
Decoupled Invariant Attention Network for Multivariate Time-series Forecasting

Haihua Xu1,2 , Wei Fan3 , Kun Yi4 and Pengyang Wang1,2†

1Department of Computer and Information Science, University of Macau, China
2The State Key Laboratory of Internet of Things for Smart City, University of Macau, China

3University of Central Florida, USA
4Beijing Institute of Technology, China

{yc37901, pywang}@um.edu.mo, weifan@ucf.edu, yikun@bit.edu.cn

Abstract
To achieve more accurate prediction results in Time
Series Forecasting (TSF), it is essential to distin-
guish between the valuable patterns (invariant pat-
terns) of the spatial-temporal relationship and the
patterns that are prone to generate distribution shift
(variant patterns), then combine them for forecast-
ing. The existing works, such as transformer-
based models and GNN-based models, focus on
capturing main forecasting dependencies whether
it is stable or not, and they tend to overlook pat-
terns that carry both useful information and dis-
tribution shift. In this paper, we propose a model
for better forecasting time series: Decoupled In-
variant Attention Network (DIAN), which contains
two modules to learn spatial and temporal relation-
ships respectively: 1) Spatial Decoupled Invariant-
Variant Learning (SDIVL) to decouple the spa-
tial invariant and variant attention scores, and then
leverage convolutional networks to effectively inte-
grate them for subsequent layers; 2) Temporal Aug-
mented Invariant-Variant Learning (TAIVL) to de-
couple temporal invariant and variant patterns and
combine them for further forecasting. In this mod-
ule, we also design Temporal Intervention Mecha-
nism to create multiple intervened samples by re-
assembling variant patterns across time stamps to
eliminate the spurious impacts of variant patterns.
In addition, we propose Joint Optimization to mini-
mize the loss function considering all invariant pat-
terns, variant patterns and intervened patterns so
that our model can gain a more stable predictive
ability. Extensive experiments on five datasets have
demonstrated our superior performance with higher
efficiency compared with state-of-the-art methods.

1 Introduction
Multivariate time series (MTS) forecasting has been increas-
ingly important in a wide range of real-world applications,
such as traffic flow analysis [Yu et al., 2017], weather estima-
tion [Zheng et al., 2015], energy consumption planning [Bec-

†Corresponding author.

cali et al., 2008], etc. A primary challenge in MTS forecast-
ing is to capture the core inter-series (spatial) correlations and
intra-series (temporal) dependencies simultaneously [Cao et
al., 2020a; Bai et al., 2020]. Despite advancements, accurate
forecasting remains elusive due to the inherent complexities,
shifted fluctuations, and noise in time series signals, which
pose challenges for model learning [Fan et al., 2023].

Existing literatures have tried different strategies to ex-
tract the core patterns of time series for accurate forecast-
ing. Some researchers have focused on periodicity mod-
eling to find generalizable periods beneficial for forecast-
ing [Fan et al., 2022; Jiang et al., 2022]; other works pri-
orly define and extract an overall trend of raw series, and
jointly learn the trend and the left parts [Wu et al., 2022;
Zeng et al., 2023]; besides, [Woo et al., 2022a; Wang et
al., 2022] disentangle time series into seasonal and trend and
learn their representations respectively. Existing studies typ-
ically rely on manually specified core patterns (e.g., periods,
trends) of time series based on certain assumptions. Because
of focusing solely on these pre-defined patterns and neglect-
ing dependencies on other signals, the performance of multi-
variate forecasting is significantly compromised.

Inspired by previous works of time series [Lim and Zohren,
2021] and views of domain generalization [Zhou et al.,
2022a], we generally categorize time series into two types
of patterns for forecasting: (i) invariant patterns, the regu-
lar and constant patterns of time series that are easy to illus-
trate, such as regular seasonal or trend signals; (ii) variant
patterns, the volatile and changeable patterns of time series
that are hard to capture, such as useful information mixed
with noise. Instead of directly specifying the invariant pat-
terns for learning as [Fan et al., 2022; Wu et al., 2022;
Woo et al., 2022a], we aim to build a data-driven approach
to adaptively distinguish the invariant patterns from the vari-
ant patterns in a given raw time series. After that, we can
conduct spatial-temporal modeling for multivariate time se-
ries from a disentangled learning perspective. However, two
challenges have arisen in achieving this goal:

• Challenge I: Adaptive decoupling of invariant and vari-
ant patterns presents difficulties. First, these patterns
are often intertwined due to the non-stationary nature
of time series data, resulting in ambiguous and ever-
changing boundaries. Moreover, multivariate time se-
ries (MTS) encompasses both spatial and temporal di-
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mensions, each containing their own invariant and vari-
ant patterns. Simultaneously considering these patterns
across the Spatiotemporal dimensions further compli-
cates the decoupling process.

• Challenge II: In the temporal dimension, distribution
shift are notably pronounced. This heightened variabil-
ity introduces a substantial perturbation, making it in-
creasingly challenging to discern and differentiate be-
tween invariant and variant patterns over time. Further-
more, these shift can adversely impact subsequent fore-
casting tasks, leading to performance drift.

To address the above challenges, in this paper, we propose
Decoupled Invariant Attention Network (DIAN) to adap-
tively decouple invariant and variant patterns for enhancing
MST forecasting.

Specifically, DIAN includes two modules: the Spatial De-
coupled Invariant-Variant Learning module and the Tempo-
ral Augmented Invariant-Variant Learning module, designed
to disentangle patterns in spatial and temporal dimensions,
respectively. Drawing inspiration from [Bai et al., 2020],
the spatial module employs a spatial invariant-variant at-
tention mechanism to distinguish between spatial invariant
and variant patterns. After conducting decoupled invariant-
variant convolution, the spatially-learned representations suc-
cessfully captured both invariant and variant patterns. In the
Temporal Augmented Invariant-Variant Learning module, we
introduce the Temporal Invariant-Variant Attention to capture
correlations between individual timestamps and the overarch-
ing temporal representation. To address pronounced tempo-
ral distribution shift, we incorporate the Temporal Interven-
tion Mechanism, generating intervened samples for enhanced
adaptability to potential shift. In addition, we employ a Joint
Optimization strategy to reduce forecasting errors.

Our contributions can be summarized as:

• We introduce a unique perspective on invariant and vari-
ant patterns for MTS forecasting.

• We propose DIAN to address the invariant-variant pat-
tern decoupling problem with novel invariant-variant at-
tention designs for the spatial and temporal dimensions,
respectively.

• We propose Temporal Intervention Mechanism to
against potential distribution shift by reassembling vari-
ant patterns among timestamps.

• We conduct extensive experiments on five real-world
dataset. The experiment results show consistent supe-
riority in terms of effectiveness and efficiency compared
with state-of-the-art methods.

2 Problem Formulation
We study the problem of multivariate time series forecast-
ing with regard to historical time-evolving multiple variables.
Given a time series dataset with N series and T times-
tamps, let Xt = {x(1)

t , · · · , x(i)
t , · · · , x(N)

t } ∈ RN stands
for multivariate values of N series where x

(i)
t ∈ R1 repre-

sents the value of i-th series (variate) at timestamp t. Then,

we define the historical observations of length L at times-
tamp t, Xt−L+1:t = {Xt−L+1, · · · , Xt} as the lookback
window, and the future values of length H , Xt+1:t+H =
{Xt+1, · · · , Xt+H} as the horizon window.

In order to model the relationships among series, we de-
fine a dynamic graph structure Gt = (Xt−L+1:t, At), where
At ∈ RN×N is the adjacency matrix and Xt−L+1:t ∈ RN×L

is the lookback window at timestamp t. Based on the above
notations, we can formulate the multivariate time series fore-
casting task as:

Ŷt+1:t+H = FΘ(Gt) (1)

where Ŷt+1:t+H = {Ŷt+1, · · · , Ŷt+H} are the predicted val-
ues corresponding for the horizon window; FΘ is a mapping
function with parameters Θ; the dynamic graph structure Gt

is learned during training.

3 Methodology
In this section, we illustrate the proposed Decoupled Invari-
ant Attention Network (DIAN) for better modeling and de-
coupling invariant and variant patterns for enhancing multi-
variate time series forecasting performance. We first show an
overview of our model, and then introduce each component
of this model in detail.

3.1 Framework Overview
Figure 1 provides an overview of our framework, known
as the Decoupled Invariant Attention Network (DIAN). In
Section 3.2, to capture inter-series correlations and dynamic
graph structures, we propose Spatial Decoupled Invariant-
Variant Learning. This approach allows us to derive novel
representations that incorporate relationships among different
series. Moving on to Section 3.3, we propose Temporal Aug-
mented Invariant-Variant Learning. This technique enables
us to obtain representations that capture relationships among
timestamps and generate multiple intervened samples, which
simulate potential distribution shift. Finally, in Section 3.4,
we optimize our model with Joint Optimization.

3.2 Spatial Decoupled Invariant-Variant Learning
Assumption 1
Given the dynamic graph structure Gt of time series, there ex-
ist spatial invariant patterns Qt

I that reflect core spatial (inter-
series) relationships, and spatial variant patterns Qt

V that en-
compass a limited amount of valuable information while be-
ing intermingled with distribution shift. In this scenario, a
function g is assumed to leverage spatial invariant-variant pat-
terns and an adjacency matrix to acquire knowledge about
the forthcoming dynamic graph structure at the subsequent
timestamp, formally by Gt+1 = g(Qt

I , Q
t
V , At) + ϵ1 and

Qt
I = Xt−L+1:t/Q

t
V .

Spatial Invariant-Variant Attention
Based on the aforementioned assumption, it is understood
that the time series can be decomposed into two components:
spatial invariant and variant patterns. These patterns capture
the essential relationships between the series, and it is neces-
sary to design a mapping function, to extract the inter-series
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Figure 1: Framework Overview. This is an overview of DIAN, where each time series can have multiple features. However, for the sake of
convenience, we use feature=1 as an example for plotting. In the graph, the blue line represents the unique data flow of the original time
series, the red line represents the unique data flow of the intervened samples, and the black line represents the steps that both have undergone.

relationships from G and decouple these two patterns, facili-
tating subsequent predictions.

For this aim, we design a spatial invariant-variant atten-
tion network, to enable each series attending to the global
inter-series representation for better understanding relation-
ships among series. We capture meaningful spatial depen-
dencies within the global inter-series structure by studying the
contribution of each local series, thereby establishing a con-
nection between the local and global contexts. Specifically,
we first obtain a spatial overall representation of the current
time series using a linear projection layer:

Rs = ProjS(Xt−L+1:t), (2)

where Rs ∈ R1×T×dc represents the spatial overall represen-
tation of the current inter-series relationships with dc dimen-
sions; ProjS represents a linear projection to map series di-
mension to one; Xt−L+1:t is a lookback window length time
series. Then, we need to learn the dependencies between
each series and the spatial overall representation. Because
the learned representation represents the integrated spatial re-
lationships of the entire time series, a better integration of the
inter-series relationships can be achieved, by using the rela-
tionship between each individual series (local) and the spa-
tial overall representation (global) as a guidance. For the i-
th variate (series) X(i)

t−L+1:t of the lookback window, we de-
fine the attention score as the spatial invariant attention score,
which is given by:

AttnSI (i) = SoftMax(
Wqs(Rs)Wks(X

(i)
t−L+1:t)√

dS
), (3)

where AttnSI (i) represents the spatial invariant attention
score of variate i; dS represents the hidden dimension; Wqs

and Wks are the embedding layers for query vectors Rs and
key vectors X

(i)
t−L+1:t, respectively. In addition to using in-

variant attention to learn the core relationships, we also model
the unstable inter-series patterns for spatial learning. Follow-
ing [Zhang et al., 2022], for each i-th variate X

(i)
t−L+1:t of

the lookback window, we define the spatial variant attention
score as:

AttnSV (i) = SoftMax(−
Wqs(Rs)Wks(X

(i)
t−L+1:t)√

dS
), (4)

where AttnSV (i) represents the spatial variant attention score
of variate i. In this way, the spatial invariant and variant at-
tention scores have a negative correlation, making it easy to
distinguish core spatial relations and unstable spatial relations
so that we can integrate them reasonably for forecasting.

Decoupled Invariant-Variant Convolution
Previous studies have demonstrated the capability of learning
graph structures autonomously, bypassing the need for prior
knowledge and thereby circumventing the issue of inaccurate
input graphs [Bai et al., 2020]. However, it is crucial to ac-
knowledge that the previous studies also introduce the risk of
learning inaccurate graphs. To tackle this challenge, we pro-
pose a decoupled invariant-variant convolution network for
multivariate time series forecasting. First, we initialize learn-
able dependency embeddings E ∈ RN×dN with dN as the
hidden dimension, and then the adjacency matrix At can be
represented as:
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At = SoftMax(ReLU(EET ). (5)

In order to enhance the reliability of the convolutional net-
work utilized in graph learning, it is essential to incorporate a
dependable relationship between series. Specifically, we in-
corporate spatial invariant and variant attention to capture the
appropriate series relationships within the graph. By utilizing
spatial invariant attention scores, we obtain an invariant em-
bedding that represents the stable aspects of inter-series re-
lationships. Similarly, spatial variant attention scores yield a
variant embedding that captures the changeable components
of these relationships. We formally define the ℓ-th layer of
such networks by:

Hℓ+1
I = f(Hℓ, At,Attn

S
I ) = σ(AttnSI H

ℓAtWH
I ), (6)

Hℓ+1
V = f(Hℓ, At,Attn

S
V ) = σ(AttnSV H

ℓAtWH
V ), (7)

where Hℓ ∈ RN×T×dc represents the hidden representation
with dc dimensions of ℓ-th layer; Hℓ+1

I and Hℓ+1
V repre-

sent the spatial invariant and variant embeddings respectively.
WH

I and WH
V represents weights in invariant and variant em-

bedding learning; σ is an activation function. Note that when
ℓ = 0, we have H0 = Xt−L+1:t. Then, the learned represen-
tation incorporating both invariant and invariant patterns can
be represented as

Hℓ+1 = Hℓ+1
I + αHℓ+1

V , (8)

where α is a hyperparameter to balance invariant and variant
embeddings.

3.3 Temporal Augmented Invariant-Variant
Learning

Assumption 2
Given the multivariate window at timestamp t, Xt−L+1:t,
there exist temporal invariant patterns P t

I that usually reflect
core temporal relations, and temporal variant patterns P t

V that
represent temporal information mixed with distribution shift.
Assume there exists a function y that can project temporal
invariant and variant patterns into future values, written as:
Xt+1:t+H = y(P t

I , P
t
V ) + ϵ2 and P t

I = Xt−L+1:t/P
t
V .

Temporal Invariant-Variant Attention
In order to model temporal dependencies, following Assump-
tion 2, we aim to design a function to effectively decompose
the spatially-learned representation of time series, Hℓ+1 into
temporal invariant and variant patterns. To achieve this goal,
we propose temporal invariant-variant attention mechanism
to model temporal dependencies. Specially, we first obtain an
overall temporal representation of Hℓ+1 using a linear pro-
jection:

RT = ProjT (H
ℓ+1), (9)

where RT ∈ RN×1×dc represents the temporal overall repre-
sentation of Hℓ+1 with dc dimensions; ProjT represents a lin-
ear projection to map time dimension to one; Then, we learn
the invariant-variant attention between each timestamp and

the temporal overall representation. The temporal overall rep-
resentation encompasses the temporal information, such as
seasonal and trend, within a lookback window. This approach
enables us to understand the contribution of each timestamp
to the temporal overall representation, and establishes the
connection between the local and global aspects. Specifically,
for each t-th timestamp, we define the temporal invariant and
variant attention score as:

AttnTI (t) = SoftMax(
Wqt(RT )Wkt(H

ℓ+1
t )√

dM
), (10)

AttnTV (t) = SoftMax(−Wqt(RT )Wkt(H
ℓ+1
t ))√

dM
), (11)

where AttnTI (t) and AttnTV (t) represent the temporal invari-
ant and variant attention score respectively; Hℓ+1

t represents
the spatially-learned representation at timestamp t; dM repre-
sents the hidden dimension; Wqt and Wkt represent the em-
bedding layers for query vectors RT and key vectors Hℓ+1

t

from the time dimension. Then, for each Hℓ+1
t at t-th times-

tamp, we want to aggregate the patterns for representation:

ztI = AggrI(H
ℓ+1
t ,AttnTI (t)), (12)

ztV = AggrV (H
ℓ+1
t ,AttnTV (t)), (13)

where AggrI and AggrV are aggregation functions for tem-
poral invariant and variant patterns respectively; ztI and ztV
represents the pattern aggregations of temporal invariant and
variant patterns. Then, for timestamp t, we acquire pattern
summarization ht = ztI + β ∗ ztV fed into subsequent layers,
where β is a hyperparameter to balance the temporal invariant
and variant patterns.

Temporal Intervention Mechanism
Distribution shift in time series pose a significant challenge
to the accuracy of time series forecasting, as they often ex-
hibit temporal fluctuations that can seriously impede predic-
tion performance. Additional analysis on distribution shift
in time series is provided in Appendix1. Therefore, we fur-
ther introduce a temporal intervention design into the tem-
poral learning. Specially, we first denote the timestamps in
a lookback window of length L as {t1, t2, · · · , tL}. Then,
we let the intervention process accomplished by randomly re-
placing temporal variant patterns. Formerly, for i, j ∈ [1, L],
we generate an intervened representation:

stiI = ztiI , stiV = z
tj
V , (14)

where stiI and stiV represent the intervened invariant and vari-
ant patterns respectively. Then, the intervened invariant and
variant patterns are added up as intervened representation as:
hti
inv = stiI + γstiV , where ht

inv is the intervened sample at
t-th timestamp and γ is a hyperparameter to balance the in-
tervened invariant and variant patterns for forecasting.

1https://github.com/xhh39/DIAN
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3.4 Joint Optimization
In time series forecasting, the classic objective function is set
as the Mean Absolute Error,

L = |Ŷt+1:t+H −Xt+1:t+H |, (15)

Idealy, if the essential information is totally extracted and
there is no distribution shift mixed with the informa-
tion, we only use invariant patterns to make prediction as:
Ŷt+1:t+H = f(P t

I , R
t
I), where f is a fully connected layer

predictor. In order to adapt to the distribution shift that
often occur in time series forecasting tasks, we introduce
both invariant and variant patterns to make prediction as:
Ŷt+1:t+H = f(P t

I , R
t
I , P

t
V , R

t
V ). In section 3.3, we pro-

pose the temporal intervention mechanism and obtain inter-
vened samples. In order to simulate various distribution shift
that may occur and further adapt to distribution shift, we
use the obtained intervened samples to make prediction as:
Ŷinv

t+1:t+H = f(stI , s
t
V ). Then, new joint optimization with

regard to temporal intervention mechanism can be formalized
as:

minLfinal = min |Ŷt+1:t+H −Xt+1:t+H |
+ λ|Ŷinv

t+1:t+H −Xt+1:t+H |,
(16)

where Lfinal is minimized to exploit invariant and variant
patterns while discovering and adapting to the distribution
shift ahead of time; λ is a hyperparameter to balance between
two objectives.

4 Experiments
We conduct extensive experiments on five real-world time se-
ries benchmarks and compare our model with many effec-
tive time series forecasting models (including state-of-the-art
graph neural network-based models) to validate the perfor-
mance of our model.

4.1 Experimental Setup
Datasets
We evaluate our proposed method on five real-world datasets
and use the min-max normalization to normalize all these
datasets. Except for the COVID-19 dataset, we split the
datasets into training, validation, and test sets with the ratio of
7:2:1 in a chronological order. For the COVID-19 dataset, the
ratio is 6:2:2 because of the limitation of data scale in tempo-
ral dimension. More detailed information about the datasets
is provided in Appendix1.

Evaluation
To compare the performance of different forecasting models,
we deploy two widely used evaluation metrics: 1) Root Mean
square Error. 2) Mean Absolute Error. More detailed infor-
mation about the evaluation is provided in Appendix1.

Implementation
We use PyTorch to implement our model and baselines. All
models were evaluated on a Linux server with one RTX 3090
GPU. We use MAE (Mean Absolute Errors) as the loss func-
tion and the Adam Optimizer with a learning rate of 1e-3 with
proper early stopping. For the main experiment, we fix the

lookback window length as 12 and the horizon window length
as 12. More detailed information about the implementation is
provided in Appendix1.

Baselines
To verify the effectiveness of our model, we com-
pared it with several representative baseline methods
on the five datasets. The baseline methods mainly
include: (1) classic method VAR [Watson, 1993]; (2)
deep learning-based models such as SFM [Zhang et al.,
2017], LSTNet [Lai et al., 2018], TCN [Bai et al., 2018],
DeepGLO [Sen et al., 2019], and CoST [Woo et al., 2022b];
GNN-based models such as GraphWaveNet [Wu et al., 2019],
StemGNN [Cao et al., 2020b], MTGNN [Wu et al., 2020],
and AGCRN [Bai et al., 2020]; Transformer-based models in-
cluding Reformer [Kitaev et al., 2020], Informer [Zhou et al.,
2021], Autoformer [Wu et al., 2022] and FEDformer [Zhou et
al., 2022b]. In addition, we also compare DIAN with SOTA
TAMP-S2GCNets [Chen et al., 2021]. To compare fairly, our
experiments for baselines and our model are under the same
experimental settings. Due to spatial constraints, more base-
line implementation details can be found in Appendix1.

4.2 Overall Performance
Table 1 demonstrates the overall performance of thirteen
baselines and DIAN. It is obvious that DIAN achieves a
new state-of-the-art on all datasets. Compared with the best-
performing across all datasets, DIAN makes an improve-
ment of 11.3% in MAE and 7.9% in RMSE. Notably, we
find that on COVID-19 dataset, transformer-based models
like Reformer achieve a competitive performance because
they excel at capturing temporal dependencies of time se-
ries. However, they are not as good as the GNN-based mod-
els at capturing spatial dependencies. As a result, on Wiki,
Traffic, and ECG datasets, GNN-based models like AGCRN
and MTGNN achieve a more promising performance. DIAN
not only learns spatial and temporal dependencies simultane-
ously, but also integrates invariant and variant patterns rea-
sonably, therefore, it outperforms the baseline models.

4.3 Parameters and Model Analysis
Efficiency Analysis
In order to verify the high efficiency of DIAN, we investi-
gate the parameter volumes and training time costs of DIAN
and some lightweight baseline models (StemGNN, AGCRN,
GraphWaveNet, MTGNN) on Traffic and Wiki datasets. Ta-
ble 2 shows the comparison of parameter volumes and av-
erage training time costs over five rounds of experiments.
Obviously, we can find that DIAN always have the lowest
volume of parameters among the comparative models. Com-
pared with the baseline models, DIAN achieves a reduction of
more than 70.7% and 50.2% in parameter volumes on Traf-
fic and Wiki datasets respectively. In addition, DIAN runs
much faster than other baselines by at least 56.3% and 46.9%
on Traffic and Wiki datasets respectively. The reason is that
DIAN captures relationships between each series/timestamp
and the overall representation instead of learning relation-
ships among timestamps/series.
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Models Traffic ECG COVID-19 Wiki Solar
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

VAR 0.535 1.133 0.120 0.170 0.226 0.326 0.057 0.094 0.184 0.234
SFM 0.029 0.044 0.095 0.135 0.205 0.308 0.081 0.156 0.161 0.283

LSTNet 0.026 0.057 0.079 0.115 0.248 0.305 0.054 0.090 0.148 0.200
TCN 0.052 0.067 0.078 0.107 0.317 0.354 0.094 0.142 0.176 0.222

DeepGLO 0.025 0.037 0.110 0.163 0.169 0.253 0.110 0.113 0.178 0.400
Reformer 0.029 0.042 0.062 0.090 0.152 0.209 0.048 0.085 0.234 0.292
Informer 0.020 0.033 0.056 0.085 0.200 0.259 0.051 0.086 0.151 0.199

Autoformer 0.029 0.043 0.055 0.081 0.159 0.211 0.069 0.103 0.150 0.193
FEDformer 0.025 0.038 0.055 0.080 0.160 0.219 0.068 0.098 0.139 0.182

GraphWaveNet 0.013 0.034 0.093 0.142 0.201 0.255 0.061 0.105 0.183 0.238
StemGNN 0.080 0.135 0.100 0.130 0.421 0.508 0.190 0.255 0.176 0.222
MTGNN 0.013 0.030 0.090 0.139 0.394 0.488 0.101 0.140 0.151 0.207
AGCRN 0.084 0.166 0.055 0.080 0.254 0.309 0.044 0.079 0.123 0.214

DIAN (ours) 0.013 0.029 0.049 0.075 0.128 0.175 0.040 0.074 0.095 0.167

Table 1: Overall performance comparisons of forecasting models on the five datasets.

Models Traffic Wiki
Parameters Training(s/epoch) Parameters Training(s/epoch)

GraphWaveNet 280, 860 81.33 ±1.22 292, 460 15.87 ±0.35
StemGNN 1, 606, 140 178.56±1.92 4, 102, 406 84.56 ±1.13
AGCRN 749, 940 108.81±1.34 755, 740 19.86±0.97
MTGNN 707, 516 154.16 ±1.09 1, 533, 436 25.41 ±0.57

DIAN(ours) 82263 35.53±1.17 145,653 8.43±0.18

Table 2: Comparisons of parameter volumes and training time costs on datasets Traffic and Wiki.

Ablation Study
In this section, we conduct ablation studies to verify the effec-
tiveness of the proposed Spatial Decoupled Invariant-Variant
Learning and Temporal Augmented Invariant-Variant Learn-
ing in DIAN on Solar and COVID-19 datasets. Specifically,
w/o spatial is DIAN without Spatial Decoupled Invariant-
Variant Learning and w/o temporal represents DIAN without
Temporal Augmented Invariant-Variant Learning. We ver-
ify the necessity of capturing inter-series (spatial) correla-
tions and intra-series (temporal) dependencies by removing
these two parts respectively. The results presented in Table
3 demonstrate that the removal of either spatial or temporal
components leads to a decline in model performance, under-
scoring the effectiveness of each component.

4.4 Visualization
To gain a better understanding of DIAN which can distin-
guish between invariant patterns and variant patterns in both
temporal and spatial dimensions in multivariate time series
forecasting. We conduct visualization experiments on the
COVID-19 dataset.

Visualization of the Spatial Invariant and Variant
Attention Score Learned by DIAN
To demonstrate the capability of Spatial Decoupled Invariant-
Variant Learning in capturing both stable and potentially
volatile spatial relationships, we employed the COVID-19

dataset and visualized the variations of the invariant atten-
tion scores and variant attention scores using line graphs
within the same lookback window but across different times-
tamps. Specifically, we computed the differences between
each timestamp’s attention score and the previous times-
tamp’s attention score (excluding the first timestamp), result-
ing in (L− 1) difference values. Taking the average of these
difference values provided a measure of the intensity of spa-
tial relationship changes within the lookback window for each
series. The results are illustrated in Figure 2b, where the blue
line represents the variation of the variant attention score, and
the orange line represents the variation of the invariant atten-
tion score. From the results, it is evident that the variant atten-
tion score exhibits more pronounced changes compared to the
invariant attention score across all 55 series. Therefore, we
can conclude that Spatial Decoupled Invariant-Variant Learn-
ing can effectively capture and distinguish stable spatial rela-
tionships from potentially unstable ones.

Visualization of Temporal Invariant and Variant Pattern
Learned by DIAN
To validate the conformity of temporal invariant and variant
patterns with our proposed viewpoint, which states that the
variation amplitude of invariant patterns is smaller and more
regular, while variant patterns exhibit drastic changes, we uti-
lized the COVID-19 dataset as an example. We visualized the
variance of each series within a lookback window using a line
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Metrics Solar COVID-19
w/o spatial w/o temporal DIAN w/o spatial w/o temporal DIAN

MAE 0.117 0.097 0.095 0.132 0.158 0.128
RMSE 0.200 0.172 0.167 0.175 0.205 0.175

Table 3: Ablation study on Solar and COVID-19 dataset.
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Figure 2: Visualization results on the COVID-19 dataset.

graph, as shown in Figure 2a. The blue line represents the
variance of variant patterns within a lookback window, while
the orange line represents the variance of invariant patterns
within the same window. The x-axis denotes the series num-
ber. From the results, it is evident that the variance of variant
patterns consistently exceeds that of invariant patterns. Thus,
we can conclude that through the Temporal Invariant-Variant
Attention mechanism, we have successfully decomposed the
series into invariant and variant components. The invariant
pattern captures the relatively stable part, while the variant
pattern captures the part that exhibits significant changes with
variations in the environment.

5 Related Work
5.1 Time Series Forecasting
Time series forecasting (TSF) has gained significant atten-
tion due to its practical significance. In recent years, notable
advancements have been made in time series forecasting re-

search. DeepAR [Flunkert et al., 2020] employs an RNN
structure for accurate predictions. Nbeats [Oreshkin et al.,
2019] achieved remarkable improvements by utilizing resid-
ual computation and multiple fully connected layers, produc-
ing interpretable outputs. Moreover, transformer-based mod-
els have gained popularity in the field of time series forecast-
ing, such as Informer [Zhou et al., 2021] and Autoformer [Wu
et al., 2022]. In addition, there have been some recent works
that have achieved new heights in the field of time series fore-
casting [Yi et al., 2024b; Yi et al., 2024a; Hu et al., 2023;
Ren et al., 2022; Zhang et al., 2024].

5.2 Graph Convolutional Networks Based
Forecasting Model

GCN, a type of GNN specialized for graph-structured data,
has wide applications in node classification, link prediction,
and graph classification [Wu et al., 2021]. It extracts re-
lationship features between nodes, yielding satisfactory re-
sults. Recently, graph learning has been employed in time
series forecasting to extract relationships in node or series
data. However, traditional GCN relies on a predefined graph
as input, which is difficult to obtain and less suitable for
dynamic data like traffic flow [Bai et al., 2020]. AGCRN
addresses this challenge by capturing node-specific patterns
and automatically inferring inter-dependencies among traf-
fic series, which has demonstrated excellent performance in
traffic forecasting [Bai et al., 2020]. Nevertheless, the sta-
bility of the adjacency matrix learning in AGCRN can be
improved further. Research on temporal graphs has been
rapidly advancing recently, and many methods are worth con-
sidering and drawing inspiration from [Dong et al., 2024;
Dong et al., 2023].

6 Conclusion Remarks
In this paper, we propose a multivariate time series forecast-
ing model, Decoupled Invariant Attention Network (DIAN),
to decouple invariant and variant patterns in both spatial
and temporal dimensions and combine them reasonably for
forecasting. First, we use Spatial Invariant-Variant Atten-
tion to calculate spatial invariant and variant attention scores
for capturing inter-series correlations and propose Decou-
pled Invariant-Variant Convolution to get spatially-learned
representations. Second, we propose Temporal Invariant-
Variant Attention to capture temporal correlations and Tem-
poral Intervention Mechanism to create intervened samples to
simulate potential distribution shift. Extensive experiments
on five real-world datasets demonstrate that our model can
achieves state-of-the-art performances with higher efficiency
and fewer parameters.
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