine similarity of the neighbor
set of anchor node to generate a sorting matrix, and con-
tinuously optimize the sorting matrix during the aggregation
process. In global modeling, we introduce SimRank to cal-
culate the structural similarity between node pairs and cap-
ture the global information of the anchor node by discovering
node pairs with high structural similarity. Finally, we capture
the relevant information of the anchor node from both global

and local perspectives. Extensive experiments across a series
of benchmark datasets illustrate the superiority of LG-GNN
over state-of-the-art methods.

2 Preliminaries
We first present the notations, and then give the definition of
homophily ratio.

2.1 Notations
Let G = (V,E,X) represent an undirected and unweighted
graph, where V = {v1, v2, . . . , vn} represents the node set
composed of n nodes, E is the set of edges, X ∈ Rn×f rep-
resents the node feature matrix, f represents the dimension
of the node features, and each node vi corresponds a feature
vector xi in the i-th row of matrix X . The adjacency ma-
trix A = [aij ] ∈ Rn×n represents the topology of graph G.
If there is an edge between node vi and node vj , aij = 1,
otherwise aij = 0.

The proposed model is mainly used in semi-supervised
node classification task. In this task, each node has its own
label c ∈ C, where |C| represents the number of total classes,
and only a few nodes VL ≪ n are associated with corre-
sponding labels. Each node vi ∈ VL has its own one-hot label
vector yi ∈ Y = {1, 2, . . . , C}. The goal of semi-supervised
node classification is to predict the labels of the remaining
nodes V \VL.

2.2 Homophily Ratio
The node-level homophily ratio [Pei et al., 2020] mainly mea-
sures the consistency of feature or connection patterns of
nodes in the graph. It first calculates the ratio of neighbors
of the anchor node with the same label, and then calculates
the average ratio of all nodes in the graph, defined as:

Hnode =
1

|V |
∑
vi∈V

| {vj ∈ N(vi) : yi = yj} |
N(vi)

(1)

where N(vi) is the neighbor set of node vi.
The edge homophily ratio [Zhu et al., 2020] measures the

consistency of structure or connection patterns of edges in a
graph, which helps to understand the topology and features of
the graph. Edge homophily ratio is the ratio of two nodes of
the same class connected by one edge, defined as:

Hegde =
| {(vi, vj) ∈ E : yi = yj} |

|E|
(2)

3 Methodology
We start with a brief overview and then give the details of
each component.

3.1 Overview
In order to tackle the differences between global and local
information in the aggregation process, we propose a local-
global adaptive graph neural network, namely LG-GNN, for
modeling homophilic and heterophilic graphs. The whole
structure of our proposed LG-GNN is displayed in Figure 2.
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Figure 2: The structure of LG-GNN, which consists of two modules, including global information modeling and local information modeling.

Unlike other GNN models, we use different ways to aggre-
gate global and local information. Specifically, we first inte-
grate the global information based on graph topology simi-
larity and the local information based on learning to rank into
adaptive graph convolutional, and then add residual connec-
tions to obtain the final node representation. In this way, our
method can explore nodes with high similarity to the anchor
node globally, and assign ranking scores to neighbors locally.
It is worth noting that in the process of adaptive graph con-
volutional, we model the homophily and heterophily of graph
topology, and further update the ranking in local information
modeling. Based on these, the neighborhood aggregation can
be considered from both topological and feature perspectives.

3.2 Global Information Modeling
In heterophilic graphs, nodes connected to each other often
have different labels, while nodes of the same labels are of-
ten very far with a long-range dependency relationship. The
neighborhood differences of anchor node make it difficult for
traditional GNN models to aggregate information from their
neighbors, but long-range dependency relationship based on
the anchor node is very meaningful for prediction tasks such
as node classification. Considering this, we introduce a ma-
trix S to capture long-range dependency information based
on the global topology [Jeh and Widom, 2002]. Intuitively, it
is believed that if two nodes have similar topology or neigh-
borhoods, two nodes are similar. Therefore, given two nodes
vi and vj , the structural similarity between them can be itera-
tively calculated as:

S(vi, vj) =

{
1 , (vi = vj)

c
|N(vi)||N(vj)|f(vi, vj) , (vi ̸= vj)

(3)

f(vi, vj) =
∑

vi
′∈N(vi),vj

′∈N(vj)

S(v
′

i, v
′

j) (4)

where c ∈ (0, 1) is the attenuation factor, usually set to 0.6.
The higher S(vi, vj), the higher structural similarity. In this
way, we can calculate the structural similarity of nodes from
an intuitive perspective. Considering that the structural simi-
larity matrix S is defined for any node pair in the graph and
is judged by calculating global structural similarity informa-
tion. Therefore, for the problem of how to discover poten-
tially relevant nodes of anchor node in heterophilic graphs,
the structural similarity matrix S can be utilized to assign
higher weights to potentially relevant nodes.

In the following, we further analyze the correlation be-
tween matrix S and the aggregation process of GNNs from
a theoretical perspective. First, we take a look at the con-
cept of random walk [Perozzi et al., 2014]. Random walk
refers to starting from a node vi, and selects its neighbor
nodes as the next node to move based on a certain prob-
ability distribution. This process will continue for multi-
ple steps until the pre-defined number of steps is reached or
the pre-defined conditions are reached. Specifically, we use
p(vi) = p(vm|vi, r(l)vi:vm) to represent the probability from
node vi to node vm at the pre-defined rule condition r

(l)
v:m,

where vi : vm represents {vi, . . . , vm}. That is, a path of
length l consisting of all nodes passing through the path from
node vi to node vm. Meanwhile, due to the random nature
of the walking process, the anchor nodes’ neighbors are vis-
ited with equal probability, thus p(vm|vi, r(l)vi:vm) can be sim-
plified as

∏
µ∈rvi:vm

1
|N(µvt )|

, where µvt
is t-th node on the

path r
(l)
vi:vm . Therefore, the higher value of probability p, the

higher the probability of this path. This means that there is a
closer connection or association between two nodes, reflect-
ing an increase in similarity or correlation between nodes.
Furthermore, according to the properties of Markov chain
[Savage, 1972], the steady-state distribution of random walks
(i.e., the probability of nodes being visited after a long time
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step) is related to the similarity between nodes. If two nodes
have more connections or are more closely related, then the
probability of the two nodes being visited during a random
walk will be higher, reflecting their similarity.

For traditional GNNs’ aggregation, it can be considered as
a local random walk with a finite number of steps [Gasteiger
et al., 2019], while a random walk with two random nodes
can be considered as a global calculation question. The higher
the probability of walking between two nodes, the higher the
similarity between the two nodes can be inferred. Formally,
given two nodes vi and vj , the probability of global random
walk can be represented as:

P(vi,vj)(vi, vj |r
(2l)) =

∑
r
(2l)
vi:vj

P(vi,vj)(vi, vj |r
(2l)
vi:vj

) (5)

∑
r
(2l)
vi:vj

P(vi,vj)(vi, vj |r
(2l)
vi:vj

) =
∑

vm∈V

P (vi) · P (vj) (6)

P (vi) = P (vm|vi, r(l)vi:vm
) (7)

Meanwhile, considering that each layer of most GNN mod-
els is propagated and aggregated through the 1-hop neighbors
of the anchor node, this process can be regarded as random
walk. Therefore, the visit probability of each node can be
viewed as a node representation, and the combination of ran-
dom walk and the node representation learned by GNNs can
be represented as z

(l)
vi [j] = p(vj |vi, r(l)vi:vj ). This indicates

that the l layer GNNs can be simulated as a random walk
with length l, where the learned node representation contains
information about the reachability of multiple nodes on the
path. Furthermore, this node representation can be applied
to GNNs to simulate a scenario of multi-layer stacking of
GNNs, thereby realizing the global random walk of any two
nodes. That is, when l → ∞, the model is stacked with infi-
nite layers, which is represented as G(∞). In this way, we can
obtain the representations of node vi and node vj in an infi-
nite number of layers, represented as z(l)vi and z

(l)
vj . Finally, by

substituting them into Eq. 3, the structural similarity matrix
with global information can be calculated as:

S(vi, vj) =
∞∑
l=1

cl ·
〈
z(l)vi

, z(l)vj

〉
(8)

The higher S(vi, vj), the higher weight to nodes vi and vj .
By this means, the model can discover potential related nodes
of the anchor node in global relationship, and effectively uti-
lize the topology of graph to guide the process of information
propagation and aggregation.

3.3 Local Information Modeling
We mainly adopt the method of ListNet loss [Cao et al., 2007]
to model local information. The local information matrix
aims to predict the ranking of other nodes based on the an-
chor node and its cosine similarity, and iteratively update the
neighbor node ranking of the anchor node during the process
of information propagation and aggregation. Specifically, we
first use a multi-layer perceptron (MLP) to reduce the dimen-
sionality of node feature matrix X , and obtain the node rep-
resentation matrix B.

Then, we optimize B by minimizing the cross entropy be-
tween the true ranking of nodes in the ranking list and the
predicted ranking, and accordlying calculate the local infor-
mation matrix. Formally, for each neighbor node, we assign a
higher ranking to intra-class nodes with high cosine similar-
ity, and assign a lower ranking to inter-class nodes with low
cosine similarity. For each given anchor node, there is a cor-
responding ranking list, as shown in the bottom of Figure 2,
and the correct ranking list is predicted by optimizing the loss
function. Specifically, for a given anchor node vi, we need to
construct a sorting list, which sorts the intra-class nodes and
inter-class nodes in the training set based on cosine similarity.
The intra-class node ranking list is defined as:

listini =
{
v1j , v

2
j , · · · , v

Qi

j |Yv
qi
j

= Yvi
; cos(vi, v

qi+1
j )

}
(9)

where 1 ≤ qi ≤ Qi, Qi is the number of intra-class nodes in
the same labels as node vi, and cos(·) is the cosine similarity.

Analogously, the inter-class node ranking list is defined as:

listouti =
{
v1j , v

2
j , · · · , v

Qo

j |Yvqo
j

= Yvi ; cos(vi, v
qo+1
j )

}
(10)

where 1 ≤ qo ≤ Qo, Qo is the number of inter-class nodes in
different labels from node vi.

After obtaining the intra-class node ranking list and inter-
class node ranking list of the anchor node, we combine
them into a set of neighbor nodes List(i) = listini [1 :
K]||listouti [−K : −1], where || represents the splicing opera-
tion, and the ranking of each node represents its true ranking.
This represents the k most similar intra-class nodes and the
k least similar inter-class nodes to the anchor node vi in the
training set. It is worth noting that in the process of learning
to rank, the matrix B is continuously optimized, and the final
local information matrix is calculated by R = B ·BT .

3.4 Adaptive Graph Convolutional
The above two matrices collect more useful information for
the anchor node from both global and local perspectives, al-
lowing for the change of neighborhood propagation weights
during the propagation process. In other words, our goal is
to increase the influence between intra-class nodes and re-
duce the influence between inter-class nodes. This means that
our global and local information matrices can assign different
weights to the neighborhood of the anchor node and capture
long-range dependencies under long connections. That is, we
can integrate homophily and heterophily. In addition, we sep-
arate self-representation from neighborhood representation to
preserve more personalized information. Formally, the fea-
ture propagation process in the l-th layer can be defined as:

Z(l) = σ(µÃHZ(l−1)W (l)
n + (1− µ)Z(l−1)W (l)

e ) (11)

Ã = (αR+ βS + γA) (12)
where µ and 1−µ represent the weights of self-representation
and neighborhood representation, W (l)

n and W
(l)
e are learn-

able parameters specific to the l-th layer, α, β and γ repre-
sent the weights of local information matrix, global informa-
tion matrix, and initial matrix, respectively. Z(0) = X is the
node feature matrix, and σ is a nonlinear activation function.
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The adaptive graph convolutional not only utilizes node fea-
tures but also utilizes graph topology. For the final result, our
approach appears in the form of adding several non-existent
edges to a distant set of similar nodes, and deleting several
existing edges from a set of dissimilar nodes in the nearby
neighborhood (1-hop).

3.5 Optimization Objective
We focus on semi-supervised node classification task, and the
loss function of LG-GNN is mainly consists of two parts:
Lrank is the loss of learning to rank in local information mod-
eling, and LGCN is the loss of adaptive graph convolutional.
Specifically, LG-GNN integrates the global and local infor-
mation modeling into a unified model. By incorporating the
loss functions in local information modeling and in adaptive
graph convolutional, the final loss function can be written as:

Lrank = −
|Vtrain|∑

i=1

(softmax(yvi
)log(softmax(ŷvi

))) (13)

LGCN =
∑

vi∈Vtrain

f(Zvi , Yvi) (14)

Lfinal = Lrank + LGCN (15)
where softmax is the classification function, |Vtrain| is the
number of nodes in the training set, yvi represents true value
of vi, and ŷvi is the predicted value obtained from the rank-
ing list List(i), which is calculated using Z[i]T · Z[List(i)],
representing the product of node vi and relevant node feature
information in the ranking list, f(·) is the cross entropy.

4 Experiments
We first introduce the experimental setup, and then evaluate
the new approach LG-GNN on node classification and visual-
ization tasks. We finally give a deep investigation on different
components of LG-GNN and parameter analysis.

Datasets Cora Cite. Pubm. Texa. Wisc. Corn. Film
#Nodes 2,708 3,327 19,717 183 251 183 7,600
#Edges 5,429 4,732 44,338 309 499 295 33,544

#Features 1,433 3,703 500 1,703 1,703 1,703 931
#Classes 7 6 3 5 5 5 5
Hnode 0.83 0.71 0.79 0.09 0.17 0.12 0.22
Hedge 0.81 0.74 0.83 0.11 0.21 0.13 0.22

Table 1: The statistics of datasets.

4.1 Experimental Setup
Datasets. To demonstrate the performance of LG-GNN in
homophilic and heterophilic graphs, we conduct experiments
on seven widely used datasets. The statistics of datasets are
shown in Table 1.

• Cora, Citeseer, and Pubmed [Sen et al., 2008] are ho-
mophilic citation datasets. Among them, nodes repre-
sent papers, edges represent citations between papers,
node features represent the bag-of-words of the paper,
and node labels represent academic topics.

• Texas, Wisconsin, Cornell [Pei et al., 2020], and Film
[Tang et al., 2009] are heterophilic datasets. In the first
three datasets, nodes represent web pages, edges repre-
sent hyperlinks between web pages, node features repre-
sent bag-of-words of web pages, and node labels repre-
sent page categories. Film is a dataset related to the film
industry, where nodes represent actors and edges repre-
sent the co-occurrence relationship between two actors
on Wikipedia. Node features represent the correspond-
ing keywords for actors in Wikipedia, and labels repre-
sent the types of actors identified in Wikipedia.

Baselines. We compare our proposed LG-GNN with nine
existing methods. They include: 1) Multi-Layer Perceptron
(MLP), which only uses node features; 2) Traditional GNN
models, including GCN [Kipf and Welling, 2017] and GAT
[Veličković et al., 2018], which work under the assumption of
homophily; 3) Heterophilic GNN models, including H2GCN
[Zhu et al., 2020], GOAL [Zheng et al., 2023], SIMGA [Liu
et al., 2023], HOG-GCN [Wang et al., 2022a], BM-GCN [He
et al., 2022], and OrderedGNN [Song et al., 2023].

Implementation Details. The experiment generated 10
random partitions on the datasets. For each dataset, 48% of
nodes are used to training set, 32% of nodes are used to vali-
dation set, and the remaining 20% are used to test set. For fair
comparison, all methods use the same 10 random partitions.
In addition, for all baselines, we adopt the default parameters
used by the authors in the original paper. For our LG-GNN,
a two-layer MLP is used in the local information modeling to
process the feature matrix X , with the dimension of 512 of
hidden layer. In the process of adaptive graph convolutional,
a two-layer graph convolutional operation is used, and the di-
mension of hidden layer is 256. For hyperparameters, we use
the weight of the local information matrix with α = 0.2, the
weight of the global information matrix with β = 0.4, the ini-
tial matrix weight with β = 1, the self-representation weight
with µ = 0.5, and the learning rate to 0.001.

4.2 Node Classification
The results of node classification are shown in Table 2, with
the average accuracy and standard deviation of 10 random
partitions as evaluation indicators. As shown, we can find
that LG-GNN performs best in 5 out of 7 datasets and still
maintains a competitive level in the remaining two datasets.
The detailed analysis is as follows:

• Our LG-GNN maintains optimal performance or strong
competitiveness on homophilic datasets (i.e., Cora, Cite-
seer, and Pubmed). Specifically, LG-GNN performs
the best on Cora and Pumbed, with a 0.15% difference
from the best performing OrderedGNN on Citeseer, still
maintaining a competitive level. The experimental re-
sults indicate that our method has the best or highly com-
petitive performance on homophilic datasets.

• LG-GNN performs the best on four heterophilic
datasets, namely Texas, Wisconsin, Cornell, and Film.
Specifically, LG-GNN is superior to traditional GNN
models, with an average improvement of 28.50% and
26.50% compared to GCN and GAT, and an average
improvement of 3.70% compared to MLP that only
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Methods Cora Citeseer Pubmed Texas Wisconsin Cornell Film
MLP 71.29±1.60 66.96±2.61 86.48±0.63 81.08±4.83 85.49±3.53 83.24±7.03 36.58±1.44
GCN 86.48±1.43 72.67±1.99 87.34±0.65 54.05±4.36 50.39±7.55 53.78±8.59 28.78±1.48
GAT 87.16±1.17 75.64±1.95 85.25±0.60 57.30±3.38 54.31±5.62 54.59±7.33 28.99±1.44

H2GCN 86.48±1.63 75.56±2.18 88.77±0.65 79.73±7.27 82.55±4.33 78.38±4.35 36.71±1.41
GOAL 88.71±0.87 77.15±0.95 89.25±0.55 85.92±4.28 87.15±3.71 85.46±4.52 36.74±1.41
SIMGA 88.41±1.33 77.22±1.52 89.56±0.31 84.87±4.39 87.92±3.64 85.76±4.49 36.81±1.21

HOG-GCN 85.17±4.40 76.15±1.88 88.79±0.40 85.17±4.40 86.67±3.36 84.32±4.32 36.82±0.84
BM-GCN 87.99±1.29 76.13±1.92 90.25±0.75 85.13±4.64 86.87±3.42 84.74±4.41 36.46±1.24

OrderedGNN 88.37±0.75 77.31±1.73 90.15±0.38 86.22±4.12 88.04±3.63 86.35±4.73 36.91±1.46
LG-GNN 88.73±1.24 77.16±1.89 89.76±0.67 89.20±2.29 88.24±3.49 86.49±4.84 37.24±0.91

Table 2: Node classification results with mean and standard deviation in terms of Accuracy (%). Bold and underline represent the best and
the second best results.

uses features. For traditional GNN models, the draw-
back of only being able to aggregate the mean on het-
erophilic graphs is significantly magnified, resulting in a
decrease in model accuracy. Compared with other GNN
models specifically designed for heterophilic datasets
(i.e., H2GCN, GOAL, SIMGA, HOG-GCN, BM-GCN,
and OrderedGNN), the average accuracy of LG-GNN
has improved by 0.97%-5.90%. These results further
demonstrate the effectiveness and superiority of inte-
grating both local and global information adaptively for
modeling heterophily.

4.3 Visualization
In order to analyze the effectiveness of node representa-
tion learned by LG-GNN more intuitively, we visualize node
embeddings on the CiteSeer dataset using t-SNE [Van der
Maaten and Hinton, 2008]. The visualization results of GCN,
GAT, H2GCN, and LG-GNN are shown in Figure 3, where
different colors represent nodes with different labels. An
ideal visualization result is that nodes of the same classes (in
the same color) should be close to each other.

As shown, the visualization results of GCN and GAT are
relatively poor, where nodes with different labels are mixed
together, indicating poor clustering performance. Compared
to H2GCN, our proposed LG-GNN has a more clear class
boundary, so the visualization effect of LG-GNN is better
than H2GCN. This is also consistent with the node classifi-
cation results, which indirectly verifies the effectiveness of
our local-global adaptive graph neural network for modeling
both homophily and heterophily.

4.4 Ablation Study
To verify the effectiveness of each component of LG-GNN,
we conduct experiments on comparing LG-GNN with four
variations. The variants are as follows: 1) GCN, which serves
as the base framework of LG-GNN; 2) LG-GNN-1: removing
the global information modeling of LG-GNN; 3) LG-GNN-
2: removing the local information modeling; 4) LG-GNN-3:
removing residual connections.

(a) GCN (b) GAT

(c) H2GCN (d) LG-GNN

Figure 3: Visualization results of GCN, GAT, H2GCN, and LG-
GNN on the Citeseer dataset.

As shown in Table 3, all three variants have higher aver-
age accuracy than GCN on seven datasets and lower accuracy
than LG-GNN, indicating that using both local and global
information can significantly improve the node classification
results of the model on homophilic and heterophilic graphs.
In addition, the average performance of LG-GNN-1 is bet-
ter than that of LG-GNN-2, indicating better improvement in
local information modeling.

Methods Cora Citeseer Pubmed Texas Wisconsin Cornell Film
GCN 86.48 72.67 87.34 54.05 50.39 53.78 28.78

LG-GNN-1 87.32 73.35 87.96 81.92 78.43 86.49 34.81
LG-GNN-2 81.49 73.58 85.71 83.78 80.39 83.78 33.51
LG-GNN-3 88.23 76.14 89.12 88.30 86.12 85.12 35.87
LG-GNN 88.73 77.16 89.76 89.20 88.24 86.49 37.24

Table 3: Comparisons of our LG-GNN with its four variants on node
classification. Bold represents the best result.
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4.5 Parameter Analysis
We take homophilic dataset Cora and heterophilic dataset
Texas as examples to analyze the sensitivity of hyperparame-
ters of LG-GNN.

Analysis of weight α and β. The parameters α and β
represent the weights of the local information matrix and the
global information matrix, respectively. We vary their value
from 0 to 1, and the corresponding results are shown in Fig-
ure 4. On the heterophilic dataset Texas, when α and β are 0,
(i.e., only the global information matrix or only the local in-
formation matrix is used), the performance is relatively poor.
When α and β are in the range of 0.2 to 0.4, LG-GNN has
the best model performance. On the homophilic dataset Cora,
when α and β are 0, the performance is relatively poor. When
α and β are in the range of 0.2 to 0.4, our LG-GNN has the
highest performance. In summary, the model performs best
with parameters α = 0.2 and β = 0.4 on both heterophilic
and homophilic datasets.

(a) Texas (b) Cora

Figure 4: Analysis results of parameters α and β on heterophilic
dataset Texas and homophilic dataset Cora.

Analysis of weight µ. The parameter µ represents the
weight of the proportion of self-representation and neighbor-
hood representation. The corresponding results are shown in
Figure 5. It can be find that as µ first increases and then de-
creases, the maximum accuracy is obtained when µ = 0.5.
In particular, µ = 0 means that only self-representation is
used for convolution, while µ = 1 means that only neighbor-
hood representation is used for convolution. In both cases,
the performance of the model is at its best. When in a mixed
state using self-representation and neighborhood representa-
tion, the model performance is significantly improved, and
the model performance is best when µ = 0.5.

5 Related Work
According to the focus of this paper, we briefly review related
research on classical graph neural networks and heterophilic
graph neural networks.

Classical Graph Neural Networks. GCN [Kipf and
Welling, 2017] introduces traditional convolutional opera-
tions into graph neural networks and uses the features of
neighbor nodes to update the node representations. In order to
solve the equality problem of GCN for neighbor nodes when
aggregating information, GAT [Veličković et al., 2018] intro-
duces an attention mechanism to learn the importance scores

(a) Texas (b) Cora

Figure 5: Analysis results of parameter µ on heterophilic dataset
Texas and homophilic dataset Cora.

between each node and its neighbor nodes, and then aggre-
gates neighbor information based on these scores. Further,
GraphSAGE [Hamilton et al., 2017] samples the neighbors of
each node at each layer, and uses aggregation functions (such
as mean, maximum, etc.) to aggregate the sampled neighbor
information, which has good scalability and efficiency, espe-
cially suitable for large-scale graph data.

Heterophilic Graph Neural Networks. To overcome the
limitations of homophily assumption of GNNs, H2GCN [Zhu
et al., 2020] proposes three key designs: self-neighbor sep-
aration, high-order neighborhood, and intermediate combi-
nation to capture information at low levels of homophily.
Geom-GCN [Pei et al., 2020] defines a new geometric re-
lationship by adding neighborhoods that comply with the de-
fined geometric relationship to the message aggregation of
GCN. HOG-GCN [Wang et al., 2022a] calculates the proba-
bility of a pair of nodes belonging to the same class by con-
structing a same attitude matrix. After that, BM-GCN [He et
al., 2022] adopts different rules for aggregation of intra- and
inter-class nodes by constructing a block similarity matrix.
OrderedGNN [Song et al., 2023] alleviates the assumption
of homophily by sorting the nodes in the graph and strictly
following the node order during the process of information
propagation and aggregation.

These existing methods have achieved great results in han-
dling the homophily assumption of GNNs. However, existing
GNN methods often overlook the differences between global
and local patterns, which is very important for information
propagation and aggregation.

6 Conclusion
This paper proposes a graph neural network that adaptively
integrates global and local information, so as to handle both
homophilic and heterophilic graphs simultaneously. The
model explores the potentially relevant nodes of the tar-
get from a global perspective using structural similarity and
learns local ordering through feature similarity. These two
components are then integrated into the adaptive graph con-
volutional to address the differences between global and local
information during the aggregation process. Experiments on
seven real-world datasets demonstrate that our proposed LG-
GNN outperforms existing methods on heterophilic graphs
and remains competitive on homophilic graphs.
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