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Abstract
Given clean labels, Graph Neural Networks
(GNNs) have shown promising abilities for graph
anomaly detection. However, real-world graphs
are inevitably noisy labeled, which drastically
degrades the performance of GNNs. To alle-
viate it, some studies follow the local consis-
tency (a.k.a homophily) assumption to conduct
neighborhood-based label noise correction, and to
dense raw graphs using raw features or represen-
tations learned by poisoned labels. But for the
anomaly detection task, the graph is not always ho-
mophilic but more likely to be heterophilic, which
would corrupt the above assumption due to com-
plicating connection patterns and impairing the ef-
fects of message passing. To this end, we pro-
pose a novel label noise-resistant graph learning
(NRGL) framework, which facilitates robust graph
learning from the perspectives of structure augmen-
tation and fine-grained label governance. Specifi-
cally, we first present an investigation to verify that
increasing graph homophily could help resist label
noise. Based on the observation, an unsupervised
contrastive learning paradigm is then introduced so
well that it cannot only adaptively extract the dual
views from the raw graph as structure augmenta-
tion, but also enhance the robustness of node rep-
resentations. Next, given robust node representa-
tions, the noisy labels are divided into three candi-
date sets based on the small-loss criterion for fine-
grained noise governance. Furthermore, a node
sampler is designed to take structure importance,
class frequency, and confidence score into consid-
eration, which helps select reliable and important
nodes for training. Extensive experiments on real-
world datasets demonstrate the effectiveness of our
method.

1 Introduction
In real-world scenarios, a set of entities and their relation-
ships can be naturally formed graph-like structures, which

∗Corresponding Author

 hoA

 heA

Homophilic view

Heterophilic view

T
rain

ab
le E

d
ge D

iscrim
in

ator

A

Low-pass Filter

High-pass Filter

ꞏꞏꞏ

ꞏꞏꞏ

ꞏꞏꞏ

ꞏꞏꞏ
 heH

 hoH

Contrastive Learning-based Graph Augmentations 

 ho

 he

v5

v1

v2

v6
v3

v4

Contrastive
   Loss  C

 MLP ho Calculate Mutual Loss

 MLP he

Label Set L

Small Enough?

v6
v5

v1 v2

Confident
Enough?

v3

v4

Y N

NY

        Label Loss

cl cf re

label
Balance-aware

weight

Loss Metric-based Label Division

 Label-oriented Classification

Input Graph

--Clean 

--Confident

--Remaining

Label Set

 ho

i


P

 he

i


P

    
1

ho ho
lI A H

    
1

he he
l  I A H

v1

v2

v8v3

v5 v6

v7

v2
v3 v5

v4 v6

v7

v8

v1

v8

v4

v5 v6

v7

v3

v5
v4v6

v7v2 v8

v2v3v1

v2

v8v3

v4

v5 v6

v7

Structure 

Pruning v4

Noise 

Goverance

Latent clean label
Noisy Label
Observed label

Message Passing

  ho

Figure 1: An flow of structure pruning-based graph augmentation
and noise goverance for anomaly detection.

have been applied in various domains, like social science
[Zhao et al., 2023], financial transaction [Zheng et al., 2023],
and recommendation system [Wu et al., 2022]. Recently,
Graph Neural Networks (GNNs) have achieved promising
performance in dealing with such graph structure data by in-
troducing a message-passing mechanism to effectively ag-
gregate information from its neighbors. This mechanism
makes the supervision of labeled nodes propagated to the
unlabeled nodes, which helps semi-supervised graph learn-
ing (e.g., node classification-based graph anomaly detection
[Zhang et al., 2021; Chai et al., 2022; Tang et al., 2022]).

Although achieving promising progress, most existing
GNN-based models assumed that the training label is clean.
However, in real-world scenarios, the label annotation is
labor-intensive, expensive, and full of subjective judgments
(e.g., medical knowledge, fake news, and fraudulent com-
ments), so the node labels always inevitably contain noise.
However, it has already been reported that deep learning mod-
els would overfit the noisy labels and cause poor generaliza-
tion performance [Arpit et al., 2017; Han et al., 2018]. Cur-
rently, robust GNNs against graph perturbations and attacks
have been widely studied [Li et al., 2022; Jin et al., 2023],
but label noise on graphs still remains under-explored.

To resist label noise, extensive approaches have been pro-
posed, e.g., loss correction [Goldberger and Ben-Reuven,
2016; Patrini et al., 2017], sample selection [Jiang et al.,
2018; Yu et al., 2019; Huang et al., 2019], and robust loss
function [Ghosh et al., 2017; Zhang and Sabuncu, 2018;
Wang et al., 2019]. Although they have achieved satisfac-
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tory results, they are dedicated to independent and identically
distributed data (e.g., images), which may not be directly ap-
plicable to handling noisy labels on graphs. That is because
the message-passing mechanism would make the noisy in-
formation propagate to the whole graph across the structure,
which would negatively pollute other unlabeled neighbors [Li
et al., 2024].

To mitigate the effects of label noise on the graph, ex-
isting methods rely on local consistency (a.k.a homophily)
assumption to make neighborhood-based label noise correc-
tion or dense graph for augmentation to facilitate sufficient
message passing. Specifically, NRGNN [Dai et al., 2021]
can be treated as the pioneering work that bridges links be-
tween labeled and unlabeled nodes for graph augmentation.
Based on it, RTGNN [Qian et al., 2023] is further designed
to make more noise correction and mine accurate pseudo-
labels for enhanced supervision. Furthermore, CGNN [Yuan
et al., 2023] integrates contrastive learning with neighbor-
based noisy label correction. Though they have achieved
much progress, there still exist some drawbacks: (1) non-
homophilic structure. Existing methods predominantly rely
on the homophily assumption, where connected nodes tend
to have the same labels. But for anomaly detection, the graph
is not always homophilic but more likely to be heterophilic,
which would complicate connection patterns and impair the
effects of message passing. (2) non-robust node representa-
tion. Existing methods make graph augmentation and noise
correction using either raw features or representations learned
by noisy labels, which would not only neglect structure infor-
mation but also suffer poor performance from polluted labels.
(3) non-balanced distribution. Graph imbalance is another
challenge for anomaly detection [Liu et al., 2021], which
would exacerbate the difficulty in the presence of label noise
governance, but existing label noise-resistant methods have
not taken it into full consideration.

To this end, we study robust graph learning in the presence
of such challenges: (1) How to derive robust node represen-
tations? (2) How to mitigate the graph heterophily issue? (3)
How to deal with label imbalance when making noise gov-
ernance? To address such challenges, we first present an
investigation to study how graph homophily or heterophily
affects the robustness of models to combat label noise, as
shown in 2. We can observe that graph heterophily exacer-
bates the effects of label noise on the model and increasing
graph homophily (by structure pruning) can help the model
combat label noise, and more details can be found in Section
3.3. Based on this, we propose a novel label noise-resistant
graph learning framework named NRGL, which makes robust
graph learning from the perspectives of structure augmenta-
tion and label governance, as shown in Fig. 1. Specifically,
to address challenges one and two, an edge discrimination-
based dual encoder is first introduced to divide the raw graph
G into a homophilic view G(ho) and a heterophilic one G(he).
Given G(ho) and G(he), considering the inherent noisy nature
of labels, an unsupervised contrastive learning paradigm is
adopted to derive robust node representations. By doing so,
we can not only derive robust node representations but also
a subgraph with high homophily by structure pruning. Then,
given the robust node representations from two views, a mu-

tual cross-entropy is introduced to divide the noisy label set
into three subsets (i.e., clean, confident, and remaining ones)
based on the small-loss criterion. Furthermore, a novel node
sampler is designed to take node popularity, class frequency,
and confidence score into consideration, which helps select
reliable and important nodes for model training.

Contributions of this paper are summarized as follows:
• To the best of our knowledge, we are the first to study

label noise-resistant graph learning for anomaly detec-
tion in the presence of graph heterophily and imbalance.
Furthermore, we find that increasing graph homophily
can help resist label noise on graphs.

• We develop a novel NRGL model, which facilitates ro-
bust graph learning from the perspectives of structure
augmentation with reliable node representations, and
imbalance-oriented sampler for label governance.

• Experiments on two real-world datasets have verified the
advantages of our proposed method.

2 Related Work
There have been many robust deep learning studies on non-
graph data from the perspectives of loss correction [Gold-
berger and Ben-Reuven, 2016; Patrini et al., 2017], sam-
ple selection [Jiang et al., 2018; Yu et al., 2019; Huang
et al., 2019], and robust loss function [Ghosh et al., 2017;
Zhang and Sabuncu, 2018; Wang et al., 2019], but the GNN
with robustness to resist label noise is still under-explored.
Jin et al. [NT et al., 2019] first proved that GNNs are vul-
nerable to label noise and further proposed a noise-tolerant
method by introducing backward loss correction. Afterward,
NRGNN was proposed to learn a robust GNN by linking the
unlabeled node to the labeled one. In addition, the pseudo
labels are also adopted to help alleviate the limited label is-
sue. Recently, based on graph homophily assumption, RT-
GNN [Qian et al., 2023] and CGNN [Yuan et al., 2023] are
developed by introducing graph augmentation methods and
further conduct noise governance and correction to facilitate
robust Graph learning.

Such methods have achieved much progress in robust GNN
learning based on the graph homophily assumption, but they
may oversimplify the complexity of the graph because the
real-world networks are not always homophilic but more
likely to be heterophilic, where the connected nodes tend to
be different classes. Furthermore, most of these methods rely
on raw features or learned representations for graph augmen-
tation or label correction, but it would either neglect structure
information or suffer poor performance from mislabeled la-
bels. Hence, it prompts us to study a unified framework to
deal with graph heterophily issue and derive robust node rep-
resentations for noise governance.

3 Preliminaries
3.1 Definition
A graph is denoted as G = (V, E), where V =
{v1, v2, ..., vN} represents the node set, E ∈ V × V refers
to the edge set. Let X ∈ RN×d represent the raw feature ma-
trix of all nodes. Furthermore, the adjacency matrix of G is
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Figure 2: Performance (AUC) comparison of GCNs fed by the raw
graph and processed homophilic graph on Elliptic dataset with noisy
label ratio varying from 0.1 to 0.3.

denoted as A ∈ RN×N , where Aij = 1 if there exists a con-
nection between the node vi and vj , and Aij = 0 otherwise.

3.2 Problem Statement
Given a graph G = (V, E) as defined above, VL =
{v1, v2, ..., vl} is the set of training nodes labeled as
{y1, y2, ..., yl}, where yi ∈ {0, 1}, and VU = V − VL is
the remaining set of unlabeled nodes. However, the given la-
bels of the training set are corrupted by noise, i.e., yi may be
incorrect for some of the nodes in VL. To this end, the task
is to train a robust GNN to identify whether the remaining
unlabeled nodes are anomalous or normal.

3.3 How Does Graph Homophily Affect Node
Classification in the Case of Label Noise?

Here we will explore the effect of graph homophily on com-
bating label noise with empirical experiments. Specifically,
we conduct experiments on the real-world dataset Elliptic.
In the dataset, heterophilic connections between connected
nodes are removed to add graph homophily, and the raw
and processed graphs are named G and G(ho), respectively.
Then, we randomly sample 40% of the total nodes as the
training set with known labels, and the validation set and test
set are divided according to 1:2. Next, labels of the nodes in
the training set are corrupted by randomly flipping the true la-
bels to another class with a probability of p (p = 0.1, 0.2, 0.3).
Finally, we use GCN [Kipf and Welling, 2017] for model
training and testing, and the performance (AUC) is shown in
Fig. 2. We can observe that performance on G(ho) is signif-
icantly better than that on G, which means increasing graph
homophily can help the model facilitate resisting label noise.

4 Method
In this section, we will introduce our model NRGL in de-
tail, and the illustration of it is shown in Fig. 3. We can
observe that NRGL is composed of three modules. First, an
edge discrimination-based dual view encoder is introduced
by designing an edge predictor to discriminate homophilic or
heterophilic edges for graph division. Then the dual channel
encoders with low- and high-pass filters are adopted to derive
robust node representations from corresponding homophilic
and heterophilic graph views; Second, given dual-frequency
representations of nodes, the labeled nodes are divided into

three subsets for noise governance based on small-loss cri-
terion; Third, an imbalance-oriented sampler is designed to
help select reliable and important nodes for training.

4.1 Edge Discrimination-Based Dual View
Encoder

The core of our proposed method is how to exploit the su-
pervision of clean labels out of the noisy ones. “Co-training”
[Han et al., 2018] paradigm has achieved much progress in
noisy labeled image processing, which maintains two differ-
ent networks and alternately searches for useful knowledge
from each view to their peer networks for parameters update.
Intuitively, different networks have different decision bound-
aries, and different abilities to filter out the label noise.

Based on this exchange strategy, it can reduce the effect of
the error flows. Inspired by this, we divide the original graph
into a pair of homophilic and heterophilic views, and con-
struct two different GNNs. Specifically, a direct tool is to de-
sign an edges discriminator to estimate the homophily prob-
ability wij between connected node vi and vj . For wij , we
need to consider the features of both node itself and its neigh-
bors. Take the raw features x as the input, the homophily
probability of each edge is estimated as follows:

hi = MLP1 (xi) ,hj = MLP1 (xj) ,

wij = Sigmoid
(

WT
a [hi‖hj ]+WT

a [hj‖hi ]

2
√
d

)
,

(1)

where MLP1 (·) denotes the multilayer perceptron, · ‖· rep-
resents the concatenation operation,

√
d (d is the dimension

of hi or hj) acts a scaling factor, Wa ∈ Rd denotes the
shared weight matrice, and sigmoid function can naturally
limit the value of wij in the range of 0 to 1. With the es-
timated homophily probability indicator, the original graph
G = (V,A,X) is divided into two graph views, i.e., the ho-
mophilic one G(ho) =

(
V,A(ho),X

)
and the heterophilic

one G(he) =
(
V,A(he),X

)
. To make the edge discrimina-

tor trainable, a soft weight is assigned to each connection as
follows:

A
(ho)
ij = wij ,A

(he)
ij = 1− wij , eij ∈ E . (2)

Given homophilic and heterophilic graph views, two dif-
ferent encoders are introduced to perform low- and high-pass
graph signal filters, which helps retain commonalities be-
tween similar pair nodes and filters out the irrelevant infor-
mation from dissimilar neighborhoods.

On the homophilic view, similar nodes are connected to-
gether with a larger homophily probability. A low-pass graph
filter can be deployed to smooth the node representations
along the homophilic structure, which facilitates graph learn-
ing by retaining the commonalities between connected sim-
ilar nodes. Therefore, a simple low-pass filter is introduced
for aggregation as follows:

H
(ho)
0 = MLP

(ho)
1 (X) , H

(ho)
l =

(
I+ Ã(ho)

)
H

(ho)
l−1 , (3)

where Ã(ho) refers to the symmetric normalized homophilic
adjacency matrix of A(ho), l ∈ {1, ..., L} represents the index
of layer, and H

(ho)
L (a.k.a. H(ho)) is the final representation

from the homophilic view.
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Figure 3: An illustration of proposed framework.

From the perspective of the heterophilic view, a low-pass
filter, which smooths the features, will result in the loss of
discriminative attributes between nodes, and the high-pass fil-
ter can preserve the high-frequency signals by sharpening the
difference between dissimilar nodes. For signal processing
on images, the Laplacian kernel filter L = I − α · Ã(he)

is commonly applied to image sharpening tasks. Along this
line to graph signal processing, the normalized Laplacian ma-
trix can also be considered as a high-pass filter to extract the
high-frequency component xh of the given graph signal, as
follows:

H
(he)
0 = MLP

(he)
1 (X) , H

(he)
l =

(
I− α · Ã(he)

)
H

(he)
l−1 ,

(4)
where α controls the strength of high-pass filter, Ã(he) is
the symmetric normalized homophilic adjacency matrix of
A(he), and H

(he)
L (a.k.a. H(he)) represents the final repre-

sentation from the heterophilic view.
Furthermore, to learn a robust edge discriminator, we use

a robust contrasting mechanism to facilitate the model gener-
ate consistent node representations from two different graph
views, and the contrastive learning loss of h(ho)i and h

(he)
i

from the perspective of homophilic view is denoted as fol-
lows:

L(ho)
(

h(ho)
i , h(he)

i

)
= − log

exp
(
sim
(

h(ho)
i ,h(he)

i

)
/τ
)

∑
i 6=j exp

(
sim
(

h(he)
i ,h(he)

j

)
/τ
) ,
(5)

where sim (·, ·) represents the cosine similarity between pair
nodes, and τ denotes a temperature coefficient of 0.5. By
combining heterophilic view, the total contrasting learning
loss is denoted as:

LC =
1

2 |V|
∑
vi∈V

[
L(ho) (·) + L(he) (·)

]
. (6)

4.2 Loss Metric-Based Label Division
As [Arpit et al., 2017] reported that DNNs tend to memorize
the easy instances with clean labels, then gradually adapt to
or overfit the hard ones with noisy labels, which means there

exist different loss distributions between the clean and noisy
items. To this end, the small-loss criterion mechanism [Han
et al., 2018] was proposed for training set division, which re-
duces the error flows by alternatively viewing small-loss in-
stances during the exchange procedure. In our paper, as ho-
mophilic and heterophilic graph views have different learning
abilities and decision boundaries, they are naturally treated as
peer networks to exclude the label noise. First, the mutual
cross-entropy loss is defined for the node i as follows:

pi
θ(ho) = MLP

(ho)
2

(
H

(ho)
L

)
,pi

θ(he) = MLP
(he)
2

(
H

(he)
L

)
,

Limul = −yi
[
log
(
pi
θ(ho)

)
+ log

(
pi
θ(he)

)]
= −yi log

(
pi
θ(ho) · piθ(he)

)
.

(7)
Limul measures the confidence of the prediction where the
lower value of it, the higher probability of correct prediction.
Intuitively, as the clean labels are easier to learn, the instance
with small-loss are more likely to be correctly labeled. Given
the Limul of each node, a crucial issue is how to build a reli-
able enough classifier for indeed clean instance selection. It
needs to be carefully considered twofold. First, the “mem-
orization” effect of the deep network makes the model learn
clean and easy patterns in the initial epochs, which means
more instances should be included for sufficient training to
learn a reliable pattern at the beginning of training. Second,
with the epoch going large, the model would overfit on the
noisy labels, which means we should gradually exclude the
node with the large loss value [Han et al., 2018].

Clean Label Set Extraction
First, we adopt a linear function to derive a dynamic percent-
age gating threshold with the increasing epochs as follows:

Lthretepoch
= Percentile

(
Limul, 1− 0.5× tepoch

Tmax

)
, (8)

where Tmax represents the total number of epochs, tepoch de-

notes the t-th epoch, 0.5 ≤
(
1− 0.5× tepoch

Tmax

)
< 1 is a

ratio gating threshold, Percentile (L, p) is the value which
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(100× p)% of the loss value in L fall, and Lthremul is the
threshold value of mutual loss. Furthermore, the average of
mutual loss is treated as another gating threshold for clean
labels selection:

Lavgtepoch
=

1

|VL|
∑
vi∈VL

Limul. (9)

Given Lthretepoch
and Lavgtepoch

as the upper bounds of mutual loss,
the clean and noisy label sets can be divided as follows:

Vcl =
{
vi

∣∣∣Limul < max
(
Lthretepoch

,Lavgtepoch

)}
, (10)

where Vcl can be treated as the selected clean label set in
which the mutual loss of each element is below the threshold.
In Eq. 10, we can observe that Lthretepoch

allows more instances
for sufficient training at the initial stage, and the number and
quality of clean labels are gradually affected by the interac-
tion of both Lthretepoch

and Lavgtepoch
with the epoch decreasing.

Overall, it makes the trade-off between early sufficient train-
ing and later noise-resistant training.

Confident Label Set Extraction
Given Vcl as the selected clean label set, the remaining label
set is denoted as Vns = VL − Vcl, which is vulnerable to be
noisy. Inspired by the progress of RTGNN [Qian et al., 2023]
in dealing with noise governance, we observe that the model
gradually has the ability to predict correct labels, which can
be used to further divide a subset Vcf ∈ Vns where the pre-
diction of two predictors (i.e., Pi

θ(ho) and Pi
θ(he) ) is confident

but different from their labels, denoted as follows:

Zi = argmax
c=0,1

Pi,c
θ(ho) = argmax

c=0,1
Pi,c
θ(he) 6= Y i, (11)

where Y i denotes the observed label of the node vi, and
Zi is the predicted label but different from the labeled one.
Next, we want both Pi,Z

i

θ(ho) and Pi,Z
i

θ(he) be of the greater
value with higher confidence. A natural idea is the value of√
Pi,Z

i

θ(ho) ·Pi,Z
i

θ(he) is greater than a threshold value Th. Fur-
thermore, the threshold Th should be dynamic as we should
tighten the condition at the early training and gradually loosen
it with increasing epochs. Based on this, the confident label
set can be divided by formulating Th with the variable epoch
(tepoch) as follows:

Vcf =

{
vi

∣∣∣∣√Pi,Z
i

θ(ho) ·Pi,Z
i

θ(ho) > Th

}
, Th = 1− tepoch

C · Tmax
,

(12)
where C = 2 is the number of samle classes (i.e., normal and
abnormal), 0.5 ≤ Th < 1 falls back from 1 to 0.5 with tepoch
increasing from 1 to Tmax, which means gradually loosen the
restrictions. Furthermore, a predicted confidence score µ (i)
is defined as follows:

µ (i) =

√
Pi,Z

i

θ(ho) ·Pi,Z
i

θ(ho) (13)

where the higher 0.5 < µ (i) < 1, the higher the probability
that vi is incorrectly labeled. Given above Vcl and Vcf , the
remaining training set is denoted as

Vre = VL − Vcl − Vcf . (14)

4.3 Label-Oriented Classification
So far, we have divided the training set into three subsets, i.e.,
clean set Vcl, confident set Vcf and the remaining set Vre.
By combining all of them, the loss of such labeled nodes is
formulated as follows:

Llabel =
1

|VL|
∑
vi∈VL

ξ (i) ŷ log
(
Piθ(ho) ·Piθ(he)

)
, (15)

where

ξ (i) =

 1, ŷ = yi if vi ∈ Vcl;
µ (i) , ŷ = zi if vi ∈ Vcf ;
0.5, ŷ = yi if vi ∈ Vre.

(16)

where ξ (i) acts as a confidence score to assign each subset
with a different weight. Furthermore, to alleviate the influ-
ence of the imbalance problem, a sampler selector P (vi) is
introduced to calculate Llabel as follows:

P (vi) ∝
√
di · ξ (i)

Z (C (vi))
, (17)

where di represents the degree node vi, Z (C (vi)) denotes the
label frequency of class C (vi), ϕi is the confidence score of
each node as defined in Eq.16. In Eq.17, we can observe that
di means the popularity,Z (C (vi)) means the rarity and ϕi
means the credibility. Note that, we use

√
(·) as the scaling

operator on di to smooth the uneven degree distribution of
nodes. Summarily, the nodes with high popularity, rarity, and
credibility are more likely to be selected. Finally, the total
loss can be calculated as follows:

L = LC + Llabel, (18)

where LC and Llabel represent the contrastive learning loss
and label loss. Note that LC and Llabel are trained in a mu-
tually boosting manner, and we adopt an alternating train-
ing strategy to iteratively optimize them. Finally, we use the
G(ho)-based GNN for inference in the paper.

5 Experiment
5.1 Experimental Setup
Two widely used datasets are utilized to evaluate NRGL, and
their statistics are shown in Table 2.

• Eliiptic [Weber et al., 2019]: It is a Bitcoin transaction
network where transactions and flows are the nodes and
edges. The task is to predict illegal nodes (transactions).

• Yelp [Rayana and Akoglu, 2015]: It collects the reviews
of hotels or restaurants on the Yelp platform, and the
reviews are seen as nodes to be connected if they are
posted by the same user. The task is to detect fake nodes
(reviews).

Following [Chai et al., 2022], we adopt the same dataset divi-
sion. Furthermore, following [Dai et al., 2021], we use Uni-
form Noise to corrupt the training set, where the label of each
node is uniformly flipped with a probability of p.
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Method
Elliptic Yelp

10% 20% 30% 10% 20% 30%
AUC F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC F1

GCN 0.6698 0.4779 0.6297 0.4736 0.6279 0.4758 0.5341 0.4787 0.5324 0.4622 0.5233 0.4605
GraphSAGE 0.6834 0.4886 0.6577 0.4849 0.6295 0.4795 0.6207 0.4818 0.6097 0.4809 0.6088 0.4702
NRGNN 0.7141 0.5737 0.6641 0.5341 0.6914 0.5191 0.6566 0.5496 0.6347 0.5309 0.6166 0.5029
RTGNN 0.7373 0.5975 0.7149 0.5635 0.6805 0.5285 0.6744 0.5612 0.6457 0.5313 0.6322 0.5182
FRAUDRE 0.8183 0.7072 0.7603 0.6824 0.7397 0.5674 0.7032 0.6176 0.6861 0.5908 0.6868 0.5884
AMNet 0.8451 0.7432 0.8353 0.7232 0.8042 0.6984 0.7086 0.6385 0.6851 0.6231 0.6692 0.5906
NRGL(Ours) 0.9409 0.8567 0.9303 0.8427 0.9146 0.8037 0.7636 0.6532 0.7554 0.6443 0.7468 0.6335

Table 1: Performance of anomaly detection on Elliptic and Yelp datasets under various noise rates p of 10%, 20% and 30%.

Dataset #nodes #edges #features Anomaly(%)
Elliptic 46,564 73,248 93 9.76
Yelp 45,954 7,693,958 32 14.53

Table 2: Dataset statistics information.

5.2 Baselines
We compare NRGL with the three groups of baseline meth-
ods: (1) general GNN models, including GCN [Kipf and
Welling, 2017] and GraphSage [Hamilton et al., 2017]; (2)ad-
vanced GNN-based anomaly detection methods, including
FRAUDRE [Zhang et al., 2021] and AMNet [Chai et al.,
2022]; (3) robust GNN models which are specifically de-
signed to resist label noise, including NRGNN [Dai et al.,
2021] and RTGNN [Qian et al., 2023].

Evaluation Metrics
Two widely-used evaluation metrics are used for performance
evaluation: the Area Under Curve (AUC) and Macro-F1.

Implementation Details
All baseline methods are initialized with the same parameters
suggested by their official codes and have been carefully fine-
tuned. We deploy the batch size of 512 for both Elliptic and
Yelp, the initial learning rate of 0.01, and the high-pass filter
strength controller coefficient α of 0.1. The source code of
our model is available1.

5.3 Performance Comparison
To demonstrate the effectiveness of NRGL, we compare it
with the above baseline methods on two datasets by varying
the noise rate p from 0.1 to 0.3, and the results are shown in
Table 1. We have the following observations.

First, as the general GNNs, GCN and GraphSAGE don’t
perform well, which implies that they have poor resistance
to label noise. Furthermore, GraphSAGE performs better
than GCN as [Zhu et al., 2020] found that the aggrega-
tion of higher-order neighborhoods can help alleviate the ef-
fects of graph heterophily. Second, NRGNN and RTGNN,
as the advanced label noise-resistant GNNs, perform better
than GCN and GraphSAGE but still not well enough. That
is because graph heterophily would diminish the effective-
ness of homophilic assumption-based graph augmentation,

1https://github.com/Shzuwu/NRGL
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Figure 4: Heterophily evidence in Yelp dataset. “NN” denotes the
isolated nodes.

which makes them suffer noise not only from labels but also
structures. Third, GNN-based anomaly detection methods
(FRAUDRE and AMNet) achieve better performance than
robust GNNs by dealing with graph inconsistency and imbal-
ance issues, which means how to alleviate graph heterophily
and imbalance problems is the key to performance improve-
ment. Finally, NRGL significantly outperforms all baseline
methods on both two datasets under various ratios of label
noise, which can be boiled down to the following points.
First, NRGL divides the input graph into homophilic and
heterophilic views via the unsupervised ranking loss, which
provides robust node representations. By doing so, the ho-
mophilic graph obtained by structure pruning can better hin-
der the propagation of misinformation. Next, the labeled
nodes are divided into three subsets for fine noise governance,
and an imbalance-oriented label sampler is designed to take
label confidence, frequency, and structure importance into
consideration, which helps select a reliable supervised signal.

5.4 Evidence of Graph Heterophily
Here, we calculate the ratio of heterophilic edges to all adja-
cent edges for both normal and anomalous nodes on the El-
liptic dataset, and then count the rate of the number of nodes
with the corresponding heterophily ratio to all nodes of nor-
mality and anomaly in Fig. 4. We can observe that over 80%
normal nodes have smaller than 20% heterophilic ratio and
90% anomalous nodes have more than 80% heterophilic ra-
tio, which means different social structure patterns between
them. Consequently, heterophilic edges of anomalous nodes
are widespread in graph anomaly detection, which corrupts
the effectiveness of traditional GNNs based on graph ho-
mophily assumption. Furthermore, given the incorrect super-
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Ablation 10% 20% 30%
AUC F1 AUC F1 AUC F1

w/o St. Aug 0.9062 0.8151 0.8806 0.7849 0.8438 0.7461
w/o La. Div 0.9219 0.8347 0.8943 0.8189 0.8603 0.7657
NRGL 0.9409 0.8567 0.9303 0.8427 0.9146 0.8037

Table 3: Results of ablation study on the Elliptic dataset.
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Figure 5: Performance with varing α on Elliptic dataset with the
noise ratio p of 0.2.

vised information from label noise, it would further confuse
the message passing between connected nodes, which exac-
erbates the difficulty of anomaly detection.

5.5 Ablation Study
Here, we compare NRGL with two variants on the El-
liptic dataset to validate the effectiveness of each compo-
nent, and similar results can also be observed on the Yelp
dataset. Specifically, we remove structure augmentation (w/o
St. Aug) and label division (w/o La. Div), respectively.

From the results in Table 3, we can observe that NRGL
notably outperforms (w/o St. Aug) and (w/o La. Div) on
both AUC and Macro-F1, which demonstrates the effective-
ness of such two modules. Furthermore, (w/o La. Div) does
less well than (w/o St. Aug), which means structure pruning-
based graph augmentation and robust node representations
can make more contributions to robust graph learning.

5.6 Hyper-Parameters Sensitivity
Here, we will study how α affects the performance of NRGL.
More specifically, α controls the strength of the high-pass fil-
ter, and we range it from 0.05 to 1. The results are reported
on the Elliptic dataset with noise rate p of 0.2 in Fig. 5. We
can observe that NRGL achieves the best performance when
α = 0.1, that may be because a high-pass filtering with a
larger strength would lead to the loss of original graph sig-
nals. Based on this, we finally set α of 0.1.

5.7 Case Study
In Fig. 6 (a), we will show the effectiveness of dual view di-
vision on the Elliptic dataset with a noise ratio of 0.2. Specif-
ically, we denote the input graph as G, the homophily-view
graph as G (ho) (i.e, remove edges with A

(ho)
ij < 0.5) and

heterophily-view graph as G (he) (i.e., remove edges with
A

(he)
ij < 0.5). Then, we calculate the label consistency co-

efficient (i.e., homophilic ratio) between each anomaly node
and its neighbors. In G (ho) and G (he), we expect this ra-
tio is greater and smaller than that in the original graph, re-
spectively. As expected, the average homophily ratio 0.6121

0.4

0.6

0.8

1.0

0 10 20 30 40 50

A
cc

ur
ac

y

Epoch

Clean Confident

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Pe
rf

or
m

an
ce

 V
al

ue

Epoch

Auc_ho F1_ho
Auc_he F1_he

0.2208

0.5097
0.6121

0.0

0.2

0.4

0.6

G(he) G G(ho)

H
om

op
hi

lic
 R

at
io

 

Graph

0

10000

20000

0 10 20 30 40 50

N
um

b
er

Epoch

#Clean #Confident
#Remain

(a) Changes of Homophily ratio

0.4

0.6

0.8

1.0

0 10 20 30 40 50

A
cc

ur
ac

y

Epoch

Clean Confident

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Pe
rf

or
m

an
ce

 V
al

ue

Epoch

Auc_ho F1_ho
Auc_he F1_he

0.2208

0.5097
0.6121

0.0

0.2

0.4

0.6

G(he) G G(ho)

H
om

op
hi

lic
 R

at
io

 

Graph

0

10000

20000

0 10 20 30 40 50

N
um

b
er

Epoch

#Clean #Confident
#Remain

(b) Number changes of subsets

0.4

0.6

0.8

1.0

0 10 20 30 40 50

A
cc

ur
ac

y

Epoch

Clean Confident

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Pe
rf

or
m

an
ce

 V
al

ue

Epoch

Auc_ho F1_ho
Auc_he F1_he

0.2208

0.5097
0.6121

0.0

0.2

0.4

0.6

G(he) G G(ho)

H
om

op
hi

lic
 R

at
io

 

Graph

0

10000

20000

0 10 20 30 40 50

N
um

b
er

Epoch

#Clean #Confident
#Remain

(c) Accuracy changes of subsets

0.4

0.6

0.8

1.0

0 10 20 30 40 50

A
cc

ur
ac

y

Epoch

Clean Confident

0.4

0.6

0.8

1.0

0 10 20 30 40 50

Pe
rf

or
m

an
ce

 V
al

ue

Epoch

Auc_ho F1_ho
Auc_he F1_he

0.2208

0.5097
0.6121

0.0

0.2

0.4

0.6

G(he) G G(ho)

H
om

op
hi

lic
 R

at
io

 

Graph

0

10000

20000

0 10 20 30 40 50

N
um

b
er

Epoch

#Clean #Confident
#Remain

(d) AUC and F1 of changes

Figure 6: Case study on the Elliptic dataset with noise ratio p of 0.2.

(G (ho)) and 0.2208 (G (he)) are larger and smaller than
0.5097 (G), which implies the model does help extract ho-
mophilic views from the input graph.

Next, we will visualize the changes in label division and
performance with epoch increases on the Elliptic dataset with
a noise ratio of 0.2 and a training set ratio of 0.4. As in-
troduced above, we divide the labeled nodes into three sub-
sets, i.e., clean set Vcl, confident set Vcf and the remaining
set Vre. In Fig. 6(b), we report the changes in node num-
bers in each subset. In Fig. 6(c), we show the accuracy of
the clean set and confident set, and the corresponding per-
formance of AUC and Macro-F1 derived by both homophilic
and heterophilic views, as shown in Fig. 6(d). We can ob-
serve that the training span can be divided into three periods.
First, with the epoch getting large, the number of clean and
confident nodes decreases and increases respectively, and the
accuracy of clean and confident sets rises especially the confi-
dence set, and the performance improves rapidly as the model
gets quickly learned; Second, all items are of slight fluctua-
tions, and performance increase slowly as the model gradu-
ally fits the data; Finally, the model gradually stabilizes where
the number of three subsets remains unchanged, but the risk
of overfitting makes the accuracy fluctuation of confident sub-
set cause slight performances degradation in F1-score.

6 Conclusion
In the paper, we study an under-researched yet crucial issue of
robust graph learning against label noise for anomaly detec-
tion in the presence of graph heterophily and imbalance prob-
lems. Based on empirical experiments, we find that increas-
ing graph homophily can help resist label noise. To this end,
we develop a novel NRGL model, which facilitates robust
graph learning from the perspectives of structure augmen-
tation with reliable node representations and an imbalance-
oriented sampler for fine-grained label governance. Experi-
mental results on two real-world datasets show the effective-
ness of NRGL with varying different ratios of label noise.
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