
WeatherGNN: Exploiting Meteo- and Spatial-Dependencies for Local Numerical
Weather Prediction Bias-Correction

Binqing Wu1,2 , Weiqi Chen1 , Wengwei Wang1 , Bingqing Peng1 , Liang Sun1 and Ling Chen2

1 DAMO Academy, Alibaba Group
2 College of Computer Science and Technology, Zhejiang University

{binqingwu, lingchen}@cs.zju.edu.cn,
{jarvus.cwq, duoluo.www, pengbingqing.pbq, liang.sun}@alibaba-inc.com

Abstract
Due to insufficient local area information, numer-
ical weather prediction (NWP) may yield biases
for specific areas. Previous studies correct biases
mainly by employing handcrafted features or ap-
plying data-driven methods intuitively, overlook-
ing the complicated dependencies between weather
factors and between areas. To address this is-
sue, we propose WeatherGNN, a local NWP bias-
correction method that utilizes Graph Neural Net-
works (GNNs) to exploit meteorological depen-
dencies and spatial dependencies under the guid-
ance of domain knowledge. Specifically, we intro-
duce a factor GNN to capture area-specific mete-
orological dependencies adaptively based on spa-
tial heterogeneity and a fast hierarchical GNN to
capture dynamic spatial dependencies efficiently
guided by Tobler’s first and second laws of geog-
raphy. Our experimental results on two real-world
datasets demonstrate that WeatherGNN achieves
the state-of-the-art performance, outperforming the
best baseline with an average of 4.75 % on RMSE.

1 Introduction
Numerical weather prediction (NWP) has become the widely
accepted and effective method for weather forecasting [Bauer
et al., 2015], developing from solving mathematical equa-
tions under physical laws [Moran and Moran, 2009] to incor-
porating deep learning methods [Bi et al., 2023; Chen et al.,
2023b; Nguyen et al., 2023]. Despite its advancements, due
to insufficient local area information [Gneiting and Raftery,
2005; Yoshikane and Yoshimura, 2022], NWP may be still
biased for specific areas. This kind of deviation leads to sig-
nificant discrepancies in downstream applications, e.g., wind
power forecasting [Han et al., 2022].

Local NWP bias-correction aims to correct biases of NWP
data for specific areas, given additional local area informa-
tion, e.g., weather factor observations and terrain [Zhang
et al., 2023a]. Early local NWP bias-correction methods
usually apply statistical rules and shallow machine learn-
ing [Delle Monache et al., 2006; Cui et al., 2012; Durai
and Bhradwaj, 2014], which cannot model the complex non-
linearity within NWP. Recently, some deep learning methods
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Figure 1: (a) Pearson Correlation Matrices between Weather Factors
at Different Grids. (b) Locations and Terrains of Two Grids. Grid A
is on an uphill, while B is in a valley. The distance between Grid A
and B is around 18 kilometers.

have achieved impressive success owing to their strong rep-
resentative abilities. They mainly rely on Recurrent Neural
Networks (RNNs) [Li et al., 2022; Yang et al., 2022], Convo-
lutional Neural Networks (CNNs) [Han et al., 2021], or their
hybrid methods [Han et al., 2022]. Despite the promising re-
sults of existing methods, we argue that two domain-specific
problems are still overlooked.

First, these methods mainly correct weather factors inde-
pendently, rarely considering the complicated dependencies
between them. In reality, weather factors interact with each
other and these dependencies are strongly correlated with het-
erogeneous geographical characteristics, e.g., terrain. Fig. 1
illustrates an example, where each grid represents a specific
area. Grid A, positioned uphill, and Grid B, located in a val-
ley, exhibit distinct correlation patterns even if they are close.

Second, previous methods often neglect or only concen-
trate on grid-based dependencies between areas, failing to
capture complicated dependencies between areas. Due to
geographical impacts and atmospheric motions, the weather
conditions of one area have a grid-agnostic and dynamic in-
fluence on those of other areas. Fig. 2 illustrates an example
of 100m wind speed. Over a half-month duration, the simi-
larity of wind speed between Grid P and other areas closely
aligns with the terrain similarity, as depicted in Fig. 2(b),
showcasing grid-agnostic dependencies. Meanwhile, the sim-
ilarity of wind speed between Grid P and Grid Q, computed
within a six-hour time range of that duration, undergoes tem-
poral evolution, as revealed in Fig. 2(c).

To this end, we propose WeatherGNN, a GNN-based
method that exploits meteorological dependencies and spatial
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Figure 2: (a) Grid Distribution and Terrain of Ningbo Dataset. (b)
DTW Similarity of Half-month 100m Wind Speed between Grid P
and Other Grids. (c) DTW Similarity of 100m Wind Speed with a
Six-hour Time Range between Grid P and Grid Q.

dependencies for local NWP bias-correction. WeatherGNN
adopts two GNNs to capture area-specific meteorological de-
pendencies adaptively and dynamic spatial dependencies ef-
ficiently, guided by geography principles, i.e., spatial hetero-
geneity and Tobler’s first and second laws. To the best of our
knowledge, WeatherGNN is the first work that incorporates
GNNs and domain knowledge for this task. The main contri-
butions are as follows:

• Introduce a factor GNN that combines factor embed-
dings and geographical embeddings derived from het-
erogeneous geographical characteristics to construct fac-
tor graphs for each area, which can learn area-specific
meteorological dependencies adaptively.

• Introduce a fast hierarchical GNN that constructs a static
hierarchy based on pre-defined geographical and mete-
orological distances and adjusts the hierarchy accord-
ing to NWP data, which can capture dynamic spa-
tial dependencies. Notably, we introduce a fast hier-
archical message passing module, inspired by Tobler’s
laws, that exchanges fine-grained messages among grids
with stronger dependencies and coarse-grained mes-
sages through repeated operations among grids with
weaker dependencies, which can achieve linear com-
plexity concerning the number of grids.

• Experimental results on two real-world datasets demon-
strate the superiority of WeatherGNN, outperforming
the best baselines with an average of 4.75 % on RMSE.

2 Related Work
Local NWP Bias-correction. Early local bias-correction
methods evolve from statistical methods, e.g., correcting
maximum and minimum values [Durai and Bhradwaj, 2014]
or the variance and average [Zhang et al., 2019], to shal-
low machine learning methods, e.g., applying Kalman filter
[Delle Monache et al., 2006] and deep belief networks [Hu
et al., 2021], which cannot capture non-linear dependencies
within NWP. Recently, some deep learning methods have
been applied due to their strong representative abilities. They
mainly rely on RNNs [Li et al., 2022; Yang et al., 2022],
CNNs [Han et al., 2021], or their hybrid methods [Han et al.,
2022; Zhang et al., 2023a]. Some advanced methods have

also been applied to local NWP bias-correction. For exam-
ple, Dl-Corrector-Remapper [Ge et al., 2022] uses Adaptive
Fourier Neural Operators (AFNOs) to learn continuous status
of the atmosphere and correct four weather factors. CM2Mc-
LPJmL [Hess et al., 2022] utilizes Generative Adversarial
Networks (GANs) to improve distributions of the precipita-
tion output. However, since they mainly correct one or a few
weather factors independently, they rarely consider compli-
cated dependencies between weather factors. In addition, ex-
isting methods barely consider or only capture gird-based de-
pendencies between areas via CNNs, which cannot capture
gird-agnostic dependencies between areas.
State-of-the-art Deep Learning Methods for Weather Ap-
plications. SOTA methods have shown promising results in
many weather applications. As discussed above, for local
NWP bias-correction, RNNs and CNNs have achieved great
improvement. For precipitation prediction, CNNs, GANs,
and vision transformers show impressive ability [Ravuri et
al., 2021; Zhang et al., 2023b; Gao et al., 2022]. For weather
downscaling, CNNs [Hu et al., 2019] and Physics-informed
neural networks [Esmaeilzadeh et al., 2020] have garnered
advancements. For medium-range global weather forecast-
ing, methods ranging from AFNOs [Pathak et al., 2022] to
hierarchical transformers [Chen et al., 2023a; Chen et al.,
2023b; Nguyen et al., 2023] have demonstrated significant
success [Rasp et al., 2023]. Recently, GraphCast [Lam et
al., 2023] designs a multi-scale unweighted mesh graph for
global forecasts, which exhibits the strong potential of GNNs
to model atmospheric dynamics. However, these methods
only focus on simple spatial dependencies and barely con-
sider dependencies between weather factors explicitly.
Graph Neural Networks. GNN is a general framework
for constructing neural networks on graph-structured data.
The most common form of a GNN is the message-passing
paradigm [Wu et al., 2020; Zhou et al., 2020]. During
each message-passing layer, the representations of a node are
updated according to messages aggregated from the graph
neighborhood of that node. The update and aggregate opera-
tors are implemented by neural networks. Due to the strong
representative ability on graphs, GNNs have achieved im-
pressive success in many real-world applications [Wu et al.,
2022], ranging from graph classification [Ma et al., 2023],
traffic forecasting [Jiang et al., 2023], and air quality estima-
tion [Chen et al., 2023c]. However, GNNs face the challenge
of designing graphs for specific applications and executing
efficient message passing across graphs. Exploring methods
to harness the advantages of GNNs and customize them for
local NWP bias-correction is still an ongoing challenge.

3 WeatherGNN
We formalize local NWP bias-correction and describe how
to model area-specific meteorological dependencies and dy-
namic spatial dependencies using WeatherGNN.

3.1 Problem Definition
The goal of local NWP bias-correction is to correct biases of
NWP data for specific areas, given additional local area in-
formation. Formally, NWP data for areas are represented as a
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Figure 3: An Overview of WeatherGNN.

sequence [Xi]
T
i=1 ∈ RN×Fe×T , where N denotes the number

of grids 1. Fe denotes the number of weather factors, e.g.,
temperature, humidity, and wind speed, and T is the length
of the sequence. Similarly, [Yi]Ti=1 ∈ RN×Fe×T represents
the corresponding weather factor observations. Moreover,
each grid has associated geographical information denoted as
Z ∈ RN×Fg , where Fg is the dimension of geographic fea-
tures, e.g., longitude, latitude, and altitude. The local NWP
bias-correction is formulated as learning a function f(·) that
maps NWP data to local weather factor observations incorpo-
rating geographical information:

{[Xi]i∈Ω(t);Z}
f(·)−−→ Yt,

Ω(t) = {t− τ, · · · , t− 1, t, t+ 1, · · · , t+ τ},
(1)

where Ω(t) denotes a temporal window around time step t
with length T = 2τ + 1 , as we consider a period of time
before and after t when correcting Xt. For simplicity, in the
remainder of the paper, we denote [Xi]i∈Ω(t) and Yt by X

and Y , respectively.

3.2 Model Overview
As illustrated in Fig. 3, WeatherGNN adopts a two-branch
architecture. A factor GNN and a fast hierarchical GNN are
designed to capture area-specific meteorological dependen-
cies and dynamic spatial dependencies, respectively. Subse-
quently, an output module is applied to yield corrected results.

3.3 Learning Area-specific Meteorological
Dependencies via Factor GNN

According to Spatial heterogeneity [Anselin, 2013], which
states that geographic variables exhibit uncontrolled variance,
meteorological dependencies, significantly influenced by ge-
ographic variables, are expected to vary based on heteroge-
neous geographical characteristics consequently. However,
defining meteorological dependencies for each area is chal-
lenging due to issues of applicability and non-linearity. To
address this problem, we introduce a factor GNN that con-
structs a factor graph for each area based on the geographical
characteristics of each area in a data-driven way.
Factor graph learning. The factor graph learning (FGL)
module first randomly initializes a learnable factor embed-
ding dictionary Ef ∈ RFe×de for weather factors, where each

1Areas tend to appear as a rectangle containing H × W grids,
and here we flatten the shape with N = H ×W .

row corresponds to the embedding vector for each factor, and
de is the dimension of factor embedding. This embedding
is optimized during model training, aiming to capture the la-
tent features associated with each factor. Then, we take the
geographical information of each grid Z as input and en-
code it with an MLP to obtain the geographical embedding
matrix Eg = MLP(Z) ∈ RN×de , where N is the number
of grids. Eg represents geographical characteristics of each
grid. Given the factor embedding shared by all grids and the
geographical embedding of each grid, we can infer dependen-
cies between weather factors for each grid by:

Ei = Ef +Eg,i,

Af,i = Softmax(EiE
⊤
i ),

Af = {Af,i}Ni=1,

(2)

where Ei ∈ RFe×de is the grid-specific factor embedding
of grid i considering geographical characteristics. Af,i ∈
RFe×Fe represents the adjacency matrix of the factor graph of
grid i. The FGL module provides structured representations
of meteorological dependencies for each grid/area, which can
facilitate an understanding of how these weather factors inter-
act, taking into account heterogeneous geographical charac-
teristics.
Factor Message Passing. Enhanced by FGL, the factor mes-
sage passing for a single layer can be formulated as:

Hi = (I f +Af,i)XiW f,i + bf,i (3)

where Xi ∈ RFe×T is the NWP data of grid i, and Hi ∈
RFe×d is the corresponding output considering meteorologi-
cal dependencies. I f is the identity matrix. W f,i ∈ RFe×T×d

and bf,i ∈ RFe×d denote the learnable weights and bias, re-
spectively. They can be generated by two smaller parameter
matrices and grid-specific factor embeddings, i.e., W f,i =
EiW w and bf,i = EiW b. Note that W w ∈ Rde×T×d and
W b ∈ Rde×d are shared by all grids. W f,i and bf,i can be
interpreted as capturing grid-specific patterns guided by a set
of shared patterns discovered from all grids. This factor GNN
is performed for each grid in parallel, obtaining the final out-
put H = {Hi}Ni=1 ∈ RN×Fe×d. According to Lemma 1, the
factor GNN has an O(N) complexity.

3.4 Learning Dynamic Spatial Dependencies via
Fast Hierarchical GNN

Due to the complex terrains and varying weather condi-
tions, capturing dependencies between areas is challenging.
To address this issue, we propose a Fast Hierarchical GNN
(FHGNN) that can effectively capture dynamic spatial de-
pendencies by combining geographical distances, historical
weather similarity, and NWP data. Specifically, we first cal-
culate the initial spatial proximity of grids by considering ge-
ographical distances and historical weather similarity. Then,
we construct the hierarchical structure through an iterative
process of clustering grids into multi-level clusters (super-
grids). In this structure, grids within the same cluster at
lower levels exhibit stronger dependencies and are expected
to interact more closely with each other. Following this, we
optimize spatial proximity by leveraging an attention matrix
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derived from NWP data, considering current weather condi-
tions. Subsequently, we introduce a Fast Hierarchical Mes-
sage Passing (FHMP) module to capture dynamic spatial de-
pendencies efficiently. This module facilitates fine-grained
interactions between grids at a lower level and coarse-grained
interactions at a higher level. Notably, FHGNN demonstrates
a linear complexity concerning the number of grids, in con-
trast to the quadratic complexity of a vanilla GNN.
Constructing static hierarchical structure based on pre-
defined geographical and meteorological distances. Ac-
cording to Tobler’s first law of geography [Miller, 2004],
which states that everything is related to everything else, but
near things are more related than distant things, we first de-
termine the neighboring grids for each grid. While the Eu-
clidean distance is an intuitive measure of spatial proximity,
it falls short of capturing the diverse surface features.

Since variations in altitude significantly influence hydrol-
ogy, vegetation, and other geographical phenomena, we con-
sider altitude as a crucial factor reflecting geographical fea-
tures and the Earth’s surface shape, in addition to latitude and
longitude. We compute the 3D geographical distance matrix
D using latitude, longitude, and altitude data obtained from
geographical information Z . In addition, as illustrated in Fig.
2, historical weather similarity can also indicate terrain sim-
ilarity. Thus, we calculate the meteorological distance ma-
trix W by employing DTW [Müller, 2007] to measure the
distance between weather sequences for each grid. The two
distance matrices are calculated as follows:

Dij =
√

λlatd2lat,ij + λlond2lon,ij + λaltd2alt,ij , (4)

W f
ij = DTW(Yf

i ,Y
f
j ),W ij =

1

Fe
ΣFe

f=1W
f
ij , (5)

where dlat,ij , dlon,ij , dalt,ij , are the latitude, longitude, and
altitude distance between grid i and j, respectively, with λ(·)
being the corresponding coefficients to adjust the importance
of these distances for calculating the geographical distance.
Yf

i and Yf
j are the observation time series of the f -th weather

factor of grid i and j in the whole training data, respectively.
W f

ij and W ij are the DTW distance matrix of grid i and j
for weather factor f and for all weather factors, respectively.

Gaussian kernels are then employed to calculate two initial
adjacency matrices, and these matrices are combined to form
the spatial adjacency matrix. The process is formulated as:

Ageo = exp(−D2/σ2
geo), Amet = exp(−W 2/σ2

met),

Aspatial = Ageo +Amet,
(6)

where σ(·) are hyperparameters to control the scale of the
corresponding Gaussian kernels, which ensures both matri-
ces have a similar range of values.

Since grids have different neighbors at different spatial
scales, we adopt a clustering algorithm, e.g., K-means, to
cluster grids into multi-level super-grids based on Aspatial.
This process forms hierarchical graphs, offering insights into
the neighbors of each grid at different spatial scales. The clus-
tering procedure is iterated L times. At the l-th iteration, grids
at level l are clustered into the next coarsened super-grids at

level l + 1. The assignment matrix from this clustering, de-
noted as Sl ∈ {0, 1}N l×N l+1

, signifies the assignment of
each grid at level l to a super-grid at level l + 1, with each
row containing a single 1 and the rest as 0s. Here, N l repre-
sents the number of grids at level l. In addition, we compute
the spatial adjacency matrix Al for each level. The construc-
tion procedure of the hierarchical structure can be formulated
as:

Sl ← K-means(Al),

Al = (Sl−1)⊤Al−1Sl−1, A0 = Aspatial,
(7)

where the spatial adjacency matrix Al ∈ RN l×N l

(l =
1, 2, · · · , L) signifies a coarsened spatial graph that captures
the connectivity strength between super-grids at level l.

Moreover, we introduce the mask matrix M l to make Al

sparse. The (i, j)-th entry M l
ij is set to 1 if grids i and j

belong to the same cluster at level l+1, and 0 otherwise. This
assignment is based on the observation that grids within the
same cluster exhibit stronger spatial dependencies, making
them more desirable to retain. Consequently, M l reflects the
most crucial neighboring grids at level l.
Dynamic adjustment of hierarchical structure based on
NWP data. Spatial dependencies are further influenced by
dynamic weather conditions. For example, on a windy day, a
grid has stronger dependencies with its upwind neighboring
grids compared to a windless day. Thus, we encode the input
NWP data X and utilize the attention matrix to adaptively
adjust the spatial adjacency matrices. Inspired by attention
mechanisms [Vaswani et al., 2017], this dynamic adjustment
is formulated as 2:

H0
Q = XW Q, H0

K = XW K,

H l
Q = (Sl−1)⊤H l−1

Q , H l
K = (Sl−1)⊤H l−1

K ,
(8)

Ã
l
= M l ⊙ Softmax(H l

QH
l
K
⊤
/
√
d⊙Al), (9)

where H0
Q,H

0
K ∈ RN×d are calculated by linear projec-

tions of input NWP data X ∈ RN×Fe×T with parameters
W Q,W K ∈ RFe×T×d, respectively. These representations
are iteratively aggregated according to the cluster assignment
matrix, generating representations H l

Q,H
l
K ∈ RN l×d for

super-grids at each level. ⊙ denotes element-wise product.
Different from existing attention mechanisms, the mask M l

is used to make the spatial adjacency matrix sparse, where
only interactions of grids belonging to the same cluster are re-
served. Note that this dynamic adjustment only modifies the
spatial adjacency matrices at each level and does not change
the assignment matrices between levels.
Fast hierarchical message passing. According to To-
bler’second law of geography [Miller, 2004], which states
that the phenomenon external to a geographic area of inter-
est affects what goes on inside, we correct NWP biases of

2We introduce the aggregation and sparsification procedure in a
dense matrix form for ease of understanding, while in our imple-
mentation, the cluster assignment, mask, and spatial adjacency are
represented by a sparse matrix form.
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one area by considering the impact from other areas. How-
ever, given that the number of grids in local NWP bias-
correction is typically larger than in other common spatial-
temporal applications, e.g., traffic forecasting, applying the
Vallinia message-passing module with quadratic complexity
on the constructed dynamic graphs poses an efficiency chal-
lenge. Therefore, we introduce the Fast Hierarchical Mes-
sage Passing (FHMP) module to capture dynamic spatial de-
pendencies efficiently. Inspired by Tobler’s first and second
laws of geography, the main idea of FHMP is to conduct fine-
grained message passing among low-level grids which have
stronger relationships but coarse-grained message passing at
high levels which have weaker relationships. The process can
be formulated as:

Message : Ĥ
l
= H lW l,H l = (Sl−1)⊤H l−1,

Aggregation : H̃
l

vl =
1

|Nvl |
∑
ul

Ã
l

ulvlĤ
l

ul ,

∀vl ∈ [0, 1, 2, · · ·N l − 1],Nvl = {ul|Ãl
ulvl ̸= 0},

Duplication : H ′ = H̃
0
+

L∑
l=1

l−1∏
i=0

SiH̃
l
,

Update : H ′′ = H +H ′W ,
(10)

where Ĥ
l
∈ RN l×d are calculated by linear projections of

H l, representing the message of grids at level l, and H0 =
H is the output of the factor GNN (see Eq. 3). For a specific
grid vl at level l, its neighborsNvl are identified by the spatial
adjacency matrix Ã

l
. vl then aggregates its neighbors’ mes-

sages according to the adjacency weights in Ã
l
. The duplica-

tion stage is the key design of FHMP module 3. It duplicates
the messages from the super-grids at each level to their con-
taining grids at level 0 based on assignment matrices [Si]L−1

i=0 ,
and the grids at level 0 belonging to the same super-grid share
the same message from Ĥ

l
, as illustrated in Fig. 4. With the

hierarchical structure4, all grid-pairs at level 0 can interact.
After collecting the messages from all levels, the hidden rep-
resentations of grids at level 0 are updated based on integrated
messages with a residual connection. According to Lemma 1,
FHMP in FHGNN have a linear complexity w.r.t. the number
of grids. The proof is in Appendix.

Lemma 1. The complexity of factor GNN and fast hierarchi-
cal GNN is O(N), where N is the number of grids.

3.5 Bias-Correction Output
Given the output H ′′ ∈ RN×d of FHGNN, we feed it into an
MLP-based decoder to produce corrected weather factors for
each grid at the target time step at once. We adopt the L1 loss

3Since each row of
∏l−1

i=0 S
i only contains one 1 and others are

0s, the matrix multiplication of
∏l−1

i=0 S
iH̃

l
is implemented with

indexing operation.
4The conclusion holds if we establish ⌊logkN⌋+1 levels, where

k is the cluster size.
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Figure 4: An Overview of Fast Hierarchical Message Passing.

function to compare the difference between corrected results
and ground truth, which can be formulated as: L(Ŷ ,Y ) =∑Fe

f=1 αf∥Ŷ
f
− Y f∥1, where Ŷ = MLP

(
H ′′), and Ŷ

f

and Y f are the corrected results and the ground truth of the
weather factor f . αf is a hyperparameter representing the
corresponding weight of weather factor f .

4 Experiments
4.1 Datasets
Since local NWP bias-correction requires high-precision ge-
ographical data and direct mapping between NWP and ob-
servations of multiple weather factors, current datasets can-
not meet such requirements. Thus, we collect two real-
world bias-correction datasets: Ningbo and Ningxia, cover-
ing two representative terrain types in China. Each grid in
both datasets has three types of data, i.e., geographical data,
NWP data, and weather factor observations. Geographical
data contain latitude, longitude, and altitude. Altitude data
are from Digital Elevation Model (DEM) data. In particular,
DME data are commonly used in geographic information sys-
tems to represent terrain, whose positive and negative values
can denote land and ocean, respectively. Ningbo dataset de-
picts a coastline area with latitude range 28.85◦N−30.56◦N
and longitude range 120.91◦E−122.29◦E. There are 58×47
grids with a grid size of 0.03 degree in latitude and lon-
gitude. Both NWP and observational weather data have
hourly records including 10 weather factors from 1/Jan/2021
to 1/Apr/2021. Ningxia dataset features mountainous and
hilly area with latitude range 34.5◦N−42◦N and longitude
range 106◦E−116◦E. There are 31×41 grids with grid size
of 0.25 degree in latitude and longitude. Both NWP and
observational weather data have hourly records including 8
weather factors from 1/Jan/2021 to 1/Jan/2022. In our ex-
periments, we divide each dataset into training/validation/test
subsets using a 7:1:2 ratio in chronological order. We define
a temporal window of 7 time steps for NWP bias-correction,
including the target time step, as well as the previous and next
three steps.

4.2 Baselines and Experimental Settings
We compare WeatherGNN with three groups of methods. (1)
Specific for bias-correction, including BiLSTM-T [Yang et
al., 2022]: using BiLSTM considering multiple covariates
for bias-correction; HybridCBA [Han et al., 2022]: com-
bining CNN, BiLSTM, and attention mechanism to correct
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Dataset Factor Metric NWP BiLSTM-T HybridCBA ConvLSTM AFNO Swin STGCN HGCN MegaCRN WeatherGNN ∆Baseline ∆NWP

Ningbo

100ws MAE 2.26 1.98 1.53 1.37 0.84 0.91 0.94 0.89 0.87 0.80 4.76% 64.60%
RMSE 2.74 2.70 2.34 2.03 1.17 1.26 1.31 1.25 1.21 1.14 2.56% 58.39%

10ws MAE 1.38 1.37 1.18 0.91 0.58 0.67 0.65 0.63 0.61 0.56 3.45% 54.42%
RMSE 1.71 1.69 1.65 1.28 0.81 0.87 0.91 0.88 0.85 0.79 2.47% 53.80%

h MAE 15.37 14.48 12.32 7.61 5.86 5.96 6.35 5.81 5.95 5.63 3.10% 63.37%
RMSE 18.28 18.44 15.29 10.35 7.26 7.32 8.29 7.28 7.80 7.12 1.93% 61.05%

2t MAE 1.28 1.20 1.19 1.16 0.93 1.10 1.12 1.04 0.91 0.90 1.10% 29.69%
RMSE 1.74 1.54 1.58 1.51 1.27 1.34 1.47 1.31 1.23 1.23 0.00% 29.31%

tp MAE 0.143 0.412 0.331 0.309 0.123 0.240 0.282 0.212 0.131 0.115 6.50% 19.58%
RMSE 0.495 0.811 0.763 0.655 0.391 0.587 0.627 0.502 0.435 0.339 13.30% 31.52%

Ningxia

100ws(U) MAE 2.93 2.69 2.33 2.22 2.00 2.12 2.33 2.08 1.95 1.78 8.72% 39.25%
RMSE 3.83 3.41 2.99 2.87 2.58 2.81 3.01 2.69 2.54 2.39 5.91% 37.60%

100ws(V) MAE 3.39 2.79 2.67 2.51 2.25 2.30 2.51 2.29 2.27 2.13 5.33% 37.17%
RMSE 4.52 3.59 3.43 3.24 2.93 3.11 3.22 3.03 2.94 2.69 8.19% 40.49%

10ws(U) MAE 1.79 1.65 1.44 1.40 1.22 1.22 1.52 1.33 1.23 1.18 3.28% 34.08%
RMSE 2.38 2.16 1.87 1.84 1.60 1.64 1.97 1.73 1.60 1.53 4.38% 35.71%

10ws(V) MAE 2.03 1.73 1.55 1.50 1.32 1.41 1.56 1.38 1.35 1.21 8.33% 40.39%
RMSE 2.74 2.24 2.02 1.96 1.75 2.08 2.01 1.85 1.80 1.59 9.14% 41.97%

2t MAE 2.81 2.71 2.72 2.44 2.27 2.27 2.54 2.20 2.28 2.19 0.45% 22.06%
RMSE 3.74 3.49 3.54 3.15 2.91 2.89 3.27 2.79 2.92 2.80 -0.36% 25.13%

Table 1: Bias-correction Performance Comparison on Ningbo and Ningxia Datasets.

Factor Ningbo 100ws Ningxia 100ws(U)
Metric MAE RMSE MAE RMSE

Variant

shared-F 0.83 1.18 1.87 2.47
no-F 0.92 1.26 1.94 2.55
geo-H 0.91 1.26 2.03 2.60
met-H 0.89 1.25 1.92 2.57
static-H 0.85 1.22 1.89 2.50
no-H 0.96 1.31 2.33 2.82

WeatherGNN 0.80 1.14 1.78 2.39

Table 2: Ablation Study on 100m Wind Speed.

factors. (2) Vision methods used in many weather appli-
cations, including ConvLSTM [Shi et al., 2015]: extend-
ing LSTM with convolutional gates; AFNO [Guibas et al.,
2021]: adopting Fourier neural operator to capture features
adaptively; Swin [Liu et al., 2021]: constructing a hierarchi-
cal transformer by a shifted windowing scheme. (3) GNN-
based methods used in spatial-temporal applications, includ-
ing STGCN [Yu et al., 2018]: deploying graph convolu-
tion and temporal convolution to capture spatial and tempo-
ral dependencies; HGCN [Guo et al., 2021]: operating hi-
erarchical GNNs to utilize hierarchical spatial dependencies;
MegaCRN [Jiang et al., 2023]: introducing adaptive graphs
to learn underlying spatial dependencies.

Baselines and WeatherGNN are implemented with Py-
torch, executed on a server with one 32GB Tesla V100 GPU
card, and well-tuned according to the performance on the val-
idation set. The hyperparameter settings are summarized in
Appendix. We optimize WeatherGNN using Adam optimizer
with an initial learning rate of 0.003 and set the maximum
number of epochs to 200. We halt training when the valida-
tion loss does not decrease for 15 consecutive epochs.

4.3 Performance Comparison
We use Mean Absolute Error (MAE) and Root Mean Square
Error (RMSE) to measure the performance of all methods.
We present the results of common weather factors for main
comparisons, e.g., wind speed (ws), pressure(h), temperature
at 2m (2t), and total precipitation (tp). Table 1 shows the re-
sults, where Bold and Underline indicate the best and second
best performance, respectively. ∆ denotes the relative im-
provement between WeatherGNN and best baselines/NWP.

We can observe that: (1) NWP for specific areas can be sig-
nificantly corrected, and WeatherGNN has an average im-
provement of over 41% compared with the original NWP. (2)
Although baselines, especially AFNO and MegaCRN, have
shown competitive performance, WeatherGNN achieves the
best performance in 19 out of 20 cases across two datasets,
outperforming the best baselines with average 4.50% on
MAE and 4.75% on RMSE. Despite the remarkable improve-
ment, WeatherGNN shows a slight inferiority in correcting 2t
compared to the best baseline. The reason may be that the
2t factor varies slowly in time and space. The rapid changes
in wind speeds may interfere with the correction of 2t due
to the meteorological and spatial dependency modeling of
WeatherGNN. (3) The bias-correction of WeatherGNN on
wind speed is significant. Given the fact that the mechanism
of wind formation is complex and wind speed changes over
time and space rapidly, it is possible that the dynamic adjust-
ment in the fast hierarchical GNN helps WeatherGNN adapt
to weather dynamics.

4.4 Model Analysis
Ablation study. To evaluate the effectiveness of the factor
GNN and fast hierarchical GNN of WeatherGNN, we conduct
ablation studies on correcting the 100m wind speed of two
datasets. For factor GNN, we design variants: (1) shared-F:
only using the factor embedding to construct a shared factor
graph for all grids, ignoring spatial heterogeneity; (2) no-F:
replacing the factor graphs with a one-layer MLP to encode
the weather information without considering the meteorolog-
ical dependencies explicitly. For fast hierarchical GNN, we
design variants: (3) geo-H: constructing the hierarchy only
using geographical distances; (4) met-H: constructing the hi-
erarchy only using DTW similarity of historical weather fac-
tor time series; (5) static-H: removing the dynamic adjust-
ment and only adopting the static hierarchy when performing
fast hierarchical message passing; (6) no-H: only using the
Aspatial calculated by Eq. 6 to model spatial dependencies be-
tween grids without constructing the hierarchy.

All designs in WeatherGNN are proven to be effective
based on the results in Table 2. We can observe that: (1)
Terrain is crucial for local NWP bias-correction, even when
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Figure 5: Results of Hyperparameter Study
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Figure 6: Model Efficiency Comparison.

it is solely used as input (as shown in ”no-F”). By compar-
ing ”shared-F” and ”no-F”, we observe that modeling the de-
pendencies between factors explicitly can improve the correc-
tion outcomes. Notably, making such dependencies adapt to
the changing terrain can further enhance the correction ef-
fect, which validates the effectiveness of our factor GNN.
(2) Constructing a hierarchical structure with geographi-
cal and meteorological distances significantly improves the
bias-correction performance. The meteorological distance is
found to be more effective than geographical distance, pos-
sibly because the influence of geography on weather factors
is partly reflected in the weather factor sequences and DTW
similarity can help to discover underlying spatial dependen-
cies. Besides, the meteorological distance is helpful to unveil
remote spatial dependencies. Furthermore, the hierarchical
design integrating both factors achieves the best results.
Hyperparameter study. We adjust two hyperparameters,
i.e., the number of levels (# levels) and the size of the time
window, to investigate the effect of the static hierarchy and
time length. We use total MAE of all factors in Ningbo
dataset as the metric. We set # levels to 3, 4, 5, and 6.
From Fig.5 (a), we find the correction performance is optimal
when # level is 4. It is possible because smaller # levels fail
to capture comprehensive multi-scale spatial dependencies,
whereas larger # levels result in fewer grids in each super-
grid, limiting the effectiveness of capturing local fine-grained
dependencies. We set the size of the time window to 5, 7, 9,
and 11. From Fig.5 (b), we find the time window is essential
to the correction performance, with the optimal choice being
7. The possible reason is that smaller windows lack suffi-
cient information to capture weather changes, while larger
windows introduce excessive uncertainty about weather con-
ditions.
Model efficiency. We evaluate the efficiency of WeatherGNN
and baselines by increasing the number of grids and measur-
ing running time and GPU memory usage. Fig. 6 illustrates
that WeatherGNN (linear complexity) performs faster and re-
quires less GPU memory than baselines. The efficiency ad-
vantages of WeatherGNN indicate good scalability, showing
strong potential for larger regions, e.g., continental or global

2t

h

10ws

100ws

Real NWP AFNO MegaCRN OursBi-LSTM-T

Figure 7: Visualization of Bias-Correction on Ningbo Dataset. Each
row corresponds to a meteorological factor and each column corre-
sponds to a method.
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Figure 8: Illustration of Learned Factor Graphs of Two Grids on
Two Different Types of Terrains.

applications.
Case study. We visualize an example at 22:00 6/Apr/2021
about origin NWP and corrected results of baselines and
WeatherGNN. As shown in Fig. 7, NWP has a large devia-
tion from the ground truth, while baselines and WeatherGNN
can effectively reduce this discrepancy. In addition, Fig. 8
shows an example of the learned factor graphs selected ran-
domly. Grid 500 locates in the mountains and Grid 2555 is in
the ocean. 10ws and 100ws at both grids are closely related
to each other. However, 10ws of Grid 500 is more relevant to
pressure, as the mountainous regions have diverse terrain and
are prone to rapid changes in air pressure, resulting in great
effects on wind speeds. On the other hand, 10ws of Grid 2555
is affected by 10div (10m horizontal divergence, a measure of
the local spreading or divergence of wind field in a horizontal
plane at the height of 10 meters). One of the possible rea-
sons is that on the sea horizon, the expansion of air in the
horizontal direction has a significant impact on wind speed.
More case studies about hierarchical structures, dynamic ad-
justment, and extreme weather are in Appendix.

5 Conclusion and Future Work
In this paper, we propose WeatherGNN, a GNN-based model
that leverages meteorological and spatial dependencies un-
der the guidance of domain knowledge for local NWP bias-
correction. Specifically, we introduce a factor GNN and a
fast hierarchical GNN to capture area-specific meteorologi-
cal dependencies adaptively and dynamic spatial dependen-
cies efficiently, respectively. Extensive experimental results
demonstrate the superiority of WeatherGNN. In the future,
we will investigate WeatherGNN for other applications, e.g.,
weather forecasting and downsampling. We also plan to ap-
ply WeatherGNN to larger real-world regions to investigate
its scalability and robustness.
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