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Abstract
In recommender systems, graph neural networks
(GNN) can integrate interactions between users and
items with their attributes, which makes GNN-
based methods more powerful. However, directly
stacking multiple layers in a graph neural network
can easily lead to over-smoothing, hence recom-
mendation systems based on graph neural networks
typically underutilize higher-order neighborhoods
in their learning. Although some heterogeneous
graph random walk methods based on meta-paths
can achieve higher-order aggregation, the focus is
predominantly on the nodes at the ends of the paths.
Moreover, these methods require manually defined
meta-paths, which limits the model’s expressive-
ness and flexibility. Furthermore, path encoding in
graph neural networks usually focuses only on the
sequence leading to the target node. However, real-
world interactions often do not follow this strict
sequence, limiting the predictive performance of
sequence-based network models. These problems
prevent GNN-based methods from being fully ef-
fective. We propose a Graph Attention network
with Information Propagation path aggregation for
Social Recommendation (GAIPSRec). Firstly, we
propose a universal heterogeneous graph sampling
framework that does not require manually defin-
ing meta-paths for path sampling, thereby offering
greater flexibility. Moreover, our method takes into
account all nodes on the aggregation path and is
capable of learning information from higher-order
neighbors without leading to over-smoothing. Fi-
nally, our method utilizes a gate mechanism to
fuse sequential and non-sequential dependence in
encoding path instances, allowing a more holistic
view of the data. Extensive experiments on real-
world datasets show that our proposed GAIPSRec
improves the performance significantly and outper-
forms state-of-the-art methods.

∗Corresponding author.

1 Introduction
In the era of information explosion, recommender systems
are taking on increasingly important responsibilities on fil-
tering information and make personalized recommendation
for users. Collaborative filtering (CF), exemplified by ma-
trix factorization (MF) [Koren et al., 2009] and neural ma-
trix factorization (NeuMF) [He et al., 2017], is a widely used
approach to learn user and item representations from histor-
ical interactions for personalized recommendation. The pre-
dictive advantages of incorporating user’s historical interac-
tions are demonstrated by singular value decomposition++
(SVD++) [Koren, 2008], while neural attentive item similar-
ity (NAIS) [He et al., 2018] leverages attention networks to
improve predictive accuracy. However, these approaches pri-
marily model shallow interactions, limited to one-hop neigh-
boring connections between users and items. GNNs offer
the capacity to uncover intricate interactions between users,
items, and attributes. Models like neural graph collabora-
tive filtering (NGCF) [Wang et al., 2019a], the simplified and
powered graph convolution network (LightGCN) [He et al.,
2020] and neighborhood-enriched contrastive learning (NCL)
[Lin et al., 2022] address limitations of conventional meth-
ods. NGCF highlights the significance of high-order connec-
tivity. LightGCN simplifies the approach by eliminating fea-
ture transformations and nonlinear activation modules. NCL
enhances graph-based CF through contrastive learning.

Although these methods make advances in recommender
systems, they are often assumed to have homogeneous graph
structures and struggle with structural and semantic intri-
cacies in heterogeneous graphs. The limitation hinders
their ability to effectively model graph structures contain-
ing diverse characteristics. In heterogeneous graphs , ex-
isting methods [Tang et al., 2016; Hamilton et al., 2017;
Liu et al., 2018; Fan et al., 2019a] directly stack multiple
GNN layers and encounter the challenge of over-smoothing.
The abundance of GNN paths prevents the recommender sys-
tem from effectively capturing high-order neighbor relation-
ships. Heterogeneous graph embedding methods based on
the meta-path concept, such as HERec [Shi et al., 2018] and
HAN [Wang et al., 2019b], could address the utilization is-
sue of higher-order neighbors. However, these methods are
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dependent on meta-path-based random walks for processing
heterogeneous graphs, necessitating manually defined meta-
paths, which restricts the model’s expressiveness and flexi-
bility. Additionally, these models consider only the nodes
at both ends of a meta-path, ignoring all intermediate nodes,
which leads to a loss of information. Furthermore, in the pro-
cess of path encoding, these methods follow the path leading
to the target node, but actual interactions may not always ad-
here to this direction. Such a discrepancy can result in inac-
curate predictions, failing to accurately reflect the potential
diffusion network structure.

To overcome these limitations, we introduce an innovative
approach called GAIPSRec. GAIPSRec adopts the univer-
sal heterogeneous graph sampling framework we proposed,
which eliminates the need for manually defining meta-paths.
Additionally, it can aggregate high-order information with-
out leading to over-smoothing. This method is capable of
considering all nodes on higher-order neighbor relationships,
not just the terminal ones. We employ a gate mechanism to
fuse sequential (LSTM) and non-sequential(coverage mech-
anism) dependence, encoding the information in each node
along the sampled path. The introduction of the coverage
mechanism improves the utilization coverage of all repre-
sentation information and enhances the memory properties
of the attention mechanism, thus correcting erroneous atten-
tion allocation. By incorporating the cross-dependence, our
approach gains a more holistic view of the data and reflects
the potential diffusion network structure. GAIPSRec is able
to capture the structural and semantic information of the het-
erogeneous graphs by considering interaction neighbor nodes
and social neighbor nodes along the sampled paths. Follow-
ing path encoding, GAIPSRec performs two-level path ag-
gregation using attention mechanism, merging latent vectors
from multiple sampled paths into the final node embedding.
By integrating multiple sampled paths, our model adeptly
learns comprehensive semantics embedded within the hetero-
geneous graphs.

In summary, this research brings several significant contri-
butions:

• We propose a universal heterogeneous graph sampling
framework, which does not require manually defined
meta-paths for the path sampling process, thereby en-
hancing the model’s flexibility. It effectively cap-
tures high-order neighbor information without leading
to over-smoothing.

• We consider the information from all neighboring nodes
along the entire path during path encoding, in contrast
to the meta-path sampling method that focuses solely on
the terminal nodes.

• We employ a gate mechanism to fuse sequential and
non-sequential dependence, allowing us to view inter-
action data from a more comprehensive perspective.

• We carry out empirical studies using two datasets
sourced from real-world scenarios. The outcomes of
these experiments demonstrate a clear superiority of
GAIPSRec over existing state-of-the-art baseline mod-
els.

2 Related Work
Graph Neural Network. GNNs initially emerge in the
spectral domain due to their computational complexity
[Bruna et al., 2013]. Defferrard et al introduced Chebyshev
polynomials [Defferrard et al., 2016] to reduce computational
complexity. GCN is derived from spectral methods but has a
spatial interpretation due to the specific approximations used,
and this approach has had a significant impact on the field of
research in spatial GNNs. [Kipf and Welling, 2016]. With the
application of the attention mechanism in deep learning mod-
els [Vaswani et al., 2017], graph attention networks (GAT)
uses it for aggregating information from neighboring nodes
[Veličković et al., 2017]. Furthermore, an algorithm known
as FastGCN [Chen et al., 2018] introduces layer-wise sam-
pling to reduce variance. Cluster-GCN, an efficient algorithm
for training deep and large GCNs, uses subgraph sampling
to increase parallelism [Chiang et al., 2019]. Despite their
efficiency, these methods solely rely on user-item interac-
tion data, and suffer from data sparsity. Adopting social rec-
ommendation can effectively alleviate this issue [Fan et al.,
2018; Huang et al., 2021].
Social Recommendation. Early heterogeneous graph-
based recommendation methods employ first-order social
neighbors [Tang et al., 2013]. Both matrix factorization (So-
cialMF) [Jamali and Ester, 2010] and probabilistic matrix fac-
torization (SoRec) [Ma et al., 2008] for recommendation in
social rating networks model social influence as a regulariza-
tion term. In contrast, social recommendation models based
on GNNs leverage social neighbors and multiple types of con-
nections [Fan et al., 2019a]. An influence diffusion neural
network based model(Diffnet) [Wu et al., 2019a] and another
neural influence and interest diffusion network based model
(Diffnet++) [Wu et al., 2020] use attention mechanism and k-
order information diffusion to make social recommendation.
Some methods further utilize user communities to enrich
recommender systems [Liu et al., 2020; Xing et al., 2022;
Fatemi and Tokarchuk, 2013].

The above methods tend to combine representations of
users in the social graph with the user-item graph and as-
sign appropriate weights. However, directly stacking mul-
tiple layers of GNNs can result in over-smoothing and limit
the learning potential of higher-order neighbor information in
GNN-based recommendation models. Even when involving
high-order neighbors, it necessitates the definition of meta-
paths and focuses only on the nodes at the ends. Our proposed
model, GAIPSRec, is designed to handle them effectively.

3 Proposed Method
The GAIPSRec framework, as illustrated in Fig. 1, firstly
random walks with restart based on length are performed on
the heterogeneous recommendation graph to obtain sampled
paths and path neighbors (starting and ending nodes). Various
path encoders, such as LSTM, GRU, mean aggregation, and
coverage mechanism with sequential dependence, are em-
ployed to model the information propagation process along
the sampled paths. The GAT is then utilized to construct sub-
graphs by aggregating paths. Finally, attention mechanism
is applied to aggregate subgraph representations of different
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Figure 1: Method framework.

lengths, resulting in user embedding and item embedding.
The embedding is further utilized to perform rating predic-
tion tasks.

3.1 Path Sampling for Information Propagation
In this work, we consider users and items as nodes during the
sampling stage for recommendation in heterogeneous graphs
containing both social and rating relationships. We use Ran-
dom Walk with Restart (RWR) to simulate the paths of in-
formation propagation in the recommendation network and
sample a set number of paths of varying lengths for each
type of node. By employing this sampling strategy, we sam-
ple a subset of paths from the heterogeneous graph with
the combination of user-item interactions and user-user rela-
tionships, and this sampling strategy significantly reduce the
number of paths. This enables our method to consider higher-
order neighbor relationships and mitigate the risk of over-
smoothing in multiple aggregations of GNNs. At each step
of the random walk, there is a certain probability of restarting
and returning to the start node, which increases the influence
of the start node on the walk sequence. Assuming the walk
starts from a user node, at each step, the next node is selected
based on the probability distribution.

p =

prwr, restart;

1−prwr

|Nneigh| , select any neighbor,
(1)

where prwr denotes the probability of the random walk re-
turning to the start node, and |Nneigh| denotes the number of
first-order neighbors. The probability for selecting neighbors
is set to follow uniform distribution. We denote the probabil-
ity of a user node selecting the next node as follows:

pu =


|Nitem|
|Nneigh| , select an item(rating relationships);

|Nuser|
|Nneigh| , choose a user(social relationships),

(2)

where |Nitem| denotes the number of ratings given by the
user, and |Nuser| denotes the number of social connections
of the user. The next choice for an item node is only the rat-
ing relationships. By setting the above sampling probability,
the model can sample the paths that are most closely related
to the central node. Compared to random walk that only con-
siders first-order neighbor nodes, random walk with restart
sampling can capture more global graph structural informa-
tion. The restart probability, prwr, is a hyperparameter of

the model. When prwr is small, the sampling closely resem-
bles random walk that only considers neighbor nodes, while a
large prwr may result in insufficient sampling of the specified
paths. In this part, paths with different lengths are sampled
for each type of nodes, enabling the learning of information
propagation and neighbor influence at different orders. Fi-
nally, attention mechanism is used to aggregate the represen-
tations of subgraphs with different lengths to update the node
representations.

3.2 Information Propagation Path Encoder

Previous graph-based social recommendation models often
separately train user embeddings in the recommendation net-
work and social network before fusion [Fan et al., 2019a;
Wu et al., 2019b]. In this part, we incorporate simulated in-
formation propagation paths through sampling. This method
effectively preserves the heterogeneous interaction informa-
tion between users and items and allows item embedding to
be influenced by social relationships. By modeling informa-
tion propagation along the paths, the model can learn higher-
order neighbor information. To avoid over-smoothing of node
embeddings, caused by stacking multiple layers of graph neu-
ral networks, we combine the modeling of information propa-
gation with the path aggregation. We use multiple encoders to
simulate the information propagation process along the ran-
dom walk paths and obtain path representations.

Mpu→v = PE(en, er, {∀n ∈ Npu→v , ∀r ∈ Epu→v}), (3)

where pu→v denotes a path instance from node u to node v,
and nodes u and v are referred to as path neighbors in this
paper. Mpu→v denotes the representation of the path infor-
mation from node u to node v, and PE refers to the propaga-
tion encoder. en and er represent the embeddings of nodes
and edges, respectively. Nodes include both user nodes and
item nodes, while edges encompass both user-item interac-
tions and social relationships.

The mean encoder computes the mean of the node embed-
dings along the path and uses it as the path representation.
LSTM and GRU are used to encode the sequence of path
nodes. The node ordering is set from far to near in RNN en-
coders, indicating that higher-order neighbors propagate in-
formation to the central node through intermediate nodes step
by step. The GAIPSRec models with the mean, LSTM, and
GRU encoders are denoted as GAIPSRec-mean GAIPSRec-
lstm, GAIPSRec-gru, respectively.
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Figure 2: Diffusion-dependence attention layer with coverage.

Coverage mechanism and its fusion with sequential de-
pendence. The actual process of information diffusion may
not strictly adhere to the sequential assumption, thereby lim-
iting the predictive performance of sequential models such as
LSTM and GRU. To overcome this limitation, inspired by
the coverage model in linguistics, we propose a diffusion-
dependent attention layer with coverage mechanism. This
mechanism enables the acquisition of non-sequential struc-
tured path representations while capturing diffusion depen-
dence. It enhances the coverage of all representation informa-
tion. Subsequently, we employ a gate mechanism to integrate
non-sequential and sequential structured information of path
representations, yielding the final path encoding.

Given a node nj ∈ {n0, n1, . . . , nN−1}, whose original
representation is a one-hot vector of the user/item ID, denoted
as xj ∈ RN , where N denotes the total number of users and
items. To extract more expressive and efficient node features,
the original node representation x is input into a fully con-
nected layer to obtain the node embedding vector e.

ej = Wjxj + bj , (4)

where Wj ∈ Rd×N and bj ∈ Rd are learnable parameter
matrices and biases, respectively, and d denotes the embed-
ding dimension.

The diffusion dependence attention mechanism incorpo-
rates independent attention, which can make certain nodes
dominate the attention weights. This dominance by a few in-
fluential nodes may neglect the information from other nodes,
resulting in an incomplete reflection of the underlying diffu-
sion network structure. We draw inspiration from coverage
models used in linguistics. We utilize a coverage vector to
keep track of previous attention results, enabling better guid-
ance for future attention learning.

At each step, the process continues from the sampling start
point to the endpoint along each sampled path. For a given
path Mpu→v , the nodes Npu→v from u to v are denoted as
{n0, n1, . . . , nl−1} in sequence, where l is the length of the
path, and nj and nk are in the sequence. The structure of the
diffusion-dependent attention layer with coverage mechanism
is illustrated in Fig. 2. The calculation process is as follows:

ek,j = ve
T tanh (We1ek +We2ej+We3Vk,j) , (5)

ak,j = softmax (ek,j) , (6)

Vk,j = σ (Vk−1,j , αk−1,j , ek, ej)

= sigmoid(Wv1
Vk−1,j +Wv2

αk−1,j

+Wv3ek +Wv4ej + bv),

(7)

where Wv2
∈ Rd,We1 ,We2 ,We3 ,Wv1

,Wv3
and Wv4

∈
Rd×d are parameter matrices, ve, bv ∈ Rd are parameter
vectors. Vk,j ∈ Rd denotes the newly introduced coverage
vector, which summarizes the previous attention results. By
combining the coverage vector from the previous steps and
the diffusion dependence weights, the coverage vector en-
hances the memory properties of the attention mechanism,
making the attention at each step no longer independent of
each other. The diffusion-dependent node representation in-
formation is aggregated by weighted sum as follows:

dj =

j−1∑
k=1

αk,jek. (8)

The dj is the node nj’s diffusion-dependent feature infor-
mation. For each node nj in the path sequence, the gate
mechanism is applied to fuse its own embedding representa-
tion ej with the diffusion-dependent feature information dj ,
resulting in node-level features with dependence-awareness,
denoted as the non-sequential structural node representation
rj :

rj = gj ⊙ ej + (1− gj)⊙ dj , (9)

gj = σ (ej ,dj) = sigmoid (Wg1ej +Wg2dj + bg) , (10)

where Wg1 ,Wg2 ∈ Rd×d, bg ∈ Rd. The learned activa-
tion function gj serves as a gate, allowing the discarding of
unimportant information from its own embedding represen-
tation ej , while incorporating useful information from the
diffusion-dependent feature information dj . This process en-
ables the fused node representation rj to be aware of its own
diffusion dependence. In addition, we learn the node’s se-
quential structural representation through LSTM.

sj = LSTM (ej , sj−1) . (11)

Subsequently, the gate mechanism is used once more to com-
bine the node’s non-sequential structural representation with
the sequential structural representation, resulting in the final
encoding of the node as follows:

hj = qj ⊙ sj + (1− qj)⊙ rj , (12)

qj = sigmoid (Wq1sj +Wq2rj + bq) , (13)

where Wq1 ,Wq2 ∈ Rd×d, and bq ∈ Rd. This allows the
final fused node representation hj to more comprehensively
perceive and represent the features of sequential nodes. In
the end, we calculate the average weighted sum of the nodes
along the path to obtain the final path encoding.

Mpu→v
=

1

|Npu→v |
∑

j∈Npu→v

hj . (14)

The GAIPSRec model with the coverage mechanism is de-
noted as GAIPSRec-cover.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2481



3.3 Path Aggregation
For each path length, GAIPSRec samples several paths. In
this part, we employ the attention mechanism inspired by the
GAT framework to aggregate paths with the same length to
construct subgraphs, allowing the model to learn the hetero-
geneous interaction information obtained by the information
propagation path encoder. We generate attention weights by
aligning the path representations of corresponding paths with
the central node embedding.

epuv = sigmoid (WαP [hu ∥ Mpu→v
]) , (15)

αp
uv= softmax (epuv) , (16)

hp
u =

∑
v∈Np

u

αp
uvMpu→v , (17)

where epuv denotes the importance of the path pu→v to the
node u, and node u can be either a user or an item. ∥ de-
notes concatenation. The attention weight αp

uv denotes the
importance of different paths to user nodes and the Np

u de-
notes the set of nodes at distance p from node u. To reduce
the potential high variance during the model training process,
the multi-head attention mechanism [Vaswani et al., 2017] is
employed. We use k parallel attention modules to aggregate
paths in a subgraph calculated by eq.17. Finally, the outputs
from the k independent computations are combined.

hp
u =

1

K

K∑
k=1

∑
v∈Np

u

[αp
uv]k·Mpu→v

. (18)

3.4 Subgraph Representation Aggregation
After constructing subgraphs, subgraph representation aggre-
gation is performed. Although few researchers have explored
subgraphs generated by the paths whose lengths are greater
than 3, GAIPSRec can effectively learn information from
higher-order neighbors, enriching the feature information of
users and items. The attention mechanism in GAIPSRec
adaptively learns the importance of various subgraphs and
aggregates the embedding representations of different sub-
graphs through weighted sum to update the central node.

For all nodes of the same type (users or items), their sub-
graph representations with the same path length (hp

u) are sub-
jected to linear and nonlinear transformation, and then the
average is taken to obtain the ensemble representation of the
subgraphs for that specific length. For instance, for users, the
process is as follows:

hPi

U =
1

|U |
∑
u∈U

σ (WPih
pi
u ), (19)

where Pi denotes the set of paths with a specific length, and
each path instance pi ∈ Pi. U denotes the set of users, and u
denotes a specific user node. P denotes the set of path lengths
for users or items, and Pi ∈ P. The alignment of representa-
tions for paths of different lengths is achieved through linear
transformation, and then softmax normalization is applied to
obtain attention weights. For user nodes, the calculation pro-
cess is as follows, and item nodes are similar.

ePi

U = W
α

Pi
U

MPi

U , (20)

αPi

U = softmax
(
ePi

U

)
, (21)

hu =
∑
Pi∈P

αPi

U hPi
u . (22)

3.5 Rating Prediction
Inspired by the idea of residual connections, GAIPSRec in-
corporates connections by concatenating the node’s original
embedding with its final embedding to obtain the model’s out-
put, which can alleviate the over-smoothing problem.

h′
u = Wfinalu (hu ∥ eu) . (23)

Then we concatenate user embedding representations with
item embedding representations, employing a multi-layer lin-
ear network to predict the ratings.

r̂ui = MLP (h′
u ∥ h′

i) . (24)

3.6 Model Training
In our paper, the Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE) are combined and used as the loss
function for model training. Additionally, L2 regularization
is applied to the model parameters to prevent over-fitting.

Lr =
∑
(u,i)

[
(r̂ui − rui)

2
+ |r̂ui − rui|

]
+ λ

n∑
i=1

Θ, (25)

where the λ denotes the penalty coefficient for regularization,
and Θ corresponds to the model parameters. The Adam opti-
mizer is used to train GAIPSRec.

Rank learning aims to present a sorted array of items to
users, a common approach in various recommendation sys-
tems like top-k and sequential recommendations. For every
user, items they have interacted with are marked as 1 (posi-
tive samples) when their rating meets or exceeds a threshold
F , or 0 (negative samples) otherwise. This implies that users
are inclined to engage with items rated F or higher. Con-
sidering our datasets have ratings from 1 to 5, we conduct
experiments with F = 3. Model predictions are refined using
the sigmoid function, and for the task of ranking, the loss is
computed using the Binary Cross-Entropy (BCE) Loss:

Lb= −
∑
(u,i)

yui log (ŷui) + (1− yui) log (1− ŷui) , (26)

4 Experimental Results
4.1 Experimental Settings
Datasets. The real-world recommendation datasets
Ciao[Fan et al., 2019b] and Epinions[Fan et al., 2019a] are
selected for the experiments. For each dataset, 80% of the
rating data are randomly sampled to form the training set,
while the remaining 20% are used as the test set. Table 1
presents the relevant information for these datasets.

Evaluation Metrics. To evaluate the model’s rating perfor-
mance, we use the MAE and RMSE. Smaller values of MAE
and RMSE indicate better performance. We use the Preci-
sion and NDCG to evaluate the ranking performance, and the
bigger values indicate better performance.
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Ciao Epinions

Number of users 7,375 22,166
Number of items 106,797 296,277

Number of ratings 284,086 922,267
Rating density 0.0361% 0.0140%

Number of relationships of trust 111,781 355,813
Relational density of trust 0.2055% 0.0724%

Table 1: Ciao and Epinions dataset information.

Baselines. This paper selects the following representative
models to compare their performance with GAIPSRec:

• Traditional social recommendation algorithm: TrustMF
[Yang et al., 2016], TrustSVD [Guo et al., 2016].

• Deep neural network based recommendation algorithms:
SSL-SVD [Hu et al., 2020], NeuCDCF [Vijaikumar et
al., 2021], ConsisRec [Yang et al., 2021].

• Graph neural network based recommendation algo-
rithms: GraphRec [Fan et al., 2019a], SCSVD [Guan
et al., 2021], GDSRec [Chen et al., 2023], MI3Graph
[Zhu et al., 2023].

Parameter Settings. In order to compare different meth-
ods, we consider the parameter configurations by cross-
validation. To ensure fairness in our comparison, all experi-
mental results are reported as the average of five independent
runs. In this paper, we use PyTorch and Dgl to implement the
GAIPSRec model. The learning rate η is set to 10−4, and the
embedding dimension D is 64. The hidden layer dimension
is the same as the input layer dimension, and all parameters
are initialized using the Xavier uniform distribution. For both
user and item nodes, we sample paths of lengths [2, 3, 4, 5],
and the dropout rate is set to 0.5. We test the restart probabil-
ity prwr is set to 0.2.

4.2 Comparative Experiments
In this part, we conduct comprehensive experiments to com-
pare the proposed GAIPSRec model with existing models.
The experimental results of GAIPSRec and the baseline mod-
els are presented in Table 2.

GraphRec performs better than TrustMF and TrustSVD,
probably because of the utility of performing propagation in-
formation across users and items under a graph-structured
neural network. GDSRec’s good performance on the Ciao
dataset is attributed to the fact that it utilizes both user and
program statistics. MI3Graph beats most social recommenda-
tion models on the Epinions dataset due to its incorporation of
multi-interaction information. GAIPSRec-cover achieves the
best results on both the Ciao dataset and the Epinions dataset.
Compared to the best-performing baseline model, GAIP-
SRec shows improvements of 3.28% and 1.64% in MAE
and RMSE, respectively, on the Ciao dataset. On the Epin-
ions dataset, GAIPSRec achieves improvements of 2.31%
and 0.88% in MAE and RMSE, respectively. These results
demonstrate that the model design of GAIPSRec, which com-
bines random walk simulations for information propagation

Ciao Epinions
MAE (%) RMSE (%) MAE (%) RMSE (%)

TrustMF 76.90 104.79 84.10 113.95
TrustSVD 77.01 103.56 83.87 107.31
GraphRec 73.87 97.94 81.68 106.31
SSL-SVD 73.31 98.90 80.16 104.55
NeuCDCF 73.24 98.35 80.52 105.09
ConsisRec 73.94 97.40 80.46 104.95

SCSVD 73.64 97.61 79.98 104.38
GDSRec 73.23 97.22 80.47 105.66

MI3Graph 73.53 97.81 79.95 104.29
GAIPSRec-cover 70.83 95.63 78.10 103.37
GAIPSRec-lstm 71.25 96.18 78.68 103.87
GAIPSRec-gru 74.01 97.17 80.81 103.66

GAIPSRec-mean 74.38 97.26 80.90 103.76

Table 2: MAE and RMSE of GAIPSRec and baseline models.

with path aggregation, is effective. Moreover, GAIPSRec-
lstm outperforms GAIPSRec-gru, but both models show sim-
ilar performance. The LSTM encoder, with its more com-
plex network structure, has stronger representation capabili-
ties. However, the mean encoder, GAIPSRec-mean, exhibits
weaker representation capabilities compared to RNN-based
encoders.

4.3 Item Ranking
In this part, we evaluate the item ranking performance of our
model on Ciao and Epinions. We selected several top-n rank-
ing algorithms for comparison: PMF [Mnih and Salakhut-
dinov, 2007], SVD++, NeuMF, LightGCN, GraphRec,
Diffnet++, and GDSRec. The results are depicted in Table 3.
It is observed that the performance differences on the Preci-
sion metric are minimal. This is attributed to the high propor-
tion of positive samples in the dataset, resulting in generally
high Precision across all models. By contrast, there is a no-
ticeable variance in model performance on the NDCG metric,
where GAIPSRec outperforms the other models. This indi-
cates that GAIPSRec is more effective in promoting positive
items to higher ranks.

4.4 Ablation Study
In this part, we conduct an ablation study to investigate the
effectiveness of different modules in GAIPSRec. By com-
paring GAIPSRec with its variants, namely GAIPSRec-2,

Ciao Epinions
Precision (%) NDCG (%) Precision (%) NDCG (%)

PMF 98.71 93.80 98.01 90.30
SVD++ 98.71 94.22 97.97 91.00
NeuMF 98.70 94.10 98.01 90.91
GCMC 98.69 94.51 98.00 92.12

LightGCN 98.66 95.30 98.01 93.71
GraphRec 98.72 95.73 97.99 93.69
Diffnet++ 98.67 95.85 97.96 93.62
GDSRec 98.69 96.10 97.98 94.20

GAIPSRec 98.77 96.60 98.05 95.70

Table 3: Performance of ranking on Ciao and Epinions.
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(a) RMSE (b) MAE

Figure 3: GAIPSRec and its variants.

GAIPSRec-3, GAIPSRec-4, and GAIPSRec-neigh, we can
assess the importance of each module. GAIPSRec-L removes
the paths of length L and their corresponding subgraphs.
GAIPSRec-neigh does not use random walk-sampled paths.
Instead, it only aggregates path neighbors and performs sub-
graph representation aggregation on the subgraphs to demon-
strate the effectiveness of information propagation modeling.

Here, we only present the experimental results on the Ciao
dataset, and the results on the Epinions dataset are similar. As
shown in Fig. 3, GAIPSRec-neigh does not utilize path infor-
mation propagation encoding and achieves the worst results
on both of the datasets. Other variants that combine infor-
mation propagation modeling with path aggregation outper-
form GAIPSRec-neigh, indicating that the proposed random
walk path sampling and path information encoding signifi-
cantly improve the performance, and the combination of in-
formation propagation and path aggregation is effective.

Regarding the variants that remove paths of certain
lengths and their corresponding subgraphs, on both datasets,
GAIPSRec-4 performs the best, indicating that removing the
subgraphs of 4th-order neighbors has relatively little impact
on the model. Additionally, GAIPSRec-2 slightly outper-
forms GAIPSRec-3. One possible explanation is that 3rd-
order neighbors are more likely to be of the same type, such
as item-item relationships, which have a larger impact on the
model. All variants perform worse than the complete GAIP-
SRec, validating the effectiveness of each part in the model.

4.5 Hyperparameter Analysis
In this part, we conduct experiments to analyze the im-
pact of hyperparameters on the model, including the embed-
ding dimension D, and the random walk restart probability
prwr. The experiments in this section are performed using
the GAIPSRec-cover model.

We conduct experiments using embedding dimensions [16,
32, 64, 128, 256]. As illustrated in Fig. 4, on both datasets,
the optimal RMSE and MAE are obtained with an embedding
dimension of 64. When the dimension is lower, the model’s
expressive power still has potential for improvement. Con-
versely, with higher dimensions, over-fitting may occur, lead-
ing to a drop in performance.

GAIPSRec leverages random walk with restart for path
sampling to approximate the information propagation pro-
cess. Restarting the random walk enhances the influence
of the start node. In this part, we experiment with prwr ∈
[0, 0.6]. As depicted in Fig. 5, the model on both datasets at-
tains optimal performance with the restart probability of 0.2.

(a) Ciao (b) Epinions

Figure 4: Effect of dimensionality D.

(a) Ciao (b) Epinions

Figure 5: Effect of restart probability prwr .

When the restart probability is small, an increase in prwr fa-
cilitates the sampling of paths that are nearer to the center
node, resulting in a decrease in both RMSE and MAE. Con-
versely, when the restart probability is high, an increase in
prwr causes that fewer neighboring nodes are included.

5 Conclusions

This paper presents an graph attention network with infor-
mation propagation and path aggregation for social recom-
mendation. We perform sampling based on proposed univer-
sal framework for heterogeneous graph sampling, eliminating
the need for manually defining meta-paths. This sampling
method helps to facilitate the acquisition of information from
higher-order neighbors, and alleviate the prevalent problem of
over-smoothing within the GNNs and the constraints brought
about by the definition of meta-paths. Our information prop-
agation path encoding consider all the nodes along the path.
Additionally, the coverage mechanism encoder with sequen-
tial dependence is used to model the information propagation
process and gains a more holistic view of the data and reflects
the potential diffusion network structure. We combines in-
formation propagation with path aggregation in GNNs. Sub-
graph representation aggregation is performed in subgraphs
composed of path instances, providing users and items with
richer high-order neighbor and graph structure information.
Extensive experiments on real-world datasets demonstrate the
effectiveness of the proposed model.
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