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Abstract
Virtual network embedding (VNE) is an essential
resource allocation task in network virtualization,
aiming to map virtual network requests (VNRs)
onto physical infrastructure. Reinforcement learn-
ing (RL) has recently emerged as a promising so-
lution to this problem. However, existing RL-
based VNE methods are limited by the unidirec-
tional action design and one-size-fits-all training
strategy, resulting in restricted searchability and
generalizability. In this paper, we propose a FLex-
ible And Generalizable RL framework for VNE,
named FlagVNE. Specifically, we design a bidirec-
tional action-based Markov decision process model
that enables the joint selection of virtual and phys-
ical nodes, thus improving the exploration flexi-
bility of solution space. To tackle the expansive
and dynamic action space, we design a hierarchi-
cal decoder to generate adaptive action probabil-
ity distributions and ensure high training efficiency.
Furthermore, to overcome the generalization issue
for varying VNR sizes, we propose a meta-RL-
based training method with a curriculum schedul-
ing strategy, facilitating specialized policy train-
ing for each VNR size. Finally, extensive experi-
mental results show the effectiveness of FlagVNE
across multiple key metrics. Our code is available
at https://github.com/GeminiLight/flag-vne.

1 Introduction
Network virtualization (NV) emerges as a pioneering tech-
nology that facilitates dynamic management of Internet archi-
tecture, which finds applications in 5G networks and cloud
computing [Zhuang et al., 2020]. Through network slicing
and shared infrastructure, NV enables the deployment of mul-
tiple user-submitted virtual network requests (VNRs) within
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the same physical network, thereby accommodating diverse
network service requirements of users [Yang et al., 2021;
Chen et al., 2022b]. The primary challenge in NV involves
the embedding of VNRs within a physical network, known as
virtual network embedding (VNE), an NP-hard combinatorial
optimization problem [Rost and Schmid, 2020].

Effective resource allocation for VNRs is essential to im-
prove the quality of service and the revenue of Internet service
providers (ISPs) [Wang et al., 2021b; Chen et al., 2022a].
Regrettably, it is hard to address the VNE problem involv-
ing tackling combinatorial explosion and differentiated de-
mands [Fischer et al., 2013; Yang et al., 2022b]. On the one
hand, the solution space of VNE is extensive, encompass-
ing vast permutations of VNRs within the underlying phys-
ical network. Consequently, a comprehensive exploration of
this expansive solution space becomes imperative to deter-
mine superior solutions. On the other hand, due to specific
requirements of user service, the integration of diverse VNR
topologies and their associated resource demands is dynamic.
VNRs of varying sizes manifest unique complexities, render-
ing a one-size-fits-all strategy inadequate to effectively man-
age the inherent variability in such circumstances.

Recently, reinforcement learning (RL) has shown promis-
ing potential for the VNE problem [Yan et al., 2020; He et
al., 2023b; Zhang et al., 2023]. RL approaches model the
solution construction process of each VNR as Markov deci-
sion processes (MDPs), which can automatically build effi-
cient solving policies. Unlike supervised learning relying on
labeled data, RL facilitates the learning of effective heuristics
through interactions with the environment. However, most
existing RL-based VNE approaches are still plagued with
some significant issues. Firstly, these approaches commonly
adhere to a unidirectional action design within the MDP, i.e.,
presupposing a fixed decision sequence for virtual nodes, and
subsequently designating a physical node to host each virtual
node sequentially. Such unidirectional action schema signif-
icantly limits the available action space, consequently con-
straining the searchability of the agent and impeding the effi-
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cacy of exploring solution space. Secondly, conventional RL-
based methods usually just train a single general policy, dis-
regarding the distinctive complexities of VNRs with varying
sizes in practice. Treating variable-sized VNRs equally poses
challenges in achieving balanced learning of cross-size strate-
gic knowledge and hinders the ability to generalize across
VNRs of differing sizes. Thirdly, the direct training of mul-
tiple policies tailored to different VNR sizes slowly adapts
to unseen distributions. In particular, training specific poli-
cies for large-sized VNRs from scratch tends to be stuck in
the local optimum, due to the high complexity and challenges
in exploring feasible solutions. These difficulties inevitably
exert negative impacts on overall system performance. We
conduct a preliminary study to highlight our motivations and
latent challenges, which is detailed in Appendix A.

In this paper, we propose a novel FLexible And
Generalizable RL framework for the VNE problem, named
FlagVNE. Our framework aims to enhance the searchability
and generalizability of RL-based VNE methods while achiev-
ing rapid adaption to the unseen distribution of VNR sizes.
Specifically, our contributions are summarized as follows.
(1) We propose a bidirectional action-based MDP modeling
approach to enable the joint selection of virtual and physi-
cal nodes, enhancing the flexibility of agent exploration and
exploitation. This method offers superior searchability and
is proven theoretically. To handle the resulting large and
changeable action space, we abstract it as two dependent as-
pects and design a hierarchical decoder with a bilevel pol-
icy, ensuring adaptive action probability distribution gener-
ation and high training efficiency. (2) We propose a meta-
RL-based training method to enable efficient acquisition of
multiple size-specific policies and quick adaptation to new
sizes. A meta-policy is trained to grasp cross-size knowl-
edge for different VNR sizes and then fastly fine-tuned to
develop size-specific policies for each VNR size, even un-
seen sizes. Specially, due to difficult exploration and prone to
suboptimal convergence, using large-sized VNRs for initial
meta-learning yields inferior knowledge, impairing the meta-
policy and generalization. Thus, we develop a curriculum
scheduling strategy that gradually incorporates larger VNRs,
alleviating suboptimal convergence. (3) Finally, we conduct
experiments on the simulation platform to mimic various net-
work systems and extensive results demonstrate the superior-
ity of FlagVNE in terms of multiple key indicators, compared
to state-of-the-art (SOTA) heuristics and RL-based methods.

2 Related Work
Traditional Methods for VNE. Initially, the VNE prob-
lem was tackled using exact methods such as integer lin-
ear programming [Shahriar et al., 2018], which provides
optimal solutions through exact solvers. However, these
exact algorithms proved impractical for real-world scenar-
ios due to their time-consuming nature. Thus, numerous
heuristic algorithms have been proposed to find solutions
in an acceptable time [Su et al., 2014; Jin et al., 2020;
Fan et al., 2023]. Among these approaches, node ranking is
a prevalent strategy, which ranks virtual and physical nodes
to determine the decision sequence and the matching prior-

ity, respectively. For example, [Zhang et al., 2018] ranked
nodes based on a node resource management (NRM) metric,
and [Fan et al., 2023] proposed a node essentiality assess-
ment (NEA) metric considering topology connectivity. Addi-
tionally, [Dehury and Sahoo, 2019] designed VNE algorithms
based on metaheuristics, such as particle swarm optimization
(PSO). However, these algorithms heavily rely on manual de-
signs and are usually tailored to specific scenarios, limiting
their performance in general cases.

Learning-based Methods for VNE. Recently, machine
learning techniques have been used to solve VNE, leading
to faster and more efficient solutions [Blenk et al., 2018;
Geng et al., 2023; He et al., 2023b]. Particularly, RL has
demonstrated significant potential as an intelligent decision-
making framework [Liu et al., 2023; Yang et al., 2022a],
which can effectively solve VNE with MDP modeling. In this
paper, we unify most existing RL-based methods [Xiao et al.,
2019; Wang et al., 2021c; Yan et al., 2020; Yao et al., 2020;
Zhang et al., 2022; Zhang et al., 2023] into a general frame-
work comprised of three key components: MDP modeling,
policy architecture, and training methods. These methods
model the process of VNE solution construction as unidi-
rectional action-based MDPs, where a physical node is cho-
sen to host a be-placing virtual node, and the decision se-
quence of virtual nodes is fixed. Then they build policy mod-
els with various neural networks and train a single general
policy to deal with VNRs of varying sizes. For instance,
[Xiao et al., 2019] used multilayer perception (MLP) as a
policy model and trained it with policy gradient (PG) algo-
rithm, [Zhang et al., 2023] designed a policy model with MLP
and graph convolutional network (GCN) [Kipf and Welling,
2017] and trained it with asynchronous advantage actor-critic
(A3C) [Mnih et al., 2016]. However, existing RL-based VNE
methods suffer from limited searchability and generalizability
due to their unidirectional action design and one-size-fits-all
training policy, ultimately affecting overall performance.

3 Preliminaries
3.1 Problem Definition
As shown in Fig. 1, in a practical network system, users’ ser-
vice requests arriving continuously are represented as VNRs.
We collect all VNRs with a set V . Mapping these VNRs onto
physical networks managed by ISPs is known as VNE, crucial
in managing the quality of various network services [Chen et
al., 2020; Wang et al., 2023a; Chen et al., 2022c].

System Modeling. Physical network is formulated as a
weighted undirected graph Gp = (N p,Lp), where N p is the
set of physical nodes, Lp is the set of physical links. Each
physical node np ∈ N p is equipped with multiple resource
capacities {C(np), ∀C ∈ C}, where C is the set of node re-
source types, and each physical link lp ∈ Lp has bandwidth
capacity B(lp). In this paper, we consider multidimensional
node resources, including the central processing unit (CPU),
storage resource, and graphics processing unit (GPU). Sim-
ilarly, each VNR is modeled as a weighted undirected graph
Gv = (N v,Lv, dv), whereN v is the set of virtual nodes and
Lv is the set of virtual links, and dv denotes the lifetime of
VNR. Once the VNR is accepted, it will be maintained for dv
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Figure 1: An example of the VNE problem with multidimensional
resources. The numbers denote the unit counts of resources.

time slots. Each virtual node nv ∈ N v represents a virtual
machine with resource demands {C(nv), ∀C ∈ C} and each
virtual link lv ∈ Lv indicates the bandwidth demand B(lv).

Objective. Acknowledging the stochastic nature of online
networking, most existing methods and this work aim to min-
imize the embedding cost of each VNR onto the physical net-
work, which facilitates long-term performance. The quality
of solutions is assessed using the revenue-to-cost ratio (R2C):

R2C (Gv) = (Ψ · REV (Gv)) /COST (Gv) . (1)

Here, REV(Gv) denotes the revenue of the VNR Gv (i.e.,
the sum of VNR’s resource requirements) and COST(Gv) de-
notes the embedding cost resulting from the solution (i.e., the
sum of ISP’ resource consumption). Ψ is the binary variable
that indicates the feasibility of a solution.

Constraints. The VNR embedding consists of two sub-
processes. (1) Node mapping entails assigning each vir-
tual node to a physical node with adequate resources, i.e.,
C(np) ≥ C(nv), ∀C ∈ C, while ensuring one-to-one place-
ment and mutual exclusivity. (2) Link mapping involves find-
ing a physical path for each virtual link, ensuring that the path
connects the physical nodes hosting the virtual link endpoints
and that each physical link lp in the path has sufficient band-
width, i.e., B(lp) ≥ B(lv). A solution is deemed feasible
(Ψ = 1) only when all these constraints are satisfied.

Due to the space limit, we place detailed formulations of
VNE’s objective and constraints in Appendix B.

3.2 Motivations and Challenges
We conduct a preliminary study placed in Appendix A, and
motivate our framework from the following two aspects.

Flexibility of Action Space. Most existing RL-based VNE
approaches employ a unidirectional action design, assuming
that the decision sequence of virtual nodes is predetermined.
However, our analysis in Appendix A.1 reveals that varying
the decision sequences of virtual nodes significantly impacts
performance. This underscores the necessity of exploring dif-
ferent decision sequences for optimal solutions. Moreover,

the fixed decision sequence of virtual nodes lacks the flexi-
bility needed to adapt to the dynamic nature of exploration
process. Thus, to enhance the flexibility of exploration and
exploitation, we aim to achieve a joint selection of both physi-
cal and virtual nodes to eliminate the fixed decision sequence.
Nevertheless, it will pose some challenges, such as the dif-
ficulty of variable action probability distribution generation
and the training efficiency issue caused by large action space.

Generalization of Solving Policy. VNRs of different
sizes exhibit distinct complexities, necessitating varied solv-
ing strategies. Existing RL-based methods typically use a
one-size-fits-all policy to tackle VNRs of varying sizes, lead-
ing to generalization issues. To address this, an intuitive ap-
proach might be to develop size-specific policies for different
VNR sizes. Yet, as observed in Appendix A.2, specific poli-
cies for large-sized VNRs trained from scratch often get stuck
in local optima due to their high complexity and the difficulty
in exploring viable solutions. Their performance is even in-
ferior to that of the general policy for all sizes. Furthermore,
this strategy lacks the quick adaptability to handle previously
unseen VNR sizes, since it requires extensive data demand.

4 FlagVNE Framework
In this section, we present the proposed RL-based framework
for VNE, FlagVNE. As illustrated in Fig. 2, FlagVNE is
designed to improve searchability and generalizability while
achieving rapid adaptation to unseen distribution.

4.1 Bidirectional Action-based MDP
We formulate the solution construction process of each VNR
as a bidirectional action-based MDP, allowing joint selection
of virtual nodes and physical nodes. Specifically, at each de-
cision timestep t, observing the state st of the environment,
the agent takes an action at ∼ π(·|st) according to the policy
π. Then, the environment will feedback a reward R(st, at)
and transit to a new state st+1 ∼ P (st, at) following the tran-
sition probability function. During interactions, a trajectory
memory D = {s1, a1, s2, a2, · · · } collects state-action pairs.
We present these notations in VNE as follows.

State represents the status of the network system at a spe-
cific decision timestep t, consisting of the current situation of
VNR svt and physical network spt , i.e., st = (svt , s

p
t ), st ∈ S ,

where S is the state space.
Action is defined as a pair of a virtual node to be placed

and a physical node to host, denoted at = (nv, np), at ∈ A,
where nv ∈ N v , np ∈ N p, and A is the action space.

Transition P (st+1 | st, at) refers to the process of placing
the virtual node nv to the physical node np and routing the
virtual links, resulting in the changes of state from st to st+1.
Based on the selected bidirectional action, the environment
attempts to place the virtual node nv to the physical node
np. If the node placement is successful, the link routing is
executed based on the breadth-first search algorithm that finds
the shortest physical paths meeting bandwidth demands from
np to other physical nodes hosting the virtual node neighbors
of nv . If node placement and link routing are successful, the
available resource of the physical network is updated with the
VNR requirement. Otherwise, the current VNR is rejected.
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Figure 2: The overview of the FlagVNE framework. (a) For vary-sized VNRs that continuously arrive at the network system, we consider them
as different tasks Mi ∼ p(M) based on their size. We first train a meta-policy πϕ with cross-task knowledge in the meta-learning process,
using a curriculum scheduling strategy. Then, we fine-tune it to obtain a set of size-specific sub-policies πθi . This generalizable training
method effectively obtains refined solving policies for each VNR size. (b) Within each inner loop, we formulate the solution construction
process of each VNR as a bidirectional action-based MDP, which enables the joint selection of virtual and physical nodes. We also design a
hierarchical encoder with a bilevel policy to adaptively generate action probability distributions and ensure high training efficiency.

Reward R measures the quality of agent’s action at a given
state. We define the reward function R as follows:

R(st, at) =


R2C(Gv), if Gv is accepted at t,
−1/|N v|, if Gv is rejected at t,
1/|N v|, otherwise.

(2)

We design implicit rewards to encourage successful place-
ment with 1/|N v| and punish failure with −1/|N v|. Once
the Gv is completed embedding, we return R2C(Gv).

Policy is parameterized by θ, which denotes the distribu-
tions over the action space under a given state st:

πθ(at|st) = P (at|st). (3)
Discount factor λ ∈ (0, 1) balances the importance of im-

mediate rewards versus future rewards. Overall, the optimiza-
tion objective of RL is to maximize the expected return, i.e.,
cumulative discounted rewards over timesteps T :

Jπ = E(st,at)∼D[

T∑
t=0

λtR(st, at)]. (4)

If Jπ ≥ Jπ′ , then we denote it as π ⪰ π′.

Theorem 1. Given two MDPs with bidirectional and uni-
directional action, Mb = ⟨Sb,Ab, P b, R, λ⟩ and Mu =
⟨Su,Au, Pu, R, λ⟩, and their optimal policies denoted as
π⋆,b and π⋆,u, respectively, we have π⋆,b ⪰ π⋆,u.

See Appendix C for its proof [Sutton and Barto, 2018].
Our bidirectional action enhances flexibility and expands the
search space, allowing for a more comprehensive exploration
of possible solutions, which offers superior MDP Optimality.

4.2 Hierarchical Policy Architecture
We construct raw features, encode them with a GCN-based
encoder, and design a hierarchical decision module to ensure
adaptive probability output and training efficiency.

Feature Constructor. We build the feature input for the
subsequent encoder from the current state st, which includes
the processing status of VNR svt and the current physical net-
work situation spt . With comprehensive information on the
current state, the agent gains deeper environmental insight,
resulting in better decisions. For the VNR Gv

t , the feature
constructor takes into account not only various node resource
requirements denoted Xv

t,N , but also aggregates bandwidth
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resource requirements into the node features, represented as
Xv

t,L. These features include essential bandwidth metrics,
such as maximum, mean, and sum of bandwidth requirements
of virtual links adjacent to one node. To indicate the em-
bedding status, a placement flag Xv

t,P is designed for virtual
nodes, with a value of 1 indicating that the virtual node has
been placed and 0 otherwise. The VNR features Xv

t are or-
ganized as follows: Xv

t = (Xv
t,N , Xv

t,L, X
v
t,P ) ∈ R|Nv|×7.

Similarly, the physical network features Xp
t are con-

structed as follows: Xp
t = (Xp

t,N , Xp
t,L, X

p
t,S) ∈ R|Np|×7,

where Xp
t,N denotes available resources of physical nodes,

Xp
t,L similar to Xv

t,L denotes aggregated bandwidth availabil-
ity, and Xp

t,S is a selection flag indicating the status of physi-
cal nodes. A selection flag value of 1 indicates that a physical
node has been selected to host a virtual node and 0 otherwise.

GNN-based Encoder. To encode the features of the virtual
network Xv

t and the physical network Xp
t , into latent repre-

sentations, Zv
t and Zp

t , respectively, we adopt a graph neural
network (GNN) encoder. First, both Xv

t and Xp
t undergo the

MLP to obtain the initial node representations, denoted Ivt
and Ipt , respectively: Ivt = MLP(Xv

t ), I
p
t = MLP(Xp

t ).
Then, we consider multiple GCN [Kipf and Welling, 2017]

layers as the GNN modules to obtain the latent represen-
tations of virtual nodes Z̃v

t and physical nodes Z̃p
t : Z̃v

t =

GNN(Ivt , A
v), Z̃p

t = GNN(Ipt , A
p), where Av and Ap is ad-

jacency matrixes of virtual and physical networks.
Furthermore, to enhance the feature representation ability,

we also employ the residual connection method to combine
the output of the GNN module with the initial representation:
Zv
t = Z̃v

t + Ivt , Z
p
t = Z̃p

t + Ipt . Finally, we obtain the repre-
sentation of each virtual and physical node.

Hierarchical Decoder with Bilevel Policy. In our bidi-
rectional action-based MDP, the action space is represented
by the matrix size |N v| × |N p|, reflecting the number of vir-
tual and physical nodes. The variable and often large size
of VNRs contribute to the expansive and dynamic nature of
the space. To effectively manage this, we develop a hierar-
chical decoder with a bilevel policy, ensuring high training
efficiency and adaptive action probability generation. Specifi-
cally, we abstract this task into two dependent aspects: virtual
node ordering and physical node placement. Our bilevel pol-
icy, π(at|st) = πH(nv|st) · πL(np|st, nv), consist of a high-
level ordering policy πH(nv|st) and a low-level placement
policy πL(np|st, nv). This hierarchical approach reduces the
size of policy distribution from |N v| × |N p| to |N v|+ |N p|,
thus significantly enhancing training efficiency.

High-level ordering policy selects the appropriate virtual
node nv

t for placement. Concretely, we use an MLP-based
compatibility scoring network (CSN) to calculate the fitness
between each virtual node representation and the graph-level
representation of the physical network Gp

t = GMP(Zp
t ).

Here, GMP(Z) = 1
|Z|

∑
z∈Z z denotes graph mean pooling

(GMP), averaging all node representations. Then an MLP is
applied to generate compatibility scores for each virtual node:

Ỹ H = MLP(Zv
t +Gp

t ) ∈ R1×|Nv|. (5)
Although the VNR’s sizes are variable, this layer adaptively
generates scores with the shape of (1, |N v|). After masking

virtual nodes already placed (i.e., setting their scores to −∞
on Ỹ H ), we apply a softmax function to the resultant score
Y H to produce the high-level action probability distribution.

πH(nv
t |st) = softmax(YH). (6)

Low-level placement policy identifies a suitable physical
node np

t for accommodating the to-be-placed virtual node nv
t ,

which is selected by πH . Similarly, we adopt an MLP-based
compatibility scoring network to calculate the fitness between
the representation of each physical node and the current con-
text representation of virtual network, including the graph-
level representation of virtual network Gv

t = GMP(Zv
t ) and

to-be-placed virtual node’s representation znv
t
:

Ỹ L = MLP(Zp
t +Gv

t + znv
t
) ∈ R1×|Np|. (7)

To avoid unnecessary exploration, we mask the physical
nodes that do not have enough resources or have been se-
lected to obtain the final scores Y L. Then, the low-level ac-
tion probability distribution is generated:

πL(np
t |st, nv

t ) = softmax(YL). (8)

For both two-level probability distributions, we employ
the sampling and greedy strategy to select actions during the
training and inference phases, respectively.

4.3 Generalizable Training Method
Training a general policy for VNRs of varying sizes leads
to imbalanced learning of cross-size strategy and generaliza-
tion issues. Conversely, individualized training of multiple
policies for each size is slow to adapt to new sizes, in which
policies for large-sized VNRs are prone to suboptimal. To
address this, we develop a meta-RL-based training method
with a curriculum scheduling strategy. As illustrated in Algo-
rithm 1 (see Appendix D), our method enables efficient train-
ing of multiple size-specific policies and quick adaptation to
new sizes, while balancing the learning process across tasks
of varying difficulty and avoiding suboptimal convergence.

Meta-RL for VNE. We treat VNRs of different sizes as
distinct tasks and formulate them as multiple MDPs follow-
ing a distribution Mi ∼ p(M). Note that this distribution
of VNR size is bounded and always obviously smaller than
the number of physical nodes, following the network ser-
vice orchestration standards [Zhuang et al., 2020]. We adopt
model-agnostic meta-learning (MAML) as the basic training
method [Finn et al., 2017]. MAML facilitates the learning
of a meta-policy that can be swiftly fine-tuned on new tasks
with only a few training samples, which improves general-
izability and adaptability. This training process comprises
two stages as follows. Firstly, during the meta-learning pro-
cess, we iteratively execute the inner loops and outer loops to
derive a well-trained meta-policy πϕ with cross-task knowl-
edge. Secondly, in the fine-tuning process, we leverage task-
specific experiences to fine-tune the meta-policy to a set of
size-specific policies πθi solely through inner loops.

Concretely, in the inner loop, the meta-policy πϕ is updated
to accommodate a specific task Mi by performing gradient
descents with the learning rate α and task-specific data Di:

θi = f (ϕ,Di) = ϕ− α∇ϕLDi
(ϕ). (9)
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Here, L(·) follows the objective of proximal policy optimiza-
tion (PPO) algorithm [Schulman et al., 2017]:

LDi
(ϕ) = E(st,at)∼Di

[
min

(
rϕÂ, clip (rϕ, ϵ) Â)

)]
, (10)

where Â denotes the estimated advantage of taking an action.
rϕ =

πϕ(at|st)
πϕold (at|st) denotes the ratio between the current policy

πϕ and the last updated policy πϕold . The clip function with
a hyperparameter ϵ is used to limit rϕ within the range of
[1−ϵ, 1+ϵ], improving the stability of policy updates. In PPO,
the critic uses a GNN-based encoder and GMPs, then inputs
concatenated virtual and physical graph representations into
an MLP-based decoder to estimate value.

In the outer loop, our objective is to find a meta-policy πϕ

that learns balanced strategy knowledge required by VNRs of
different sizes and exhibits superior generalizability, enabling
it to quickly learn optimal task-specific policies:

Jϕ = EMi∼p(M)

[
E
[∑T

t=0
λtR(st, at)|θi,Di

]]
. (11)

We update ϕ with a meta-learning rate β according to av-
erage second-order meta-gradient over task-specific policies:

ϕ← ϕ− β∇ϕ

(
1

|M|
∑|M|

i=1
L(θi)

)
. (12)

Curriculum Scheduling Strategy. In our preliminary
study (see Appendix A.2), we observed that training specific
policies for large VNRs often leads to suboptimal conver-
gence. This issue stems from the complexity of large-sized
VNRs and the challenges of exploring the solution space to
find feasible solutions. This tendency also towards local op-
tima adversely impacts the meta-learning process. Specifi-
cally, using large-sized VNRs in the initial stages of meta-
learning results in low-quality gradients, which negatively af-
fects the convergence and generalizability of the meta-policy.

To address this challenge, we draw inspiration from cur-
riculum learning [Wang et al., 2021d] and propose a curricu-
lum scheduling strategy to gradually integrate larger VNRs
into the meta-learning process. This strategy enables high-
quality initializations for sub-policies of large-sized VNRs,
alleviating the problems of suboptimal convergence and com-
promising meta-policy. We implement this by maintaining a
training task list I, initially containing the smallest VNR size.
The meta-learning process begins by focusing on tasks with
smaller VNR sizes, which are inherently easier and provide
beneficial foundational knowledge for tackling more complex
tasks. Policies adeptly trained on these smaller tasks serve as
effective initializations for larger VNR tasks, facilitating to
mitigating local optima issues.

To achieve a gradual increase in task complexity, we use
the entropy metric H(π) to evaluate the stability of pol-
icy. For our bilevel policy, we approximate it with H(π) =
H(πH)+H(πL). A lower entropy suggests that the policy is
making more confident decisions. When the policy entropy
H(πθk) for the largest size k = max(I) currently on the
training task list falls below a specified threshold δ, we con-
sider the policy ready to handle more complex tasks. At this
point, we introduce the next larger VNR size to the training
task list I. This progressive approach allows the meta-policy
to adapt and generalize effectively to larger VNRs.

5 Performance Evaluation
In this section, we evaluate the effectiveness of FlagVNE.

5.1 Experiment Setup
Simulations. Following the latest works [He et al., 2023b;
Wang et al., 2023b], we conduct experiments on the simu-
lation platform to mimic various realistic network systems.
We adopt two topologies, GEANT (40 nodes and 61 links)
and WX100 (100 nodes and 500 links) [Waxman, 1988], as
physical networks. See Appendix E.1 for these topologies’
descriptions. The multiple-type resources (i.e., CPU, storage,
GPU) of physical nodes and bandwidth resources of physical
links are uniformly generated within the range of [50, 100]
units. In each simulation run, we randomly generate 1000
VNRs with varying sizes ranging from 2 to 10. The virtual
nodes within each VNR are randomly interconnected with a
probability of 50%. Additionally, resource demands of each
VNR’s node and link requirements are uniformly generated
within the range of [0, 20] and [0, 50] units, respectively. The
lifetime of each VNR is exponentially distributed with an av-
erage of 500 time units. The arrival of these VNRs follows
a Poisson process with an average rate η, wherein η VNRs
are received per unit of time. In subsequent experiments, we
first train models with η = 0.001 on GEANT and η = 0.08
on WX100, due to their different capacities of physical re-
sources. Then we manipulate the value of η to emulate net-
work systems with different traffic throughputs and infer with
trained models to study the sensitivity of algorithms.

Implementations. During training, we first conduct meta-
learning in the initial 20 simulations and then focus on fine-
tuning in the subsequent 10 simulations. We set the policy en-
tropy threshold δ to 2. We implement neural network models
with PyTorch and decide reasonable values for hyperparame-
ters following the guide of related studies [Huang et al., 2022;
Zhou et al., 2023; Wang et al., 2021a; He et al., 2023a;
Kingma and Ba, 2014; Joshi et al., 2022]. See Appendix E.2
for hyperparameter settings on neural networks and meta-RL.

Baselines. To validate the effectiveness of FlagVNE, we
compare it with the following SOTA heuristics (NRM-VNE
[Zhang et al., 2018]; NEA-VNE [Fan et al., 2023]; PSO-VNE
[Jiang and Zhang, 2021]) and RL-based baselines (MCTS-
VNE [Haeri and Trajković, 2017]; PG-CNN [Zhang et al.,
2022]; A3C-GCN [Zhang et al., 2023]; DDPG-Attention [He
et al., 2023b]). See Appendix E.3 for their descriptions.

Metrics. The following metrics are widely used to evaluate
the long-term operational status of network systems over a pe-
riod T [Fischer et al., 2013]: request acceptance rate (RAC),
long-term average revenue (LAR) and long-term revenue-to-
cost (LT-R2C). See Appendix E.3 for their definitions.

5.2 Results and Analysis
Overall Performance. To simulate diverse and complex sce-
narios with varying traffic throughputs, we manipulate the ar-
rival rate of VNRs in two settings due to the difference in
physical resource capacity: in GEANT, we explore a range
of [0.001, 0.006] with a step of 0.001, and in WX100, we
investigate a range of [0.08, 0.18] stepped by 0.02.

Fig. 3(a)(b)(c) and (d)(e)(f) illustrate the performance of
all algorithms in GEANT and WX100, respectively. As the
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Figure 3: Experimental results in traffic throughput test.

GEANT WX100
RAC ↑ LAR ↑ LT-R2C ↑ RAC ↑ LAR ↑ LT-R2C ↑

FlagVNE-UniActionNEA 0.781 475.335 0.637 0.724 14334.671 0.493
FlagVNE-MetaFree-SinglePolicy 0.758 472.455 0.614 0.712 14170.514 0.501
FlagVNE-MetaFree-MultiPolicy 0.746 435.502 0.593 0.685 14069.938 0.472

FlagVNE-MetaPolicy 0.773 478.646 0.634 0.717 14292.962 0.485
FlagVNE-NoCurriculum 0.787 485.267 0.643 0.708 14144.234 0.509

FlagVNE 0.804 499.303 0.668 0.754 14769.080 0.526

Table 1: Results on ablation study. (η = 0.006 on GEANT and η = 0.18 on WX100).

arrival rate η increases, all algorithms experience a decline
in RAC on both topologies, attributed to heightened competi-
tion for limited physical resources among VNRs. Despite the
variability in algorithm performance across different network
topologies, influenced by the varying abundance of physical
bandwidth resources, FlagVNE consistently achieves the best
performance in all scenarios. We observe that the improve-
ments of FlagVNE are more pronounced at higher values of η,
corresponding to heightened resource competition. This un-
derscores the importance of searchability and generalizability
in network environments with limited resources. Specifically,
at η = 0.006 on GEANT, FlagVNE surpasses A3C-GCN,
NEA-VNE and NRM-VNE by margins of 10.4%, 20.7% and
27.9% on RAC, 10.5%, 28.1%, and 44.2% on LAR, and
12.8%, 28.4%, and 45.1% on LT-R2C. On WX100, compared
to A3C-GCN, NEA-VNE and NRM-VNE, FlagVNE shows
average improvements over different η of 12.4%, 12.5% and
17.4% in RAC, 12.8%, 10.4% and 24.3% on LAR, and 9.1%,
6.7% and 36.7% on LT-R2C, respectively. Overall, FlagVNE
demonstrates exceptional performance across various net-
work system conditions.

Ablation Study. To verify the effectiveness of each pro-
posed component, we build several variations of FlagVNE:
(1) FlagVNE-UniActionNEA replaces the bidirectional ac-
tion with the unidirectional one and sorts the decision se-
quence of virtual nodes with NEA [Fan et al., 2023]. (2)
FlagVNE-MetaFree-SinglePolicy trains a single general pol-
icy with valina PPO, without the help of Meta-RL. (3)
FlagVNE-MetaFree-MultiPolicy directly trains a set of sub-
policies from scratch, without using Meta-RL. (4) FlagVNE-
MetaPolicy only uses the meta-policy to handle variable-sized
VNRs. (5) FlagVNE-NoCurriculum discards the curriculum
scheduling strategy during the meta-learning process.

We examine their performance under arrival rate settings

of η = 0.006 on GEANT and η = 0.18 on WX100. These
cases exhibit more intense competition for resources, accen-
tuating the performance differentials stemming from the al-
gorithms’ searchability and generalizability. As shown in
Table 1, FlagVNE outperforms all variations on three met-
rics, demonstrating that each component of FlagVNE con-
tributes to the improvement in the final performance. Notably,
we observe significant performance declines in FlagVNE-
MetaFree-MultiPolicy and FlagVNE-MetaFree-SinglePolicy
compared to FlagVNE, which shows the effectiveness of our
meta-RL training method with a curriculum scheduling strat-
egy in achieving generalization.

Additional Evaluation. Due to the space limit, We place
more experiments and analysis in Appendix F, including: the
running time test on solving efficiency (F.1), adaptation and
convergence analysis in both known and unknown distribu-
tions (F.2), scalability validation on large-scale network sys-
tems (F.3), and hyperparameter sensitivity study that explores
the impact of the key hyperparameter ϵ (F.4).

6 Conclusion
In this paper, we proposed FlagVNE, a flexible and gener-
alizable RL framework for VNE. Specifically, we developed
a bidirectional action MDP modeling approach to enable the
joint selection of virtual nodes and physical nodes, which ex-
pands the agent’s search space. Additionally, we designed
a hierarchical recorder with a bilevel policy to ensure adap-
tive output and high training efficiency. Furthermore, we pre-
sented a generalizable training method based on meta-RL that
efficiently trains a set of size-specific policies to tackle VNRs
of varying scales. We also developed a curriculum scheduling
strategy that gradually incorporates larger VNRs, thus allevi-
ating suboptimal convergence. Finally, we conducted exten-
sive experiments to verify the effectiveness of FlagVNE.
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