
Kernel Readout for Graph Neural Networks
Jiajun Yu1,3,5 , Zhihao Wu2,3 , Jinyu Cai4 , Adele Lu Jia1∗ and Jicong Fan2,3∗

1College of Information and Electrical Engineering, China Agricultural University, Beijing, China
2School of Data Science, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), China

3Shenzhen Research Institute of Big Data, Shenzhen, China
4Institute of Data Science, National University of Singapore, Singapore

5College of Computer Science and Technology, Zhejiang University, Hangzhou, China
2017307070311@cau.edu.cn, zhihaowu1999@gmail.com, jinyucai1995@gmail.com, ljia@cau.edu.cn,

fanjicong@cuhk.edu.cn

Abstract

Graph neural networks (GNNs) for graph classifi-
cation or representation learning require a pooling
operation to convert the nodes’ embeddings of each
graph to a vector as the graph-level representation
and the operation has a significant impact on model
accuracy. The paper presents a novel graph pool-
ing method called Kernel Readout (KerRead). Ker-
Read maps the node embeddings from the sample
space with limited nodes to an augmented sample
space with infinite nodes, and then calculates the in-
ner product between some learnable adaptive cen-
ters and the augmented node embeddings, which
forms a final graph-level feature vector. We ap-
ply the proposed strategy to six supervised and two
unsupervised graph neural networks such as GCN,
GIN, GUNet, InfoGraph, and GraphCL, and the ex-
periments on eight benchmark datasets show that
the proposed readout outperforms classical pool-
ing methods such as Sum and seven state-of-the-
art pooling methods such as SRead and Janossy
GRU. Code and Appendix are both available at
https://github.com/jiajunCAU/KerRead.

1 Introduction
In recent years, graph neural networks (GNNs) have flour-
ished in many fields such as machine learning [Yu and Jia,
2023; Wu et al., 2023b; Zhang et al., 2024], computer vi-
sion [Han et al., 2022a; Chen et al., 2023b; Cai et al.,
2024b], and bioinformatics [Gilmer et al., 2017; Gasteiger
et al., 2021]. Originating from the theoretical investiga-
tion of both spatial and spectral domains, GNN has become
a general paradigm powerful for modeling non-Euclidean
graph data. Typically, GNNs generate representations that
preserve structural information by recursive neighborhood
aggregation. Numerous studies [Welling and Kipf, 2017;
Hamilton et al., 2017; Zheng et al., 2023; Jin et al., 2021]
have been devoted to designing various GNN architectures
for node-level tasks like node classification and clustering,

∗Corresponding authors.

and the most prevalent GNNs have been validated to generate
expressive node representations.

Beyond that, some critical real-world scenarios, e.g. pro-
tein interface prediction [Fout et al., 2017; Liu et al., 2020]
and compounds functionality analysis [Kojima et al., 2020],
require predicting for entire graphs, leading to graph-level
tasks, where each graph, rather than a node, is a sample. A
key challenge is the graph isomorphism problem, that is, how
to recognize whether two graphs are isomorphic or not. Xu
et al. [2018] first explored the connection between GNNs
and the graph isomorphic problem, proving that GNNs are
at least as powerful as the Weisfeiler-Lehman graph isomor-
phism test. Motivated by these, many researchers have pro-
posed GNNs focusing on graph-level tasks [Gilmer et al.,
2017]. Generally, these methods apply readout functions,
also known as graph pooling functions, on node representa-
tions, and then obtain graph-level representations, i.e., a vec-
tor representing the entire graph.

Readout is a crucial technique bridging powerful GNNs
and graph-level learning. The most widely adopted graph-
level GNN backbones [Xu et al., 2018] only used some sim-
ple readout functions like Sum, Max, and Mean. These func-
tions typically collect first-order statistics only, which does
not accurately characterize the distribution of graphs. Mean-
while, they are fixed and non-data-driven operations, so they
may not fit different graphs well. Some recent work has
put forward learnable readout functions to solve these is-
sues. They are mainly categorized as attention-based [Li et
al., 2016; Itoh et al., 2022; Fan et al., 2020] and sequence-
based [Vinyals et al., 2016; Buterez et al., 2022] approaches.
These methods have made some progress, but the gains are
not steady, and most critically, no unified framework to guide
the design of readout. [Sun and Fan, 2024] proposed a deep
MMD graph kernel (MMD-GK) that integrates graph kernel
learning with graph neural networks and has promising per-
formance in graph classification and clustering. Although
Deep MMD-GK does not require any readout operation, it
has quadratic time and space complexities.

In this article, we propose a novel kernel-based readout
function named KerRead, which utilizes the kernel technol-
ogy in readout. The detailed process of KerRead is depicted
in Figure 1. To be specific, we treat each dimension as a point
with coordinates determined by the feature values of each

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2505

https://github.com/jiajunCAU/KerRead

V
a

rio
u

s G
N

N
s

…

Graph 𝒢𝑖

…

V
irtu

a
l N

o
d

e
 1

N
o

d
e

 1

Dimension 1

Dimension 2

Dimension 3

Adaptive

Center 2

Dimension 4

Adaptive

Center 1
Dimension-Center

Kernel Matrix
F
u

sio
n

Sample Space Augmented Sample Space

Node Representation

𝐇𝒢𝑖 ∈ ℝ
𝑛𝑖×𝑑𝐿

Centers

𝐂𝒢𝑖 ∈ ℝ
𝑛𝑖×𝑚

…

…

Augmented

𝜙(𝐇𝒢𝑖) ∈ ℝ
∞×𝑑𝐿

Augmented

𝜙(𝐂𝒢𝑖) ∈ ℝ
∞×𝑚

Kernel Matrix

𝐙𝒢𝑖 ∈ ℝ
𝑚×𝑑𝐿

Graph Vector

𝐳𝒢𝑖 ∈ ℝ
𝑑𝐿Graph 𝒢 𝔾

Graph 𝒢1

Graph RepresentationInput Graphs

Adaptive

Center 1

Adaptive

Center 2

…

…

Kernel

Value

Figure 1: The overall framework of KerRead. The kernel readout function first designs the adaptive center, and then uses a kernel function
to map the node embedding and the adaptive center to the augmented sample space, and then calculates the kernel value based on each
dimension of augmented node embedding and the augmented adaptive center to obtain the final graph vector. This can be formulated as:

Gi = (XGi
∈ Rni×d,AGi

∈ Rni×ni)
GNN−−→ HGi

∈ Rni×dL
ϕ−−→ ϕ(HGi

) ∈ R∞×dL
ϕ(CGi

)∈R∞×m

−−−−−−−−−−−−→ ZGi
∈ Rm×dL

w−−→ zGi
∈ RdL .

node in this dimension, then we define several adaptive cen-
ters and calculate kernels between these centers and dimen-
sion points, leading to several advantages over other meth-
ods: 1) KerRead implicitly augments the number of nodes in
a graph to be large or even infinite through the Gaussian ker-
nel; 2) Graph representations are generated by computing the
kernel matrices so they are naturally in the same scale; 3) The
centers are trainable and the number of centers can be flexi-
bly defined. 4) KerRead adheres to the crucial property of
permutation invariance, a vital characteristic for robust graph
learning. In general, KerRead employs kernel technology to
better reflect the latent distributions of diverse node represen-
tations, which is a more powerful and scalable method.

Our contributions are as follows.

• We propose a new paradigm to analyze and design read-
out functions from the perspective of kernel functions.

• We put forward KerRead which solves several draw-
backs of existing methods.

• We conduct comprehensive experiments to evaluate the
proposed KerRead, including graph classification and
clustering with various GNN backbones.

2 Related Work
2.1 Graph Neural Networks
Graph neural networks (GNNs) aim to learn low-dimensional
and dense node representations from high-dimensional sparse
graphs while preserving the original structural information.
Initially, GNNs were operated in the spectral domain [Bruna
et al., 2014; Defferrard et al., 2016; Welling and Kipf, 2017;
Wang and Zhang, 2022; Wu et al., 2024] and transformed
the feature signals of the graph into the frequency domain
through Fourier transformation and subsequently designing
various filters in the frequency domain, where the goal was
to make the signal of target node more similar with its
neighbors. Meanwhile, other graph neural network meth-
ods operated in the spatial domain [Hamilton et al., 2017;

Veličković et al., 2018; Xu et al., 2018; Cai et al., 2024a;
Yu and Jia, 2024], which can acquire the node representa-
tion by message passing mechanism. For instance, Graph-
SAGE [Hamilton et al., 2017] aggregated the sampled neigh-
borhoods of the target nodes to generate the target node rep-
resentations. Graph Attention Network (GAT) [Veličković
et al., 2018] introduced the multi-attentional module mech-
anism into GraphSAGE. Meanwhile, many widely devel-
oped domains, such as machine learning [Chen et al., 2023a;
Fan et al., 2022; Chen et al., 2022; Fan, 2022] and data
mining [Cai et al., 2022; Zheng et al., 2022; Fan, 2021;
Cai and Fan, 2022], have extensively employed numerous
GNN variants [Chen et al., 2023c; Chen et al., 2023d;
Wu et al., 2023a; Zheng et al., 2021].

2.2 Graph-level Prediction
Graph-level tasks treat each entire graph as a sample, pos-
ing many new challenges for GNNs. For this purpose, many
GNN methods were focusing on the graph-level tasks [Xu
et al., 2018; Gilmer et al., 2017; Gao and Ji, 2019; Buterez
et al., 2022; Ju et al., 2022; Sun and Fan, 2024; Han et al.,
2022b]. For instance, [Gilmer et al., 2017] proposed a general
framework for quantum chemistry representation called Mes-
sage Passing Neural Networks. GUNet [Gao and Ji, 2019]
added the graph pooling and unpooling layers during graph
convolution. [Luo et al., 2023] explored the semi-supervised
classification problem from a subgraph perspective. [Cai et
al., 2024a] advanced graph clustering with a novel pseudo-
label mechanism. [Liu et al., 2022] considered the long-tailed
problem in the graph classification. [Sun et al., 2023] utilized
the Lovász principle to build an unsupervised graph represen-
tation learning framework.

2.3 Readout Function
The readout function, a vital component in GNNs, pools
the learned graph embedding matrix into a graph embed-
ding vector for the subsequent graph classification task. The
aforementioned graph-level methods use simple and naive

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2506

readout functions, such as sum, mean, or max, to gener-
ate the final graph representation vector. [Li et al., 2016;
Itoh et al., 2022; Fan et al., 2020] proposed attention-based
readout functions to capture the importance of each node.
[Lee et al., 2021] proposed learnable modules for readout
functions to further improve their expressive power. To fur-
ther enhance the expressiveness of readout functions, cer-
tain methods incorporate techniques designed for sequence
data types into the readout process [Navarin et al., 2019;
Xu et al., 2018; Buterez et al., 2022]. There are also some
hierarchical readout methods, that is, reading out smaller and
smaller graphs step by step as the graph is embedded until it is
aggregated into a node [Zhang et al., 2018; Ying et al., 2018;
Du et al., 2021], however, these hierarchical methods also
need a readout function to gradually reduce the size of the
graph, so in this article, we only focus the readout function
which map the node embedding into graph vector directly.

3 Proposed Method
3.1 Notation and Problem Formulation
A graph is presented as G = (A,X), where A ∈ Rn×n is the
adjacency matrix, where Aij = 1 denotes that vi is connected
to vj and Aij = 0 otherwise. Let G = {G1, ...,GN} be the
graph set. We aim to learn the graph representation vector zGi

for each graph Gi to facilitate downstream tasks.
Encoding Graph GNNs are usually used to encode each
graph and consist of some graph convolutional layers. Each
layer is based on the message-passing mechanism, i.e., ag-
gregating the neighborhood information for each target node,
which is formed by two steps

H̄
(l+1)
Gi

= AGGREGATE
(
AGi

,H
(l)
Gi

)
, (1)

H
(l+1)
Gi

= COMBINE
(
H

(l)
Gi
, H̄

(l+1)
Gi

)
, (2)

where we have H
(0)
Gi

= XGi
. For convenience in expression,

we will use HGi
∈ Rni×dL to denote the node embedding

matrix of graph Gi at final layers in the following part.
Readout Function After convolution by GNNs and getting
node emebdding matrix HGi , a readout function is utilized to
map HGi

∈ Rni×dL into a graph vector zGi
∈ RdL for the

following graph classification task:

zGi
= READOUT

(
{HGi

[j, :] | vj ∈ Gi}
)
, (3)

where HGi
[j, :] refers to the j-th row of Gi node embedding

matrix, i.e., node vj in graph Gi.

3.2 Detailed Method
In this part, we will introduce our proposed KerRead, which
incorporates the principles of kernels into the realm of read-
out mechanisms. KerRead is a learnable readout function that
matches GNNs’ expressiveness well by solving the following
challenges of existing methods:

• Challenge 1: How to ‘readout’ distinguishable graph
representations in a data-driven manner?

• Challenge 2: How to fairly learn graph representations
for all graphs in a unified size sample space?

• Challenge 3: How to capture latent distributions from
graphs with scarce and varying numbers of nodes?

The following involves devising an adaptive center, and we
leverage expressive kernel functions to calculate graph repre-
sentations, e.g., Gaussian kernel. Moreover, we put forth the
concept of multi-head centers to further enhance the model’s
capabilities. The overall framework is shown in Figure 1.

Adaptive Center In graph-level tasks, although graphs
vary, nodes of different graphs are described by features with
the same meaning and amount. Therefore, it makes more
sense to think of readout in a dimension-wise perspective than
in the sample-wise one, i.e., we describe graphs by consider-
ing how to express distributions in each dimension instead of
directly considering fusing representations of all nodes.

More specifically, HGi
[:, j] in the node representations can

be viewed as a description or distribution for the distribu-
tion of graph Gi in the corresponding dimension, and these
distributions of different graphs are naturally comparable.
From this view, mapping the node representation matrix into
a graph representation vector can be regarded as representing
the distributions of each dimension by one value. Assume
there is a central dimension called center in this paper, we
can represent the distribution by calculating certain distances
between each dimension and the center, and our key idea is
employing the effective kernel method to achieve this. It is
obvious that the design of the center is critical in our method.
On the one hand, one single and fixed center can not adapt
to different graphs; On the other hand, centers of different
graphs can not be totally individual otherwise the graph rep-
resentations may not be compared. For this purpose, we de-
sign an adaptive center which can adapt different graphs and
share information among graphs. First we leverage a shared
model fΘ : RdL → R to generate the adaptive center as

cGi
= s · fΘ(HGi

), (4)

where s ∈ R is a learnable scale factor, and fΘ can be a
certain neural network like Multi-Layer Perceptrons (MLP)
performed on each row of HGi

and Θ is the set of learnable
parameters. Note that fΘ can also be a simple pooling func-
tion, in which Θ is the empty set. For example, the adaptive
center cGi

∈ Rni can be

cGi
= [s · fΘ(HGi

[1, :]), · · · , s · fΘ(HGi
[ni, :])]

⊤
. (5)

In this way, the learning of centers is data-driven and op-
timized in conjunction with GNNs. More importantly, the
designed model can address graphs with different sizes as it
adaptively generates a center for each graph. Meanwhile, all
graphs share fΘ and the scale factor s, so that the training
process incorporates information from various graphs. These
provide bases to solve Challenge 1 and 2. After obtaining cGi

with flexible size ni, i.e., the number of nodes in Gi, we can
calculate the kernel value between each dimension of node
embedding and the adaptive center to obtain the final graph
vector in the following section.

Kernel Calculation Compared to node-level tasks, graphs
commonly contain very scarce nodes in graph-level tasks
(e.g., molecules), and the number of nodes in different graphs

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2507

may be imbalanced. Thus, it is difficult to capture latent
distributions and derive discriminative graph representations
(Challenges 3). To tackle this, we further employ a transfor-
mation function ϕ to map each column of node embedding
and the adaptive center into augmented sample space with
more virtual nodes:

ϕ(HGi
) =

[
ϕ
(
HGi

[:, 1]
)
, · · · , ϕ

(
HGi

[:, dL]
)]

, (6)

where HGi
[:, j] denotes the j-th column of HGi

, and ϕ :

Rni → Rn′
i maps a vector refers to ni nodes to a vector refers

to n′
i nodes, where n′

i ≫ ni. In general, explicitly designing
a ϕ is cost-prohibitive, particularly when n′

i is significantly
large or even infinite. Instead, we leverage kernel functions
k : X × X → R capable of implicitly inducing ϕ:

k
(
cGi

,HGi
[:, j]

)
= ϕ(cGi

)⊤ϕ(HGi
[:, j]). (7)

Thus the final graph representation vector is:

zGi
=

[
k
(
cGi

,HGi
[:, 1]

)
, · · · , k

(
cGi

,HGi
[:, dL]

)]
. (8)

There are numerous available kernel functions, each induc-
ing a unique feature map ϕ. Perhaps the best-known kernel
function is the Gaussian kernel, i.e.,

k(cGi
,HGi

[:, j]) = exp

(
−∥cGi

−HGi
[:, j]∥2

2σ2

)
, (9)

where cGi is the proposed learnable adaptive center corre-
sponding to Gi, and the parameter σ ∈ R is also learnable.
The mapping ϕ induced by a Gaussian kernel is infinite-
dimension. In our experiment, we evaluated various ker-
nel functions, including the Laplace kernel, Sigmoid kernel,
Polynomial kernel, and others. The performance results for
these kernels can be found in Section 4.3.
Multi-head Centers In order to enhance the richness of in-
formation captured from node representation HGi

, relying
solely on a single center may be insufficient. To address
this limitation, we further introduce the concept of multi-head
center, which initializes m learnable scale factors denoted as
s = [s1, ..., sm]. The adaptive center matrix CGi ∈ Rni×m is
then defined as follows:

CGi = gΨ(HGi) = [s1 ·fΘ(HGi), · · · , sm ·fΘ(HGi)], (10)

where Ψ = {s,Θ} is the parameter set containing scale fac-
tors and parameters of fΘ. Subsequently, the multi-head ker-
nel matrix ZGi

∈ Rm×dL is expressed as:

ZGi
=

 k
(
CGi [:, 1],HGi [:, 1]

)
· · · k

(
CGi [:, 1],HGi [:, dL]

)
...

. . .
...

k
(
CGi

[:,m],HGi
[:, 1]

)
· · · k

(
CGi

[:,m],HGi
[:, dL]

)
, (11)

where ZGi is only related to the number of heads m and hid-
den dimension dL. Finally, the fusion is performed on all
graph representation vectors:

zGi
= hΥ(ZGi

), (12)

where hΥ : Rm → R is a fusion model and Υ is the param-
eter set. As a simple example, hΥ can be a weighted sum-
mation of {ZGi

[j, :]}mj=1, allowing for adaptive learning of
contributions from each center to the final graph vector.

Overall Framework The entire pipeline of graph represen-
tation learning on graph Gi with KerRead is formulated as

zGi
= hΥ

(
ϕ
(
gΨ

(
fGNN
W (Gi)

))⊤

︸ ︷︷ ︸
m×n′

i

ϕ
(
fGNN
W (Gi)

)
︸ ︷︷ ︸

n′
i×dL

)

≜ MΥ,Ψ,W(Gi),

(13)

where fGNN
W is a certain GNN with parameter set W and

we denote MΥ,Ψ,W the over-all graph representation learn-
ing model with KerRead for convenience. Recall that ϕ is the
implicit mapping induced by the kernel function k. When k
is a Gaussian kernel, then n′

i = ∞.
Theorem 1. Suppose the kernel k is feature permutation in-
variant, then MΥ,Ψ,W is node permutation invariant—that
is, for any graph G and its any permuted counterpart G′,
MΥ,Ψ,W(G′) = MΥ,Ψ,W(G) always holds.

The proof is deferred to Appendix A1. Note that the as-
sumption in the theorem is very general. Many popular ker-
nels such as Gaussian kernel, Laplacian kernel, and polyno-
mial kernels are feature permutation invariant. Theorem 1
indicates the permutation invariance of our proposed frame-
work, which has been proven to be very critical in graph-level
learning [Buterez et al., 2022].

The training strategy of KerRead is based on the selected
GNN backbone. For the graph classification task, we em-
ploy a supervised GNN algorithm, using cross-entropy as the
loss function for supervised learning. Conversely, in han-
dling graph clustering tasks, we opt for an unsupervised GNN
backbone and utilize such as InfoNCE loss [Oord et al., 2018]
for representation learning, and then input learned graph em-
beddings into clustering algorithms, such as K-means [Lloyd,
1982] or spectral clustering [Ng et al., 2001] to obtain the
clustering results. This ensures that our model can be flexibly
and effectively applied to different tasks.

For the complexity analysis of KerRead and MΥ,Ψ,W , we
denote the number of graphs as N and the initial node fea-
ture dimension as d0, n = max({ni}Ni=1) is the max number
of nodes and |E| = max({|Ei|}Ni=1) is the max number of
edges among graphs, where Ei is the edge set of Gi. Consid-
ering an L-layer GNN, we define d = max({di}Li=1) is the
max hidden dimension. For the forward pass of MΥ,Ψ,W in
per iteration, the time complexity of KerRead is O(Nnmd),
including adaptive centers generation and kernel calculation.
The overall time complexity is O(N(nd+|E|)(Ld+d0)) with
m ≪ d0. The space complexity of KerRead is O(m(n+ d)),
and that of the overall framework is O(N((n+d)(Ld+d0)+
L|E|)). Generally, the additional costs our approach imposes
on the framework are negligible.

3.3 Connection to Existing Work
For brief formulation, we adopt one center vector cGi

for
graph Gi, meaning a feature dimension in graph Gi, and com-
pute the j-th element of graph representation zGi

as

zGi
[j] = ϕ(cGi

)⊤ϕ(HGi
[:, j]). (14)

1The appendix can be found at https://github.com/jiajunCAU/
KerRead/blob/master/Appendix.pdf

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2508

https://github.com/jiajunCAU/KerRead/blob/master/Appendix.pdf
https://github.com/jiajunCAU/KerRead/blob/master/Appendix.pdf

Backbone Readout MUTAG DD PROTEINS NCI1 Mutagenicity IMDB-B IMDB-M Avg

GCN
[Welling and
Kipf, 2017]

Sum 86.7 (5.5) 68.8 (4.7) 73.9 (3.5) 75.8 (2.3) 78.0 (1.8) 69.9 (4.3) 48.1 (4.1) 71.6
Max 81.8 (9.7) 72.8 (4.3) 66.0 (5.7) 72.4 (3.9) 79.6 (1.7) 71.2 (4.1) 46.7 (4.3) 70.1
Mean 87.2 (7.3) 71.1 (3.0) 68.1 (4.1) 73.6 (1.8) 78.5 (2.2) 71.1 (3.3) 48.7 (3.8) 71.2
Set2set 84.0 (4.2) 74.2 (4.9) 72.5 (4.0) 80.9 (1.9) 82.0 (0.9) 69.3 (4.3) 48.5 (3.8) 73.1
Attention 87.2 (4.4) 71.4 (4.0) 70.5 (3.5) 74.5 (2.6) 80.2 (2.3) 72.0 (4.6) 47.1 (5.5) 71.8
Deep Sets 84.6 (4.9) 73.6 (3.3) 75.5 (5.3) 76.2 (1.9) 78.2 (1.1) 72.0 (2.9) 48.5 (2.8) 72.7
SRead 86.1 (5.6) 68.8 (3.2) 74.1 (5.0) 75.8 (2.0) 78.4 (1.9) 70.4 (4.7) 47.6 (3.9) 71.6
Set Transformer 84.6 (6.0) 69.7 (3.9) 71.7 (5.8) 80.7 (2.6) 82.0 (1.7) 72.1 (3.0) 48.3 (1.7) 72.7
Janossy MLP 76.7 (11.4) 54.0 (3.4) 65.6 (4.0) 71.8 (2.1) 74.6 (1.7) 67.8 (3.3) 48.3 (3.1) 65.5
Janossy GRU 84.6 (7.7) 58.6 (0.4) 59.5 (0.2) 80.2 (1.6) 73.5 (10.8) 69.3 (3.6) 46.1 (6.6) 67.4
KerRead 88.3 (6.1) 77.8 (3.0) 75.9 (2.8) 82.6 (2.0) 82.6 (2.0) 72.5 (2.4) 49.0 (2.9) 75.5

GAT
[Veličković
et al., 2018]

Sum 76.0 (8.8) 73.6 (3.9) 73.6 (3.1) 70.9 (3.0) 75.0 (2.1) 50.0 (0.0) 34.7 (2.3) 64.8
Max 75.5 (8.4) 74.3 (4.1) 66.9 (5.0) 62.0 (3.5) 73.3 (2.9) 50.0 (0.0) 33.3 (0.0) 62.2
Mean 74.9 (9.7) 70.3 (4.2) 70.0 (5.4) 69.1 (2.2) 75.8 (2.6) 50.0 (0.0) 33.7 (1.4) 63.4
Set2set 76.0 (10.9) 75.2 (5.4) 72.6 (4.1) 73.5 (1.6) 78.7 (2.4) 50.0 (0.0) 33.3 (0.0) 65.6
Attention 78.7 (8.1) 67.7 (4.2) 71.4 (5.4) 69.5 (2.2) 76.9 (1.8) 50.0 (0.0) 33.3 (0.0) 63.9
Deep Sets 74.0 (12.0) 72.8 (4.6) 74.2 (4.9) 72.0 (1.7) 74.7 (1.3) 50.0 (0.0) 33.3 (0.0) 64.4
SRead 74.4 (7.8) 70.0 (4.5) 73.8 (4.0) 70.2 (3.1) 74.1 (1.8) 50.2 (0.6) 34.4 (2.3) 63.9
Set Transformer 74.0 (8.6) 66.8 (4.0) 73.4 (5.2) 72.9 (2.3) 79.6 (1.8) 50.0 (0.0) 33.3 (0.0) 64.3
Janossy MLP 74.4 (7.4) 52.3 (3.9) 65.0 (4.7) 68.4 (1.8) 71.4 (1.7) 50.0 (0.0) 33.3 (0.0) 59.3
Janossy GRU 75.5 (9.1) 69.9 (5.0) 59.5 (0.3) 75.5 (3.1) 65.3 (11.5) 49.8 (1.1) 32.9 (0.8) 61.2
KerRead 79.0 (5.4) 76.1 (3.2) 75.1 (3.2) 76.0 (2.3) 79.8 (1.8) 53.9 (3.1) 36.1 (2.5) 68.0

GIN
[Xu et al.,

2018]

Sum 87.3 (5.9) 72.5 (3.2) 70.3 (4.1) 79.0 (1.6) 81.0 (1.4) 71.0 (3.7) 48.1 (2.2) 72.7
Max 82.5 (4.6) 72.4 (3.3) 72.5 (2.7) 81.0 (2.1) 82.0 (1.9) 71.2 (4.3) 48.2 (3.7) 72.8
Mean 87.2 (5.0) 69.7 (3.3) 68.1 (4.1) 77.7 (1.9) 81.2 (1.6) 71.4 (4.3) 47.3 (2.3) 71.8
Set2set 87.3 (4.2) 73.5 (5.5) 69.0 (4.4) 80.7 (1.2) 82.5 (1.8) 71.8 (4.0) 47.6 (3.3) 73.2
Attention 85.1 (6.1) 70.0 (5.0) 68.4 (4.5) 78.4 (1.7) 81.9 (1.5) 70.9 (3.3) 48.4 (4.6) 71.9
Deep Sets 86.8 (4.8) 73.6 (3.3) 75.4 (4.8) 79.1 (2.0) 81.1 (2.3) 71.7 (2.7) 47.9 (2.6) 73.7
SRead 86.2 (6.9) 69.0 (3.7) 71.7 (5.0) 77.7 (1.7) 80.1 (2.1) 70.8 (3.7) 46.5 (3.8) 71.7
Set Transformer 87.3 (4.8) 66.9 (4.3) 72.1 (3.9) 79.3 (1.7) 81.7 (1.5) 71.6 (2.0) 47.5 (3.3) 72.3
Janossy MLP 79.4 (11.6) 53.1 (2.7) 60.7 (3.7) 70.8 (1.8) 77.3 (1.8) 69.5 (4.6) 47.9 (2.6) 65.5
Janossy GRU 82.4 (6.6) 58.6 (0.4) 61.3 (4.1) 79.3 (2.8) 60.9 (10.0) 68.2 (5.8) 36.4 (7.8) 63.9
KerRead 88.8 (7.6) 76.5 (4.2) 72.7 (5.2) 83.0 (2.7) 82.8 (2.4) 72.5 (5.5) 49.0 (4.6) 75.0

Table 1: Graph classification accuracy (mean and std%) with three GNN backbones (GCN, GAT, and GIN), where orange shading denotes
the best performance and blue shading indicates the second-best performance. Note that GAT performs abnormally on the IMDB-B and
IMDB-M datasets due to the absence of features which results in meaningless attention calculations.

Based on this formula, the process of readout can be de-
scribed as performing a kernel on the dimensions of node
representations and a center vector:

zGi
[j] = k(cGi

,HGi
[:, j]). (15)

For example, the widely adopted Sum can be formulated as

SUM(HGi
)[j] = 1⊤

Gi
(HGi

[:, j]) = k(1Gi
,HGi

[:, j]) (16)

where 1Gi
is an all-one vector and a linear kernel is employed,

thus ϕ is an identity mapping. Similarly, we have
MEAN(HGi

)[j] = k
(
eGi

,HGi
[:, j]

)
,

MAX(HGi)[j] = k
(
Imax(HGi [:, j]),HGi [:, j]

)
,

ATTENTION(HGi
)[j] = k

(
fatt
Ω (HGi

),HGi
[:, j]

)
,

(17)

where k is a linear kernel, eGi = [1/ni, · · · , 1/ni], and

Imax(x)i =

{
1, if i = argmax(x)

0, otherwise
. fatt

Ω is an attention

model to generate the attention score as the node weight. In
this way, we innovatively explain several common readout
methods from the perspective of the kernel, and find these
traditional readout functions both are simplified versions and
special instances of KerRead. Furthermore, this perspective
also explains the causes of the above challenges: Challenge
1—fixed center; Challenge 2—non-adaptive center for all
graphs; Challenge 3—linear kernel.

4 Experiments
In this section, we first introduce the benchmark datasets, the
backbone, the baseline readout function, and parameter set-

tings, and then we present the comparison results of our meth-
ods with other readout functions in different GNN backbones
on graph classification tasks and graph clustering tasks.

4.1 Experimental Setting
Datasets This study employs a total of 8 graph-level
datasets, comprising 6 chemical molecule datasets (MUTAG,
DD, PROTEINS, NCI1, Mutagenicity and OGBG-Molhiv)
and 2 social network graph datasets (IMDB-B, IMDB-M),
these datasets are collected in TU datasets2 and open graph
benchmark3. The description and statistics of the dataset are
in Appendix C.

Backbone and Baseline We use 6 widely adopted super-
vised GNN methods, including three baseline GNNs (GCN
[Welling and Kipf, 2017], GraphSAGE [Hamilton et al.,
2017], SGC [Wu et al., 2019]), three more expressive GNNs
(GAT [Veličković et al., 2018], GIN [Xu et al., 2018] and
GUNet [Gao and Ji, 2019]), and two unsupervised GNNs (In-
foGraph [Sun et al., 2019] and GraphCL [You et al., 2020])
are also used in this article. To ensure a fair comparison,
we select 10 readout functions as our baseline for compari-
son. These encompass simple readout functions (Sum, Mean,
Max), along with Attention [Li et al., 2016], Set2set [Vinyals
et al., 2016], Deep Sets [Zaheer et al., 2017], SRead [Lee et
al., 2021], Set Transformer, Janossy MLP, and Janossy GRU
[Buterez et al., 2022].

2https://chrsmrrs.github.io/datasets/
3https://ogb.stanford.edu/

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2509

https://chrsmrrs.github.io/datasets/
https://ogb.stanford.edu/

Backbone Readout MUTAG DD PROTEINS NCI1 Mutagenicity IMDB-B IMDB-M Avg

GUNet
[Gao and Ji,

2019]

Sum 74.1 (6.3) 70.6 (3.1) 71.3 (4.8) 76.9 (3.2) 77.9 (2.0) 63.7 (5.8) 41.4 (3.6) 68.0
Max 73.9 (6.2) 70.5 (4.8) 71.2 (5.0) 75.6 (2.0) 80.5 (1.8) 63.6 (5.9) 40.9 (3.4) 68.0
Mean 76.6 (9.2) 72.9 (4.4) 71.8 (4.4) 77.7 (2.3) 80.2 (1.4) 62.2 (5.4) 40.3 (3.5) 69.1
Set2set 74.4 (10.9) 72.5 (3.9) 71.2 (4.5) 74.0 (3.4) 79.8 (2.0) 64.9 (5.8) 40.0 (3.4) 68.1
Attention 74.4 (6.3) 70.6 (3.1) 71.3 (4.8) 76.9 (3.2) 77.9 (2.0) 63.7 (5.8) 42.4 (3.8) 68.2
Deep Sets 75.5 (14.5) 71.6 (3.8) 75.3 (3.1) 77.2 (1.9) 78.6 (2.0) 62.0 (3.8) 38.5 (3.8) 68.4
SRead 75.0 (11.1) 75.8 (2.9) 72.5 (3.1) 76.4 (2.4) 80.2 (2.3) 64.5 (4.7) 42.7 (3.8) 69.6
Set Transformer 76.6 (11.4) 65.7 (3.2) 72.2 (5.3) 75.0 (2.1) 80.2 (1.6) 64.2 (2.1) 40.5 (3.8) 67.8
Janossy MLP 72.9 (11.6) 56.0 (2.2) 68.4 (5.5) 75.1 (1.1) 77.4 (2.0) 62.4 (3.8) 38.5 (2.6) 64.4
Janossy GRU 77.0 (6.7) 67.0 (7.9) 59.4 (0.5) 73.4 (2.5) 57.1 (3.8) 60.3 (7.9) 32.6 (8.4) 61.0
KerRead 77.1 (6.0) 76.1 (4.4) 74.9 (3.5) 78.4 (3.0) 81.9 (1.4) 65.2 (3.2) 41.7 (2.5) 70.8

GraphSAGE
[Hamilton et
al., 2017]

Sum 87.7 (5.5) 69.3 (3.8) 74.0 (3.7) 71.1 (1.8) 76.3 (1.4) 65.2 (4.8) 45.0 (2.9) 69.8
Max 82.9 (7.6) 74.9 (3.4) 74.1 (4.4) 73.7 (1.6) 79.7 (2.1) 58.8 (3.8) 44.6 (2.5) 69.8
Mean 87.8 (3.5) 70.8 (3.6) 65.1 (3.4) 67.3 (1.5) 77.3 (1.4) 65.6 (6.1) 43.5 (5.3) 68.2
Set2set 85.6 (4.2) 75.6 (4.9) 73.1 (4.2) 73.2 (3.4) 81.2 (1.7) 71.1 (4.2) 46.3 (3.4) 72.3
Attention 87.2 (5.5) 69.9 (2.0) 69.0 (3.4) 69.2 (2.6) 79.0 (1.9) 70.1 (4.0) 45.4 (2.6) 70.0
Deep Sets 88.8 (4.4) 78.7 (5.1) 74.9 (3.4) 71.0 (2.5) 77.3 (2.0) 67.9 (3.4) 43.6 (3.5) 71.7
SRead 86.2 (4.2) 68.8 (2.9) 72.9 (4.0) 71.1 (1.8) 76.9 (1.6) 69.9 (4.5) 44.5 (4.4) 70.0
Set Transformer 80.3 (4.9) 67.7 (3.7) 71.0 (3.0) 77.2 (1.3) 81.5 (1.5) 70.4 (2.4) 47.4 (2.5) 70.8
Janossy MLP 77.7 (8.7) 52.0 (4.5) 64.1 (4.7) 68.7 (1.9) 73.1 (1.6) 65.1 (4.6) 44.2 (3.5) 63.6
Janossy GRU 80.3 (5.9) 71.1 (2.2) 60.6 (4.2) 78.2 (2.5) 75.3 (10.0) 66.1 (8.3) 32.1 (6.9) 66.2
KerRead 88.9 (6.3) 75.8 (2.9) 75.0 (2.9) 77.6 (2.7) 81.6 (1.4) 71.2 (4.7) 47.5 (3.5) 73.9

SGC
[Wu et al.,

2019]

Sum 72.8 (7.9) 67.0 (2.5) 74.0 (3.3) 64.9 (1.9) 68.1 (1.8) 56.7 (6.9) 37.7 (2.3) 63.0
Max 72.8 (9.7) 72.2 (3.5) 71.4 (4.4) 69.7 (1.9) 77.2 (1.3) 58.0 (4.9) 40.3 (3.9) 65.9
Mean 73.9 (6.2) 70.3 (3.4) 66.8 (2.7) 59.3 (1.8) 67.3 (1.8) 60.6 (6.2) 39.7 (2.1) 62.6
Set2set 80.2 (12.3) 72.8 (5.0) 73.0 (4.8) 67.7 (3.2) 76.2 (1.9) 61.0 (5.2) 40.9 (1.9) 67.4
Attention 74.9 (7.3) 69.7 (4.8) 66.8 (2.6) 61.3 (1.8) 69.4 (2.0) 59.3 (6.1) 39.4 (3.1) 63.0
Deep Sets 70.7 (7.7) 76.8 (4.2) 74.5 (4.3) 64.9 (2.3) 68.3 (2.0) 61.4 (3.5) 41.1 (3.5) 65.4
SRead 77.6 (8.5) 69.4 (5.0) 69.8 (3.1) 68.1 (2.4) 71.4 (2.1) 58.9 (4.8) 39.6 (3.4) 65.0
Set Transformer 76.7 (9.0) 70.2 (3.6) 72.9 (4.5) 77.6 (2.9) 77.4 (1.3) 59.1 (5.3) 39.1 (3.1) 67.6
Janossy MLP 78.7 (10.0) 57.4 (3.4) 63.4 (3.3) 61.7 (2.0) 66.3 (3.0) 53.5 (4.3) 37.7 (2.8) 59.8
Janossy GRU 81.9 (8.3) 58.6 (0.4) 73.9 (5.0) 77.5 (1.1) 66.0 (11.7) 63.1 (2.8) 43.9 (2.5) 66.4
KerRead 77.7 (9.5) 76.9 (2.8) 75.5 (2.9) 74.9 (2.4) 77.5 (2.3) 61.5 (2.6) 40.7 (3.3) 69.3

Table 2: Graph classification accuracy (mean and std%) with three GNN backbones (GUNet, GraphSAGE, and SGC), where orange shading
denotes the best performance and blue shading indicates the second-best performance.

Dataset Readout GCN GIN GraphSAGE GAT GUNet SGC Avg

OGBG-Molhiv

Graphs: 41,127
Features: 9
Classes: 2

Avg. # Nodes: 25.5
Avg. # Edges: 27.5

Sum 60.9 (2.9) 71.3 (1.7) 58.3 (2.3) 62.3 (2.1) 59.0 (1.7) 59.7 (2.1) 61.9
Max 58.4 (2.3) 71.8 (2.0) 66.9 (3.6) 67.7 (2.0) 66.7 (4.4) 66.1 (3.2) 66.3
Mean 57.4 (1.8) 70.9 (2.4) 51.0 (2.2) 60.4 (2.3) 50.3 (1.0) 50.3 (0.7) 56.7
Set2set 66.8 (1.8) 70.9 (1.3) 59.4 (1.8) 65.7 (2.0) 56.7 (2.1) 58.0 (1.1) 62.9
Attention 62.0 (1.7) 70.4 (1.5) 51.1 (1.9) 58.5 (3.0) 51.0 (1.6) 51.8 (2.2) 57.5
Deep Sets 63.3 (2.0) 52.9 (1.0) 53.1 (0.8) 62.2 (2.2) 53.4 (1.4) 52.7 (1.0) 56.3
SRead 63.0 (1.4) 70.9 (2.5) 57.2 (1.2) 63.2 (2.9) 59.1 (3.4) 51.8 (2.2) 60.9
Set Transformer 72.2 (1.6) 71.2 (1.3) 61.3 (1.4) 69.4 (1.5) 61.8 (2.2) 69.2 (2.1) 67.5
Janossy MLP 52.4 (0.6) 50.0 (0.1) 50.0 (0.1) 51.5 (1.2) 50.0 (0.0) 50.0 (0.0) 50.7
Janossy GRU 71.1 (1.4) 67.9 (2.6) 68.1 (2.4) 69.1 (1.2) 67.1 (1.9) 68.1 (2.2) 68.6
KerRead 72.5 (1.6) 72.2 (1.5) 67.1 (1.2) 70.4 (0.7) 67.9 (2.6) 68.9 (2.1) 69.8

Table 3: Graph classification AUC (mean and std%) on OGBG-Molhiv dataset with six GNN backbones, where orange shading denotes the
best performance and blue shading indicates the second-best performance.

Parameter Settings We employ the officially released
source code and adopt the parameters suggested in the re-
spective papers for all baseline readout functions and GNN
backbones. Additional information on experimental settings
can be found in Appendix C.

4.2 Performance Analysis
In this section, we analyze the performance of graph classifi-
cation and graph clustering.

Graph Classifications We conducted a comprehensive
analysis comparing the graph classification performance of
KerRead with ten other readout functions across six GNN
backbone models on eight datasets, as detailed in Table 1,
Table 2, and Table 3. We obtain the following observations
from this comparison:

(i) KerRead consistently outperforms other readout meth-
ods across various GNN backbones. KerRead surpasses the

most powerful baseline Set2set readout by 2.3% and 2.4% on
GCN and GAT backbones on average.

(ii) KerRead has achieved the best performance on datasets
with different sizes. Compared to baseline readout functions,
we observe an AUC increase ranging from 0.8% to 19.2% on
large-scale dataset OGBG-Molhiv on average.

(iii) The average performance of different readouts in SGC
was significantly lower than GUNet and GraphSAGE, which
indicates that SGC does not possess a substantial advantage in
graph-level tasks similar to its superiority in node-level tasks.

(iv) Sequence-based readout methods, such as Janossy
GRU, Set2Set, and Set Transformer, demonstrated better av-
erage performance on SGC. We speculate that incorporating
complex sequential information can enhance the expressive
power of final graph embedding when the backbone cannot
capture enough information.

In particular, KerRead outperforms Sum, Mean, Max, and

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2510

Backbone Readout MUTAG DD PROTEINS NCI1 Mutagenicity IMDB-B IMDB-M
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

InfoGraph
[Sun et al.,

2019]

Sum 71.3 14.1 59.7 2.6 60.4 2.6 56.6 1.3 56.4 1.7 62.3 4.4 40.8 2.2
Max 80.9 25.6 60.8 4.7 61.7 2.8 60.4 3.3 57.2 1.6 61.1 4.7 38.9 2.2
Mean 71.3 14.1 56.5 2.2 62.4 3.4 56.8 1.4 60.0 3.5 63.1 5.2 41.0 2.4
Set2set 74.5 17.5 63.2 6.0 62.5 3.2 59.0 2.4 62.7 4.3 62.9 5.1 40.5 3.2
Attention 80.3 24.4 55.2 1.0 59.9 2.4 57.3 1.6 63.3 5.1 62.9 5.0 40.3 1.8
Deep Sets 76.1 33.5 60.9 3.2 62.3 3.2 57.8 1.9 60.5 3.7 62.4 4.6 41.3 2.2
SRead 79.3 31.7 60.4 3.6 59.5 2.0 58.3 2.0 61.1 4.2 62.6 4.6 41.5 2.5
Set Transformer 73.9 16.9 70.3 13.0 59.8 2.6 60.9 3.6 65.2 6.4 63.6 5.4 41.5 1.9
Janossy MLP 62.8 11.5 55.4 1.3 58.8 0.4 59.4 3.0 62.4 7.3 62.2 4.3 41.9 2.1
Janossy GRU 70.7 26.0 58.6 0.0 59.4 0.0 58.1 0.0 62.3 0.1 50.1 0.0 42.3 3.5
KerRead 83.5 36.4 74.8 20.5 63.4 6.3 61.8 3.8 65.7 7.0 63.5 5.3 42.8 2.6

GraphCL
[You et al.,

2020]

Sum 73.9 16.9 66.0 8.3 64.8 4.7 57.2 1.6 61.5 3.7 57.6 2.4 42.5 3.0
Max 79.3 21.8 59.1 3.1 64.4 4.5 58.7 2.2 61.1 3.7 62.6 5.0 39.9 3.4
Mean 73.9 16.9 66.3 8.7 64.4 4.5 55.2 0.8 61.6 3.4 61.6 4.0 42.9 3.3
Set2set 70.7 17.5 60.7 2.5 63.4 3.2 58.3 2.6 63.6 6.6 64.8 6.4 43.8 3.8
Attention 76.1 24.3 55.8 0.5 62.0 2.1 57.6 2.3 61.1 3.1 60.9 4.5 39.9 3.5
Deep Sets 75.0 18.2 58.7 4.1 61.2 2.5 57.8 2.1 64.5 6.2 59.6 3.3 41.8 2.8
SRead 76.6 24.9 68.1 8.9 65.1 5.0 57.1 2.1 62.2 5.8 63.9 8.6 43.9 4.0
Set Transformer 79.8 32.2 53.7 0.3 58.3 1.7 55.7 1.0 61.4 4.0 59.6 4.2 41.9 2.5
Janossy MLP 72.3 9.8 52.0 0.2 62.1 2.3 54.3 0.7 64.1 6.0 60.7 3.4 42.3 2.9
Janossy GRU 81.4 33.8 55.4 0.6 65.1 4.7 56.2 1.2 56.6 1.3 57.7 2.3 44.7 3.0
KerRead 83.5 34.1 75.4 18.7 70.9 11.2 58.8 2.8 64.2 6.1 64.4 6.5 45.0 3.6

Table 4: Graph clustering accuracy (ACC) and normalized mutual information (NMI) with two unsupervised GNN backbones (InfoGraph,
GraphCL), where orange shading denotes the best performance and blue shading indicates the second-best performance.

MUTAG DD PROTEINS NCI1 Mutagenicity IMDB-B IMDB-M Avg

Linear 86.3 (7.9) 71.0 (5.2) 72.6 (4.2) 79.0 (2.1) 81.3 (1.4) 71.0 (2.5) 47.2 (2.5) 72.6
Sigmoid 86.0 (5.2) 73.3 (4.2) 75.0 (5.5) 80.2 (2.1) 81.0 (1.7) 71.0 (3.0) 47.4 (2.5) 73.4
Polynomial 87.5 (6.8) 72.2 (2.6) 73.0 (5.6) 80.2 (2.2) 81.9 (1.2) 70.8 (2.6) 47.6 (2.4) 73.3
Laplacian 88.1 (5.5) 76.7 (5.4) 72.5 (3.9) 82.2 (1.8) 81.4 (1.4) 71.5 (2.4) 47.2 (1.7) 74.2
Gaussian 88.3 (6.1) 77.8 (3.0) 75.9 (2.8) 82.6 (2.0) 82.6 (2.0) 72.5 (2.4) 49.0 (2.9) 75.5

Table 5: Mean accuracy (10 folds) and standard deviation on the 7 graph classification datasets with 5 kernel functions, where GCN is
employed as the backbone.

1 2 3 4 5 6 7 8 9 10
The number of headers

70

71

72

73

74

75

76

77

78

A
cc

ur
ay

c
(%

)

DD (Gaussian)
DD (Laplacian)
PROTEINS (Gaussian)
PROTEINS (Laplacian)

Figure 2: The performance of graph classification with different ker-
nels and different numbers of heads.

Attention in all comparisons, which aligns with earlier analy-
sis since these readout functions are special cases of KerRead,
and their expressivity is weaker than KerRead. Furthermore,
KerRead’s performance is more stable than some sequence-
based methods, we consider KerRead satisfies permutation
invariance, so it is not influenced by the order of input nodes,
thus avoiding any impact on performance.

Graph Representation Learning & Clustering To pro-
vide a more comprehensive evaluation of KerRead, we con-
ducted graph clustering experiments on seven benchmark

Training Time (ms)

A
cc

ur
ac

y
(%

)

Figure 3: Performance over training time on DD dataset. KerRead
(1), (2), and (5) refer to KerRead with 1, 2, and 5 heads respectively.

datasets using two classic unsupervised graph backbone net-
works, as shown in Table 4. In general, KerRead continues to
demonstrate highly competitive performance in graph clus-
tering tasks. Compared to other readout functions, we ob-
served an increase in ACC from 2.6% to 20.7% and an im-
provement in NMI from 2.9% to 24.9% on MUTAG when
using InfoGraph. On GraphCL, ACC increased from 2.1% to
12.8%, and NMI increased from 0.3% to 24.3%. However,
KerRead did not achieve optimal performance on the IMDB-
B and IMDB-M datasets. We speculate that this may be at-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2511

MUTAG DD PROTEINS Mutagenicity NCI1 IMDB-BINARYIMDB-MULTI
Dataset

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)
U1
U2
U3
U4

Figure 4: The graph classification performance of KerRead with dif-
ferent learning strategies. (U1: both c and σ are learnable, U2: only
c is learnable while σ is fixed, U3: only σ is learnable while c is
fixed, U4: both c and σ are fixed.)

tributed to insufficient initial features in these two datasets,
leading to the inability to capture enough information when
computing the kernel values between each dimension of node
embedding and the adaptive center.

4.3 Sensitivity Analysis
In this section, we will focus on conducting a sensitivity anal-
ysis of the parameters of our proposed KerRead. This in-
cludes examining the impact of varying the number of heads,
different kernel functions, distinct update strategies on the fi-
nal results, and the efficiency analysis.
Kernel Function Selection As depicted in Figure 2, we an-
alyze two common kernel functions, namely the Laplace ker-
nel function and the Gaussian kernel, on the DD and PRO-
TEINS datasets. Overall, the performance of the Gaussian
kernel surpasses that of the Laplace kernel. Besides, we have
further compared the graph classification performance of five
commonly used kernel functions on seven datasets. The ex-
perimental results are shown in Table 5, revealing the fol-
lowing observations: (i) Overall, KerRead outperforms most
baselines regardless of the kernel function used. (ii) The use
of non-linear kernel functions yields better performance com-
pared to linear kernel functions. Specifically, the Gaussian
kernel outperforms the Linear kernel by an average accuracy
increase of 2.9%.
The Number of Heads To explore the impact of the num-
ber of heads on the results, we present the graph classifica-
tion results on the DD and PROTEINS datasets under differ-
ent numbers of heads as shown in Figure 2. Overall, optimal
performance is observed when the number of heads ranges
from 2 to 6. However, as the number of heads increases,
there may be a negative impact on performance. Specifically,
the Laplace kernel achieves optimal performance on the DD
dataset when the number of heads is 5, surpassing the perfor-
mance at 1 and 10 heads by 2.04% and 2.51%, respectively.
Similarly, the Gaussian kernel attains its best performance
on the DD dataset with 5 heads, exhibiting improvements
of 3.46% and 3.88% compared to 1 and 10 heads, respec-
tively. These findings suggest that an appropriate increase in

the number of heads can enhance performance, but an exces-
sive number may lead to detrimental effects on the model.

Training Time We conducted an efficiency analysis com-
paring our model with a baseline readout. As illustrated in
Figure 3, we depict the training time (measured in millisec-
onds per epoch) variation of KerRead under 1, 2, and 5 heads,
as well as other methods. Generally, KerRead requires more
training time as the number of heads increases. However,
its training time remains closely aligned with the linear read-
out function and consistently stays below the complex read-
out functions (Set Transformer, Janossy GRU), however, Ker-
Read achieves significant performance improvements com-
pared to these linear readout functions. Furthermore, Ker-
Read demonstrates optimal performance on the DD dataset,
where each epoch takes approximately 4.1% longer than the
linear readout function, which indicates that the gains in ac-
curacy achieved by KerRead outweigh the marginal pressure
introduced by the training time.

Learning Strategies We mentioned that the parameters c
and σ in the model are learnable as shown in Eq (9) when em-
ploying Gaussian kernel. However, what impact would ensue
if these parameters were fixed? As illustrated in Figure 4,
we present the performance comparison of these four update
strategies across seven datasets. Our observations indicate
that, on average, the optimal performance is attained when
both parameters are learnable. Across the seven datasets, U1
outperforms U4 by 1.67%, 3.48%, 2.33%, 0.24%, 0.07%,
1.6%, and 1.47%, respectively. This suggests that concur-
rently updating both parameters indeed facilitates the learn-
ing of a superior model.

4.4 Supplementary Experiment
Due to space constraints, we have included the other curial
experiments in Appendix C, which include the t-SNE visual-
izations.

5 Conclusions
This work proposed a novel graph pooling strategy called ker-
nel readout. The main idea is to transfer the node embedding
from the sample space with limited nodes to the augmented
sample space with infinite virtual nodes, and then generate
the graph vector by kernel methods. The strategy has been
applied to six supervised GNN backbones and two unsuper-
vised GNN backbones and outperformed previous methods
of graph pooling, on eight graph datasets.

Acknowledgements
This work was partially supported by the National Natu-
ral Science Foundation of China under Grant No.62376236,
the General Program JCYJ20210324130208022 of Shenzhen
Fundamental Research, the Guangdong Key Lab of Mathe-
matical Foundations for Artificial Intelligence (PPA00003),
the funding UDF01001770 of The Chinese University of
Hong Kong, Shenzhen, and the National Natural Science
Foundation for Young Scholars of China under Grants
No.61502500 and No.61602500.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2512

Contribution Statement
Jiajun Yu and Zhihao Wu contributed equally as co-first au-
thors.

References
[Bruna et al., 2014] Joan Bruna, Wojciech Zaremba, Arthur

Szlam, and Yann LeCun. Spectral networks and deep lo-
cally connected networks on graphs. In ICLR, 2014.

[Buterez et al., 2022] David Buterez, Jon Paul Janet,
Steven J Kiddle, Dino Oglic, and Pietro Liò. Graph neural
networks with adaptive readouts. In NeurIPS, pages
19746–19758, 2022.

[Cai and Fan, 2022] Jinyu Cai and Jicong Fan. Perturbation
learning based anomaly detection. In NeurIPS, 2022.

[Cai et al., 2022] Jinyu Cai, Jicong Fan, Wenzhong Guo,
Shiping Wang, Yunhe Zhang, and Zhao Zhang. Efficient
deep embedded subspace clustering. In CVPR, pages 21–
30, 2022.

[Cai et al., 2024a] Jinyu Cai, Yi Han, Wenzhong Guo, and
Jicong Fan. Deep graph-level clustering using pseudo-
label-guided mutual information maximization network.
NCAA, pages 1–16, 2024.

[Cai et al., 2024b] Jinyu Cai, Yunhe Zhang, Shiping Wang,
Jicong Fan, and Wenzhong Guo. Wasserstein embedding
learning for deep clustering: A generative approach. IEEE
T-MM, 2024.

[Chen et al., 2022] Man-Sheng Chen, Tuo Liu, Chang-Dong
Wang, Dong Huang, and Jian-Huang Lai. Adaptively-
weighted integral space for fast multiview clustering. In
MM, pages 3774–3782, 2022.

[Chen et al., 2023a] Man-Sheng Chen, Jia-Qi Lin, Chang-
Dong Wang, Wu-Dong Xi, and Dong Huang. On regular-
izing multiple clusterings for ensemble clustering by graph
tensor learning. In MM, pages 3069–3077, 2023.

[Chen et al., 2023b] Zhaoliang Chen, Lele Fu, Jie Yao, Wen-
zhong Guo, Claudia Plant, and Shiping Wang. Learnable
graph convolutional network and feature fusion for multi-
view learning. Information Fusion, 95:109–119, 2023.

[Chen et al., 2023c] Zhaoliang Chen, Zhihao Wu,
Zhenghong Lin, Shiping Wang, Claudia Plant, and
Wenzhong Guo. Agnn: Alternating graph-regularized
neural networks to alleviate over-smoothing. IEEE
T-NNLS, pages 1–13, 2023.

[Chen et al., 2023d] Zhaoliang Chen, Zhihao Wu, Shiping
Wang, and Wenzhong Guo. Dual low-rank graph autoen-
coder for semantic and topological networks. In AAAI,
pages 4191–4198, 2023.

[Defferrard et al., 2016] Michaël Defferrard, Xavier Bres-
son, and Pierre Vandergheynst. Convolutional neural net-
works on graphs with fast localized spectral filtering. In
NeurIPS, 2016.

[Du et al., 2021] Jinlong Du, Senzhang Wang, Hao Miao,
and Jiaqiang Zhang. Multi-channel pooling graph neural
networks. In IJCAI, pages 1442–1448, 2021.

[Fan et al., 2020] Xiaolong Fan, Maoguo Gong, Yu Xie,
Fenlong Jiang, and Hao Li. Structured self-attention ar-
chitecture for graph-level representation learning. Pattern
Recognition, 100:107084, 2020.

[Fan et al., 2022] Jicong Fan, Yiheng Tu, Zhao Zhang,
Mingbo Zhao, and Haijun Zhang. A simple approach to
automated spectral clustering. In NeurIPS, pages 9907–
9921, 2022.

[Fan, 2021] Jicong Fan. Large-scale subspace clustering via
k-factorization. In SIGKDD, pages 342–352, 2021.

[Fan, 2022] Jicong Fan. Multi-mode deep matrix and tensor
factorization. In ICLR, 2022.

[Fout et al., 2017] Alex Fout, Jonathon Byrd, Basir Shariat,
and Asa Ben-Hur. Protein interface prediction using graph
convolutional networks. In NeurIPS, 2017.

[Gao and Ji, 2019] Hongyang Gao and Shuiwang Ji. Graph
u-nets. In ICML, pages 2083–2092, 2019.

[Gasteiger et al., 2021] Johannes Gasteiger, Florian Becker,
and Stephan Günnemann. Gemnet: Universal directional
graph neural networks for molecules. In NeurIPS, pages
6790–6802, 2021.

[Gilmer et al., 2017] Justin Gilmer, Samuel S Schoenholz,
Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In ICML, pages
1263–1272, 2017.

[Hamilton et al., 2017] Will Hamilton, Zhitao Ying, and Jure
Leskovec. Inductive representation learning on large
graphs. In NeurIPS, 2017.

[Han et al., 2022a] Kai Han, Yunhe Wang, Jianyuan Guo,
Yehui Tang, and Enhua Wu. Vision gnn: An image is
worth graph of nodes. In NeurIPS, pages 8291–8303,
2022.

[Han et al., 2022b] Xiaotian Han, Zhimeng Jiang, Ninghao
Liu, and Xia Hu. G-mixup: Graph data augmentation for
graph classification. In ICML, pages 8230–8248, 2022.

[Itoh et al., 2022] Takeshi D Itoh, Takatomi Kubo, and
Kazushi Ikeda. Multi-level attention pooling for graph
neural networks: Unifying graph representations with
multiple localities. Neural Networks, 145:356–373, 2022.

[Jin et al., 2021] Ming Jin, Yizhen Zheng, Yuan-Fang Li,
Chen Gong, Chuan Zhou, and Shirui Pan. Multi-scale
contrastive siamese networks for self-supervised graph
representation learning. In International Joint Confer-
ence on Artificial Intelligence 2021, pages 1477–1483. As-
sociation for the Advancement of Artificial Intelligence
(AAAI), 2021.

[Ju et al., 2022] Wei Ju, Xiao Luo, Meng Qu, Yifan Wang,
Chong Chen, Minghua Deng, Xian-Sheng Hua, and Ming
Zhang. Tgnn: A joint semi-supervised framework for
graph-level classification. In IJCAI, 2022.

[Kojima et al., 2020] Ryosuke Kojima, Shoichi Ishida,
Masateru Ohta, Hiroaki Iwata, Teruki Honma, and
Yasushi Okuno. kgcn: a graph-based deep learning frame-
work for chemical structures. Journal of Cheminformatics,
12:1–10, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2513

[Lee et al., 2021] Dongha Lee, Su Kim, Seonghyeon Lee,
Chanyoung Park, and Hwanjo Yu. Learnable structural
semantic readout for graph classification. In ICDM, pages
1180–1185, 2021.

[Li et al., 2016] Yujia Li, Richard Zemel, Marc
Brockschmidt, and Daniel Tarlow. Gated graph se-
quence neural networks. In ICLR, 2016.

[Liu et al., 2020] Yi Liu, Hao Yuan, Lei Cai, and Shuiwang
Ji. Deep learning of high-order interactions for protein
interface prediction. In SIGKDD, pages 679–687, 2020.

[Liu et al., 2022] Zemin Liu, Qiheng Mao, Chenghao Liu,
Yuan Fang, and Jianling Sun. On size-oriented long-tailed
graph classification of graph neural networks. In WWW,
pages 1506–1516, 2022.

[Lloyd, 1982] Stuart Lloyd. Least squares quantization in
pcm. IEEE T-IT, 28(2):129–137, 1982.

[Luo et al., 2023] Xiao Luo, Yusheng Zhao, Yifang Qin, Wei
Ju, and Ming Zhang. Towards semi-supervised universal
graph classification. IEEE T-KDE, 2023.

[Navarin et al., 2019] Nicolò Navarin, Dinh Van Tran, and
Alessandro Sperduti. Universal readout for graph convo-
lutional neural networks. In IJCNN, pages 1–7, 2019.

[Ng et al., 2001] Andrew Ng, Michael Jordan, and Yair
Weiss. On spectral clustering: Analysis and an algorithm.
In NeurIPS, 2001.

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Sun and Fan, 2024] Yan Sun and Jicong Fan. Mmd graph
kernel: Effective metric learning for graphs via maximum
mean discrepancy. In ICLR, 2024.

[Sun et al., 2019] Fan-Yun Sun, Jordan Hoffman, Vikas
Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual
information maximization. In ICLR, 2019.

[Sun et al., 2023] Ziheng Sun, Chris Ding, and Jicong Fan.
Lovász principle for unsupervised graph representation
learning. In NeurIPS, 2023.

[Veličković et al., 2018] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In ICLR, 2018.

[Vinyals et al., 2016] Oriol Vinyals, Samy Bengio, and Man-
junath Kudlur. Order matters: Sequence to sequence for
sets. In ICLR, 2016.

[Wang and Zhang, 2022] Xiyuan Wang and Muhan Zhang.
How powerful are spectral graph neural networks. In
ICML, pages 23341–23362, 2022.

[Welling and Kipf, 2017] Max Welling and Thomas N Kipf.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Wu et al., 2019] Felix Wu, Amauri Souza, Tianyi Zhang,
Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In ICML, pages
6861–6871, 2019.

[Wu et al., 2023a] Zhihao Wu, Xincan Lin, Zhenghong Lin,
Zhaoliang Chen, Yang Bai, and Shiping Wang. Inter-
pretable graph convolutional network for multi-view semi-
supervised learning. IEEE T-MM, 25:8593–8606, 2023.

[Wu et al., 2023b] Zhihao Wu, Zhao Zhang, and Jicong Fan.
Graph convolutional kernel machine versus graph convo-
lutional networks. In NeurIPS, 2023.

[Wu et al., 2024] Zhihao Wu, Zhaoliang Chen, Shide Du,
Sujia Huang, and Shiping Wang. Graph convolutional
network with elastic topology. Pattern Recognition,
151:110364, 2024.

[Xu et al., 2018] Keyulu Xu, Weihua Hu, Jure Leskovec, and
Stefanie Jegelka. How powerful are graph neural net-
works? In ICLR, 2018.

[Ying et al., 2018] Zhitao Ying, Jiaxuan You, Christopher
Morris, Xiang Ren, Will Hamilton, and Jure Leskovec.
Hierarchical graph representation learning with differen-
tiable pooling. In NeurIPS, 2018.

[You et al., 2020] Yuning You, Tianlong Chen, Yongduo Sui,
Ting Chen, Zhangyang Wang, and Yang Shen. Graph con-
trastive learning with augmentations. In NeurIPS, pages
5812–5823, 2020.

[Yu and Jia, 2023] Jiajun Yu and Adele Lu Jia. Mlgal:
Multi-level label graph adaptive learning for node clus-
tering in the attributed graph. Knowledge-Based Systems,
278:110876, 2023.

[Yu and Jia, 2024] Jiajun Yu and Adele Lu Jia. Agcl: Adap-
tive graph contrastive learning for graph representation
learning. Neurocomputing, 566:127019, 2024.

[Zaheer et al., 2017] Manzil Zaheer, Satwik Kottur, Siamak
Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In NeurIPS, 2017.

[Zhang et al., 2018] Muhan Zhang, Zhicheng Cui, Marion
Neumann, and Yixin Chen. An end-to-end deep learning
architecture for graph classification. In AAAI, 2018.

[Zhang et al., 2024] Yunhe Zhang, Yan Sun, Jinyu Cai, and
Jicong Fan. Deep orthogonal hypersphere compression for
anomaly detection. In ICLR, 2024.

[Zheng et al., 2021] Yizhen Zheng, Vincent CS Lee, Zong-
han Wu, and Shirui Pan. Heterogeneous graph at-
tention network for small and medium-sized enterprises
bankruptcy prediction. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 140–151.
Springer, 2021.

[Zheng et al., 2022] Yizhen Zheng, Shirui Pan, Vincent Lee,
Yu Zheng, and Philip S Yu. Rethinking and scaling up
graph contrastive learning: An extremely efficient ap-
proach with group discrimination. In NeurIPS, pages
10809–10820, 2022.

[Zheng et al., 2023] Yizhen Zheng, He Zhang, Vincent Lee,
Yu Zheng, Xiao Wang, and Shirui Pan. Finding
the missing-half: Graph complementary learning for
homophily-prone and heterophily-prone graphs. In ICML,
pages 42492–42505, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2514

	Introduction
	Related Work
	Graph Neural Networks
	Graph-level Prediction
	Readout Function

	Proposed Method
	Notation and Problem Formulation
	Detailed Method
	Connection to Existing Work

	Experiments
	Experimental Setting
	Performance Analysis
	Sensitivity Analysis
	Supplementary Experiment

	Conclusions

