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Abstract
Graph Contrastive Learning (GCL) has attracted
significant research attention due to its self-
supervised ability to learn robust node representa-
tions. Unfortunately, most methods primarily fo-
cus on homophilic graphs, rendering them less ef-
fective for heterophilic graphs. In addition, the
complexity of node interactions in heterophilic
graphs poses considerable challenges to augmenta-
tion schemes, coding architectures, and contrastive
designs for traditional GCL. In this work, we pro-
pose HeterGCL, a novel graph contrastive learn-
ing framework with structural and semantic learn-
ing to explore the true potential of GCL on het-
erophilic graphs. Specifically, We abandon the
random augmentation scheme that leads to the
destruction of the graph structure, instead intro-
duce an adaptive neighbor aggregation strategy
(ANA) to extract topology-supervised signals from
neighboring nodes at different distances and ex-
plore the structural information with an adaptive
local-to-global contrastive loss. In the semantic
learning module, we jointly consider the original
nodes’ features and the similarity between nodes
in the latent feature space to explore hidden as-
sociations between nodes. Experimental results
on homophilic and heterophilic graphs demon-
strate that HeterGCL outperforms existing self-
supervised and semi-supervised baselines across
various downstream tasks.

1 Introduction
Graph Neural Networks (GNNs) have demonstrated supe-
rior performance in graph-based machine learning tasks like
node classification and clustering [Xu et al., 2023; Liu et al.,
2024a; Liu et al., 2024b]. Following the homophily assump-
tion [Wang et al., 2023], they iteratively aggregate and trans-
form information from neighbor nodes to learn node repre-
sentations. Generally, GNNs are designed mainly to fulfill the
needs of supervised tasks, which rely heavily on task-specific
labeled data. However, obtaining labeled graph datasets in the
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Figure 1: Random graph Augmentation.

real world is challenging due to the complexity of the graph
structure. This motivates many pioneering works in graph
self-supervised learning to alleviate the reliance on manual
labels, especially Graph Contrastive Learning (GCL), which
transposes contrastive learning from vision and language do-
mains to graph data, attracting extensive research interest.

Most GCL methods continue the visual contrastive pat-
tern of “augmentation-encoding-contrast” to provide self-
supervised learning without labeled data. This involves aug-
menting the original graph to generate contrasting views,
encoding these views using traditional GNNs, and learning
more general and robust node representations by maximizing
consistency between the augmented views. While the current
GCL paradigm has shown promising results on homophilic
graphs, where linked nodes share similar features or labels,
its effectiveness is greatly limited in heterophilic settings.

First, traditional GCL performs random graph augmenta-
tion by removing edges or nodes to obtain different views.
However, it may destroy the underlying structural informa-
tion in graphs. For example, randomly deleting an element
node in a molecular graph may lead to a completely differ-
ent molecular structure with distinct properties. Similarly, re-
moving edges adjacent to hub nodes can impede the rapid
propagation of node information and isolate important nodes
that should be linked. Figure 1 shows an example where
node 7 could have propagated features to node 0 within two
hops. However, due to the removal of the edge between
nodes 0 and 1, node 7 now requires a longer propagation path
(7 → 1 → 2 → 3 → 5 → 0). Recent theoretical and
empirical analyses [Wang et al., 2022a] further reveal that
random augmentation maintains low-frequency components
in homophilic graphs but suppresses high-frequency informa-
tion in heterophilic graphs. This explains why GCL tends to
achieve favorable results on homophilic graphs but struggles
with heterophilic graphs.

Secondly, homophily as a crucial inductive bias on graphs
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is widely recognised as an important factor for the success
of graph neural networks. The encoding structure and con-
trastive patterns of GCL inherit the implicit homophily in
GNNs, which provides appropriate guidance in cases where
node labels are unknown. They reconstruct node attributes
and interactions through local message passing. Many recent
studies [Wang et al., 2022c; Lee et al., 2022] also discovered
the effectiveness of using homophily, and they utilized com-
munity structure to strengthen local connections. [Li et al.,
2023] further exploits homophily directly by treating neigh-
bor nodes as positive nodes. However, it is worth noting that
real-world graphs often exhibit heterophily, where nodes with
similar semantics may not be geographically close and adhere
to the principle of “opposites attract”. In such cases, smooth-
ing features of locally connected nodes will inadvertently
merge irrelevant information from different classes, which
limits the application of GCL to general data. Overall, the
potential of GCL on heterophilic graphs with complex con-
nectivity remains unexplored. It motivates our investigation
into improving graph contrastive learning to fill this gap.

To address the above challenges, we analyze the ho-
mophilic levels of graphs, and find that nodes within het-
erophilic graphs exhibit complex interactions, which chal-
lenges the traditional “similarity attracts similarity” principle
in GCL. Therefore, we propose a novel framework HeterGCL
for graph contrastive learning. By incorporating both struc-
tural and semantic information, HeterGCL aims to explore
the true potential of GCL on heterophilic graphs. In the struc-
tural branch, we eliminate random augmentation and design a
more comprehensive structural augmentation scheme, ANA,
which effectively extracts topology-supervised signals from
neighboring nodes at different distances while avoiding fea-
ture mixing. In addition, we introduce the adaptive neighbor
contrastive loss (ANCLoss) to facilitate the adaptive learning
of structural information from local to global. This allows us
to overcome the limitations of interactions within the same
layer or across layers. Meanwhile, the semantic branch inte-
grates the feature information of nodes in the original graph
with the semantic information between similar nodes in the
potential feature space. The incorporation of similarity re-
lations into the features has been shown to be beneficial for
handling heterophilic graphs. Finally, by jointly optimizing
structural and semantic losses, we can learn highly expressive
node representations for different downstream tasks without
manually annotated labels. Our source code is available at
https://github.com/Incendio1/HeterGCL.

Our main contributions can be summarized as follows: (1)
We reveal the limitations of the traditional GCL when ap-
plied to heterophilic graphs and empirically show the com-
plexity of node interactions, which makes the traditional GCL
paradigm inapplicable. (2) To fill the gap of self-supervised
learning in heterophilic graphs, we propose a novel GCL
framework HeterGCL, which improves the “augmentation-
encoding-contrast” pattern by incorporating structure and se-
mantic learning to obtain effective node representations for
different homophilic-level graphs. (3) Extensive experiments
on different homophily graphs show that our method achieves
state-of-the-art performance compared to supervised and un-
supervised baselines in various downstream tasks.

2 Related Work
Graph Neural Networks Meet Heterophily. Most GNNs
employ the message passing (MP) to facilitate the feature
propagation among nodes and their neighbors, where promi-
nent examples include GCN [Kipf and Welling, 2017] and
GAT [Velickovic et al., 2018]. [Wu et al., 2019] further
decoupled the MP to explore the global structural informa-
tion. Unfortunately, the homophily implicit in MP limits
the generalization of GNNs to heterophilic graphs, which is
outlined in [Pei et al., 2020]. They show that unlike “like
attracts like” in homophilic graphs, different nodes in het-
erophilic graphs tend to be linked. In this case, GNNs may
struggle to perform well. Recent works have begun to re-
visit the heterophily by designing wider messaging ranges to
capture distant but similar nodes in the heterophilic graph.
JKNet and Mix-Hop [Xu et al., 2018; Abu-El-Haija et al.,
2019] transform and connect multilayer neighbor represen-
tations, while DAGNN and GPRGNN [Liu et al., 2020;
Chien et al., 2021] use graph diffusion to capture higher-order
neighbors in heterophilic graphs. Other studies have shown
that incorporating feature perspectives, such as node attribute
graphs [Jin et al., 2021] and interpretable compatibility matri-
ces [Wang et al., 2022b], can improve GNNs on heterophilic
graphs. However, these methods still require a supervised set-
ting, which increases the demand for high-quality datasets.
Graph Self-supervised Learning. With the success of
self-supervised learning in improving representation quality
when labels are scarce, more and more work has focused
on combining self-supervised learning with GNNs. Early
works usually adopt traditional network embedding strategies
such as random walk or link reconstruction [Qiu et al., 2018;
Zhang et al., 2018] , which sacrifice certain topology infor-
mation and pay more attention to the proximity of nodes.
Therefore, recent works have turned to GCL, which maxi-
mizes the consistency between enhanced graph views by con-
trasting positive and negative samples across different views,
e.g., DGI, InfoGraoph, and MVGRL [Velickovic et al., 2019;
Sun et al., 2020; Hassani and Khasahmadi, 2020]. On the
one hand, the core of GCL is how to determine contrast pat-
terns. Grace focuses on node-level contrast. BGRL [Thakoor
et al., 2022] uses invariance regularization to perform self-
supervised representation learning without negative samples.
On the other hand, the GCL framework relies on the design of
graph augmentation to facilitate the learning of invariant rep-
resentations, which includes node dropping, edges removing
and adding, etc. However, it may erase the original graph’s
semantic information. [Lee et al., 2022] also highlighted the
need for careful calibration of random augmentation. If edges
are over-removed due to “sampling bias”, the graph structure
may be damaged, and insufficient removals may not provide
sufficient learning signals for the model.

3 Notations and Preliminaries
Notation. An undirected graph is denoted as G = (V , E),
where V represents the set of nodes {v1, . . . , vN}. E ⊆ V×V
is the set of the edges. The adjacency matrix of G is denoted
as A ∈ RN×N and the feature matrix X ∈ RN×d, where d
is the feature dimension size. The diagonal degree matrix of
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Figure 2: Analysis of homophily level on Cora and Texas.

nodes is denoted as D ∈ RN×N and D(i,i) =
∑

j A(i,j). In

addition, Â = D̃− 1
2 ÃD̃− 1

2 is the re-normalized adjacency
matrix, where Ã = A + I represents the adjacency matrix
with self-loop and I ∈ RN×N is the identity matrix. D̃ is the
diagonal matrix corresponding to Ã.
Problem Definition. Given a graph G = (X,A), we aim to
learn the encoder F to map the feature matrix X ∈ RN×d to a
low-dimensional representation H ∈ RN×df , and df << d.
The i-th row hi in H represents the low-dimensional embed-
ding of node vi. Finally, these representations can be further
used for downstream tasks.

4 Method
In this section, we first explore why the existing methods are
unsuitable for heterophilic graphs. Then, we present Het-
erGCL to cope with the current challenges.

4.1 Homophiliy Level Analysis
Existing methods usually assume a strong homophilic rela-
tionship between nodes and use adjacency information (A)
to improve node predictability. Nevertheless, it is not always
the case in practice. The nodes with the same label as the
center node are not evenly distributed among each layer. As
shown in Figure 2, we calculated the average homophily level
homo of nodes in different layers using homophilic graph
Cora and heterophilic graphs Texas as examples. homo is
computed based on the ratio of neighboring nodes belonging
to the same class as each node in each layer. Our observa-
tions reveal that shallow neighbor nodes on Cora exhibit more
similar labels with their corresponding center nodes. As the
layer depth increases, homo shows a decreasing trend, indi-
cating the difficulty in finding neighbor nodes similar to the
center node in deeper layers. These observations explain the
strong performance of GNN and GCL methods, as they ben-
efit from similar relationships among connected nodes. How-
ever, the situation is different for Texas. More than half of
the nodes in the shallow layer do not share the same class la-
bel as the center node. homo gradually decreases from the
initial to the third layer and shows an increasing trend after
the fourth layer. This empirical evidence suggests that the
distribution of neighboring nodes on heterophilic graphs fol-
lows a diverse and heterophilic pattern. It is also worth noting
that even on the highly homophilic Cora dataset, many nodes
in the shallow layers do not belong to the same class as their
corresponding center nodes. For example, the first and second

layers consist of approximately 15% and 28% neighbor nodes
from different classes with the center node. Consequently,
simple learning of node connectivity relationships introduces
considerable irrelevant noise nodes. We would like to design
personalized decision-making schemes for nodes that reason-
ably utilize neighbor information from different layers.

4.2 HeterGCL
This section formally introduces the HeterGCL framework.
The overall details of HeterGCL are displayed in Figure 3.
Structure Augmentation via ANA. Following the GCL
pattern, we first need to augment the input graphs to ob-
tain graph views for contrast. However, current random aug-
mentation destroys the structural integrity of the graph. In
addition, considering the high-frequency preference of het-
erophilic graphs, structural perturbations will impact the mid-
dle and high-frequency components of the graph. Therefore,
we drop the random augmentation to preserve the structural
knowledge. Based on our analysis, capturing homophilic
nodes spread across different layers is critical in heterophilic
graphs. It motivates us to explore the replacement of random
augmentation with graph diffusion [Klicpera et al., 2019].
We explicitly set the transfer matrix Â(k) to construct self-
supervised signals by incorporating the information from
neighboring nodes. However, since neighbor distributions
in heterophilic graphs usually show different heterophilic
patterns, recursive aggregation tends to include more het-
erophilic nodes. Figure 4 shows an example where nodes of
the same label share the same color. When the center node v0
aggregates features from multiple layers, information is trans-
mitted to v0 layer-by-layer via connected edges. As a result,
node v0 indiscriminately collects information from various
layers, including noisy nodes with different classes as v0.

To address this problem, we propose Adaptive Neighbor
Aggregation (ANA) instead of random augmentation. ANA
is automatically compatible with various graph datasets with-
out requiring a priori domain knowledge. Specially, We do
not assume a strong correlation between the center node and
its neighbors. Instead, we untangle the interconnections be-
tween multiple layers and group neighbors according to their
layer orders, which avoids information being forced to propa-
gate along the graph structure layer by layer leading to mutual
interference between different layers. It is defined as follows:

M(l) = sgn
[
Â(l)

]
− sgn

[
Â(l−1)

]
,

M̃(l) = M(l) + I, l = 1, 2, . . . ,K.
(1)

where the sgn[·] function is used to indicate a result of 1 when
Â

(l)
ij > 0, and 0 otherwise. When l = 1, Â(0) = I. From

Theorem 1, it can be inferred that M(l) effectively captures
all pairs of nodes with the shortest path length of l. Thus,
for each node, the set {M(1), ..., M(l)} contains the neighbor
nodes from layer 1 to layer l, where nodes occurring in both
the shallow and deep layers are stored only in the shallow
group. Finally, by adding self-loops to each node, M̃(l) can
be obtained. Grouping allows for a more flexible configura-
tion of neighbor nodes from different layers without interfer-
ence from shallow nodes. This flexibility in the aggregation
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enables the inclusion of more valuable information from far-
ther away nodes in heterophilic graphs.

Theorem 1. Assume that Â represents the normalized adja-
cency matrix of an undirected graph G. Then sgn

[
Â(l)

]
−

sgn
[
Â(l−1)

]
records all pairs of nodes whose shortest path

length is equal to l.

Proof. We consider the unnormalized adjacency matrix as an
example. Suppose A is the adjacency matrix corresponding
to graph G, recording all node pairs with path lengths equal
to 1. Ã = A+ I records all node pairs with path length less
than or equal to 1 (the path length is 0 from itself to itself).
Ã(2) records all pairs of nodes whose path length is less than
or equal to 2 (all pairs of nodes whose distance is equal to 0,
1, 2). By the induction hypothesis, Ã(l−1) records all node
pairs with path lengths less than or equal to l − 1, and Ãl

records all node pairs with path lengths less than or equal to
l. Therefore, sgn

[
Ã(l)

]
− sgn

[
Ã(l−1)

]
records all pairs of

nodes whose shortest path length is exactly l.

Although Equation (1) preserves the nodes of different lay-
ers, it sacrifices more connection relations between nodes.
Specifically, M̃(l) only retains the shortest paths between
nodes and disregards other paths, which means that neigh-
bor nodes in the same layer have the same influence on the

center node. Figure 4 illustrates this limitation, where there
is only one direct path between node 0 and node 7. In con-
trast, there are multiple connected paths 0 → 1 → 2 → 3
and 0 → 5 → 3 between node 3 and node 0. Intuitively, the
interaction strength between nodes 3 and 0 should be greater
than between nodes 7 and 0. However, after node grouping,
0 → 5 → 3 is the only propagation path between nodes 0
and 3, which weakens the interaction strength between nodes
0 and 3. Therefore, we maintain interaction strength by inte-
grating this multipath relationship:

R(l,L) =
L∑
i=l

Â(i). (2)

where L is a hyperparameter limiting the maximum path
length between nodes to be less than or equal to L. Â

(i)
n,m

measures the interaction strength between nodes n and m
generated by path of length i. The interaction strength gener-
ated by each path depends on the degree of all nodes on the
path. Therefore, the interaction strength of all nodes can be
generalized to R(l,L). Finally, the interaction strength of all
nodes in each layer can be calculated as follows:

A(l)
ana = M̃(l) ⊙R(l,L), l = 1, 2, . . . , L. (3)

where ⊙ denotes Hadamard product. With this approach, we
avoid the negative effects of random augmentation and can
set different l to obtain low-order to high-order structural in-
formation about the nodes in the graph.
Structural Learning via Adaptive Neighbor Contrast.
Previous GCL methods usually employ GNNs to reconstruct
feature information in different views. However, the implied
homophily or heterophily in GNNs will affect node encoding.
Therefore, we use MLP to encode the original view and sepa-
rate feature and structural information into different branches
to optimize the utilization of both types of information. The
coding process is defined as follows:

H0 = MLP(X). (4)
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where row i of H0 represents the representation hi of node
vi. To improve the utilization of neighbor information, we
would like to follow the principle of mutual information max-
imization, in which it is crucial to define and select positive
samples. However, directly considering multi-hop informa-
tion as positive anchor nodes may ignore the homophily level
in different layers (e.g., Figure 2). To ensure the quality of the
positive samples, we further combine the l-hop representation
with adaptive weights to encode the neighbor’s features:

P(l) = γl(A
(l)
anaH0). (5)

where γ denotes the trainable weight factor and p
(l)
i is the

i-th row of P(l). As l expands, we get a set of multi-order
views {P(1), ...,P(l)}. Then, we introduce Adaptive Neigh-
bor Contrastive Loss (ANCLoss) to estimate the lower bound
of the mutual information local to global views. It extracts
contextual information by aligning node representations with
l-th hop neighbor representations, similar to knowledge dis-
tillation. The ANCLoss for the l-th hop is defined as follows:

L(l)
a = − 1

N

N∑
i=1

log
exp

(
hi · p(l)

i /τ
)

∑
vk∈V 1[k ̸=i] exp

(
hi · p(l)

k /τ
) . (6)

where 1[k ̸=i] denotes 1 when k is not equal to i and 0 when
equal. τ is the temperature parameter, and exp(·) denotes
the exponential function. For each node, we use A

(l)
ana to

adaptive find its l-layer neighbors and treat them as positive
samples, while other nodes are negative. In the representation
space, the loss encourages each node to extract the contextual
information presented by the adaptive neighbor representa-
tion. This allows the encoder to learn strong correlations be-
tween anchor nodes and different layer nodes without recur-
sive message passing. In addition, the adaptive weights bal-
ance the information contained in different hops. As a result,
the positive sample p

(l)
i retains important information in l-th

hop and reduces the effect of noise or redundant information.
The overall structural contrastive loss is defined as:

La =

K∑
l=1

L(l)
a . (7)

Semantic Learning via original Graph. After obtaining
structural information, attribute knowledge rooted in the
graph is also essential for graph learning. [Wang et al.,
2022b] pointed out that models using only the original fea-
tures of heterophilic graph nodes outperform many complex
GNN models. Inspired by canonical correlation analysis
[Zhang et al., 2021], we propose Original Feature Analysis
(OFA). For contrastive schemes, we need to specify posi-
tive and negative view samples for anchor points. However,
specifying accurate negative samples for heterophilic graphs
is challenging if only node features are considered. There-
fore, OFA employs a feature-level self-supervised learning
approach based on invariant regularization, which maximizes
the mutual information between node embeddings and origi-
nal features to mine more original semantic information.

First, we generate a perturbation attribute view for the orig-
inal feature view. Then, the new view is fed into the MLP

shared with the topology channel to obtain node representa-
tions. The detailed definition is as follows:

X1 = FeatDrop(X, p),

H1 = MLP(X1).
(8)

where FeatDrop denotes the feature drop operation and p is
the drop probability. To avoid destroying the structure of het-
erophilic graphs as much as possible, we only mask some
features. The embeddings of the new view and the original
view are H1 and H0, respectively.

Lo = ∥H0 − H1∥2
F︸ ︷︷ ︸

invariance

+ λ

(∥∥∥H⊤
0 H0 − I

∥∥∥2

F
+

∥∥∥H⊤
1 H1 − I

∥∥∥2

F

)
︸ ︷︷ ︸

decorrelation

. (9)

where λ is a non-negative hyperparameter for tuning the in-
variant and decorrelation terms. By optimizing Equation (9),
the mutual information between node embeddings and origi-
nal features is maximized.
Semantic Learning via latent feature graphs. Next, we
utilize the similarity of nodes in the latent feature space to
discover hidden associations between nodes. Nodes belong-
ing to different classes on heterophilic graphs may exhibit
similar features in the feature space. For example, in pro-
tein networks, despite the tendency of different amino acids
to interact and create new proteins, amino acids still share
common properties with each other. Considering the success
of DeepCluster [Caron et al., 2018] training, which uses fea-
ture cluster assignments as pseudo-labels, we are naturally
inspired to identify potential homophilic structures by using
K-means in the latent feature space to group similar nodes
together. However, the non-differentiability of the K-means
hard clustering process will make the optimization process
tricky. To solve the problem, we transform K-means into the
special Gaussian Mixture Models (GMM) [Jin et al., 2022].
Specifically, by utilizing centroids {c1, c2, ..., ck} defined by
the mean embedding of nodes with different hard labels, we
compute a posterior probability to achieve soft clustering as-
signment to the original graph:

p (hi | cj) =
1√
2πσ2

exp

(
−
∥hi − cj∥2

2σ2

)
. (10)

where σ2 is the variance of Gaussian distribution. By con-
sidering an equal prior p (c1) = p (c2) = ... = p (ck), the
probability of node feature hi belonging to cluster cj can be
calculated by the Bayes rule as:

p (cj | hi) =
p (cj) p (hi | cj)∑k
r=1 p (cr) p (hi | cr)

=

exp

(
− (hi−cj)

2

2σ2

)
∑k

r=1 exp
(
− (hi−cr)

2

2σ2

)
(11)

In this way, we can get a cluster assignment matrix R ∈
RN×k where Rij = p (cj | hi) indicates the soft clustering
value between node vi and cluster cj . Then we can construct
the latent feature loss function (LFLoss) as follows:

Llf =
1

k|E|

k∑
r=1

∑
(vi,vj)∈E

MSE (p (cr | hi) , p (cr | hj)) .

(12)
where MSE(·) is the Mean Square Error.
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Heterophily Homophliy
Dataset Cornell Texas Wisconsin Actor Cora Citeseer Pubmed
Nodes 183 183 251 7600 2708 3327 19717
Edges 277 279 499 26752 5278 4676 44324
Features 1703 1703 1703 931 1433 3703 500
Classes 5 5 5 5 6 7 3
H.R 0.131 0.108 0.196 0.219 0.810 0.736 0.802
Edge Density 0.0179 0.0194 0.0164 0.0010 0.0014 0.0008 0.0002

Table 1: Benchmark dataset statistics.

4.3 Model Training
We jointly optimize contrastive losses to train HeterGCL end-
to-end. The overall objective function is defined as follows:

L = αLa + (1− α)(Lo + Llf). (13)

where α is a weight factor. Our goal is to optimize node rep-
resentations for downstream tasks by minimizing L.

5 Experiments
5.1 Datasets and Experimental Settings
Datasets. We evaluated the performance of HeterGCL and
existing methods on seven representative homophilic or het-
erophilic datasets. Specifically, for the heterophilic datasets,
we select three webpage datasets, Cornell, Texas, Wisconsin
and an actor co-occurrence network, Actor [Pei et al., 2020].
For the homophilic dataset, we select the widely used stan-
dard citation network datasets Cora, Citeseer, and Pubmed
[Sen et al., 2008], where nodes and edges denote document
and citation relationships, respectively. In addition, we calcu-
late the homophilic ratio of graphs by the following metrics:

H.R =
|{(u, v) : (u, v) ∈ E ∧ yu = yv}|

|E|
. (14)

where H.R ∈ [0, 1], is the fraction of edges with connected
nodes of the same class. When H.R is closer to 1, the graph is
more homophilic. Conversely, the graph is more heterophilic.
Table 1 gives detailed statistics for all datasets.
Baselines for Comparison. To demonstrate the effective-
ness and scalability of our method, we compare HeterGCL
with several groups of representative baselinses on node clas-
sification and node clustering, including four self-supervised
models Grace, MVGRL [Hassani and Khasahmadi, 2020],
BGRL [Thakoor et al., 2022] and SELENE [Zhong et al.,
2022] (design for heterophilic graphs), eight supervised base-
lines, including GCN [Kipf and Welling, 2017], GAT [Velick-
ovic et al., 2018], SGC [Wu et al., 2019], JKNET [Xu et al.,
2018], GCNII [Chen et al., 2020], MixHop [Abu-El-Haija et
al., 2019], H2GCN [Zhu et al., 2020], and GPRGNN [Chien
et al., 2021] . For the node clustering task, we add feature- or
structure-based network embedding models AE [Hinton and
Salakhutdinov, 2006], Struct2vec [Ribeiro et al., 2017], LINE
[Tang et al., 2015], VGAE [Kipf and Welling, 2016], SDCN
[Bo et al., 2020],DGI [Velickovic et al., 2019], GMI [Peng et
al., 2020] and FAGCN [Bo et al., 2021].
Implementation. We adopt the strictly unsupervised
scheme and transductive setting to pre-train node represen-
tations. We fed the embedding obtained from HeterGCL
into a logistic regression classifier to learn the node repre-
sentations for node classification. Each dataset is randomly

split into training/validation/test sets with 10%/10%/80%.
We run each model 10 times and report the average accu-
racy. For node clustering, we use the K-means algorithm and
select 3 evaluation metrics of accuracy (ACC), normalized
mutual information (NMI), and average rand index (ARI).
The number of clusters is set to the number of ground truth
classes. The experiments are conducted on a single NVIDIA
GeForce RTX 3090 machine. In addition, we perform a grid
search to tune the hyperparameters and use the Adam op-
timizer to select the learning rate to train the model from
{5e − 3, 6e − 3, 2e − 2}. For HeterGCL, we search for λ
and α in steps of 0.01 from 0 to 5. The dropout rate is
searched from {0, 0.1, 0.5}. The weight decay is adjusted
from {5e− 4, 5e− 3, 3e− 3}. L is searched in steps 1 from
1 to 10.

5.2 Node Classification Results
Table 2 summarizes the results of node classification. We can
see that HeterGCL outperforms all baseline models on the
heterophilic graph and achieves the best performance. We at-
tribute this superiority to the following factors: (1) HeterGCL
changes the MP strategy unsuitable for heterophilic graphs
to avoid mixing multi-hop information. (2) HeterGCL better
mines the semantic information in the original node features.
(3) Using MLP as an encoder to process structure and feature
information separately avoids the low expressiveness of mix-
ing structure and feature information in GNN encoders in the
heterophilic environment. With the help of these extra infor-
mation, HeterGCL even outperforms supervised GNNs. In
addition, although HeterGCL does not achieve the best per-
formance on homophilic graphs, it is still competitive. In fact,
most baselines are designed for homophilic graphs and do
not apply to heterophilic graphs, which supports our motiva-
tion. Similar evidence is that for baselines such as JKNET
and MixHop, which also utilize multi-hop neighbor informa-
tion, the multi-hop aggregation scheme in HeterGCL yields
better performance. Finally, compared to the self-supervised
baselines, HeterGCL is more general in different graphs.

5.3 Node Clustering Results
Table 3 shows the node clustering results. First, compared to
the baseline models, HeterGCL achieves significantly supe-
rior clustering performance overall across the three cluster-
ing evaluation metrics. Second, only attribute-based AutoEn-
coder (AE) performs better than structure-based network em-
bedding methods on heterophilic graphs. This empirical val-
idation demonstrates the importance of node initial features
learning on heterophilic graphs. Finally, HeterGCL signifi-
cantly outperforms baselines such as VGAE and SELENE,
which stems from the fact that HeterGCL explores the union
of initial features and global semantics. It is not available with
existing methods. In addition, GCL models generally outper-
form traditional network embedding methods, again demon-
strating the superiority of the GCL pattern.

5.4 Ablation Study
We set up an ablation study to explore the contribution of
different components in HeterGCL. Specifically, We con-
struct the following variants: (1) Remove structure learning
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Method Avaliable data Cornell Texas Wisconsin Actor Cora Citeseer Pubmed
GCN X,A,Y 54.8 ± 2.9 58.4 ± 4.2 51.8 ± 6.0 28.2 ± 0.4 83.2 ± 1.2 70.2 ± 1.1 85.2 ± 0.1
GAT X,A,Y 54.8 ± 3.1 56.7 ± 3.1 51.0 ± 4.3 26.9 ± 0.8 83.7 ± 1.0 70.6 ± 0.8 84.7 ± 0.3
SGC X,A,Y 48.8 ± 7.1 53.8 ± 8.9 44.3 ± 5.9 25.3 ± 0.5 82.2 ± 1.1 71.4 ± 0.9 81.3 ± 0.5
JKNET X,A,Y 45.3 ± 3.2 61.4 ± 3.5 56.0 ± 4.3 26.8 ± 1.0 80.5 ± 0.8 65.7 ± 1.8 84.8 ± 0.2
GCNII X,A,Y 64.3 ± 5.7 61.2 ± 9.8 60.7 ± 7.6 32.6 ± 0.5 84.4 ± 1.6 71.9 ± 1.6 89.1 ± 0.5
MixHop X,A,Y 52.8 ± 6.3 55.5 ± 3.3 51.5 ± 5.4 29.0 ± 1.0 81.0 ± 1.6 66.4 ± 1.8 84.9 ± 0.5
H2GCN X,A,Y 62.4 ± 5.8 64.1 ± 7.8 63.5 ± 7.2 33.8 ± 0.4 81.4 ± 1.2 71.8 ± 0.9 85.7 ± 0.3
GPRGNN X,A,Y 63.4 ± 8.4 66.4 ± 7.8 65.2 ± 8.4 33.3 ± 0.7 85.2 ± 1.1 72.5 ± 0.8 87.6 ± 0.3
GRACE X,A 56.4 ± 2.1 63.5 ± 2.6 53.8 ± 3.6 28.1 ± 0.8 83.7 ± 0.7 71.4 ± 1.0 77.6 ± 1.0
MVGRL X,A 56.2 ± 2.4 61.7 ± 3.9 50.6 ± 5.9 31.4 ± 0.8 83.5 ± 1.1 72.3 ± 0.7 80.1 ± 0.7
BGRL X,A 56.7 ± 2.1 65.8 ± 2.7 59.8 ± 4.1 29.8 ± 0.3 83.0 ± 0.7 72.3 ± 0.6 84.7 ± 0.4
SELENE X,A 56.1 ± 2.5 64.0 ± 1.7 55.5 ± 4.8 33.2 ± 0.4 56.2 ± 1.5 54.1 ± 1.1 81.7 ± 0.3
HeterGCL X,A 75.5 ± 2.8 74.7 ± 3.6 75.6 ± 4.5 37.2 ± 0.4 83.0 ± 0.8 73.0 ± 0.6 86.2 ± 0.2
w/o ANCLoss - 67.4 ± 5.5 68.8 ± 3.2 71.5 ± 4.3 35.2 ± 0.5 70.4 ± 1.1 63.4 ± 0.7 78.5 ± 0.4
w/o OFALoss - 66.1 ± 5.5 69.8 ± 4.2 65.6 ± 6.5 36.4 ± 0.4 82.7 ± 0.9 72.3 ± 0.6 86.2 ± 0.2
w/o ANA - 72.5 ± 4.6 72.3 ± 2.9 74.0 ± 4.2 35.2 ± 0.5 82.4 ± 1.1 71.7 ± 0.8 85.5 ± 0.2
w/o LFLoss - 73.9 ± 3.8 73.8 ± 2.5 73.8 ± 2.5 36.8 ± 0.4 82.8 ± 0.8 72.7 ± 0.7 86.0 ± 0.2

Table 2: Overall results for classification accuracy. The best result is in bold, and the second best is underlined.

Method Cornell Texas Actor Citeseer
ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

AE 52.2 ± 0.0 17.1 ± 0.0 17.4 ± 0.0 50.5 ± 0.0 16.6 ± 0.0 14.6 ± 0.0 24.2 ± 0.1 1.0 ± 0.0 0.5 ± 0.0 58.8 ± 0.2 30.9 ± 0.2 30.3 ± 0.2
Struct2vec 32.7 ± 0.0 1.5 ± 0.0 -2.2 ± 0.0 49.7 ± 0.0 18.6 ± 0.0 21.0 ± 0.0 22.4 ± 0.3 0.1 ± 0.0 -0.1 ± 0.0 21.2 ± 0.5 1.2 ± 0.1 0.2 ± 0.1
LINE 34.1 ± 0.8 2.9 ± 0.2 -1.5 ± 0.3 49.4 ± 2.1 16.9 ± 1.6 18.1 ± 1.1 22.7 ± 0.1 0.1 ± 0.0 0.1 ± 0.0 28.4 ± 0.9 8.5 ± 0.7 3.5 ± 0.6
VGAE 43.4 ± 1.0 5.5 ± 0.5 4.0 ± 0.5 50.3 ± 1.9 11.7 ± 1.0 21.5 ± 1.8 23.3 ± 0.2 0.2 ± 0.0 0.3 ± 0.1 55.7 ± 0.1 32.5 ± 0.1 28.3 ± 0.1
SDCN 36.9 ± 2.0 6.6 ± 0.9 3.4 ± 1.3 44.0 ± 0.6 14.2 ± 1.9 10.7 ± 3.0 23.7 ± 0.3 0.1 ± 0.1 0.0 ± 0.1 59.9 ± 1.2 30.4 ± 0.8 29.7 ± 1.3
DGI 44.1 ± 2.7 5.8 ± 0.8 4.9 ± 2.0 55.7 ± 0.7 8.7 ± 3.6 8.3 ± 6.8 24.3 ± 0.1 1.4 ± 0.0 0.1 ± 0.0 58.9 ± 0.4 32.6 ± 0.4 33.2 ± 0.6
GMI 33.6 ± 2.1 5.3 ± 1.3 3.1 ± 0.9 35.2 ± 1.2 7.7 ± 0.9 3.0± 0.6 26.2 ± 0.0 0.2 ± 0.0 0.4 ± 0.0 59.0 ± 0.0 32.1 ± 0.0 33.1 ± 0.0
FAGCN 56.2 ± 8.3 17.1 ± 4.0 19.9 ± 13.9 57.9 ± 6.5 23.4 ± 9.0 22.5 ± 10.9 25.6 ± 0.1 3.2 ± 0.1 0.3 ± 0.1 47.4 ± 0.3 20.2 ± 0.3 17.9 ± 0.2
GRACE 43.6 ± 4.6 8.2 ± 1.2 6.4 ± 2.0 57.0 ± 2.2 20.7 ± 1.0 29.5 ± 4.2 25.9 ± 0.5 0.6 ± 0.3 0.9 ± 0.4 54.7 ± 5.4 31.7 ± 3.8 27.4 ± 5.6
MVGRL 43.8 ± 3.0 8.4 ± 2.8 7.1 ± 3.0 62.8 ± 2.3 25.7 ± 1.8 33.5 ± 4.6 28.6 ± 1.0 2.4 ± 0.5 2.8 ± 0.6 45.8 ± 9.1 23.4 ± 7.7 19.9 ± 7.9
BGRL 55.1 ± 1.7 8.0 ± 0.5 3.9 ± 1.0 58.7 ± 1.8 22.0 ± 2.4 23.7 ± 2.3 28.2 ± 0.3 1.8 ± 0.2 2.4 ± 0.1 64.3 ± 1.7 36.6 ± 1.7 36.7 ± 1.9
SELENE 57.8 ± 4.7 17.0 ± 3.5 22.9 ± 5.1 64.5 ± 4.4 25.2 ± 8.1 34.2 ± 11.5 28.2 ± 0.3 4.7 ± 0.7 1.8 ± 0.1 59.2 ± 2.5 29.9 ± 2.2 29.4 ± 3.1
HeterGCL 62.9 ± 2.7 29.2 ± 3.5 33.5 ± 5.2 63.1 ± 1.3 39.0 ± 2.8 31.3 ± 3.5 30.9 ± 1.0 4.9 ± 1.2 5.0 ± 1.2 68.1 ± 0.8 43.6 ± 0.9 43.1 ± 1.1

Table 3: Overall results for node clustering. The best result is in bold, and the second-best result is underlined.

(w/o ANCLoss); (2) Remove original semantic learning (w/o
OFALoss); (3) Adaptive Neighbor Aggregation replaced by
traditional MP aggregation i.e., A(l)

ana by renormalized neigh-
borhood matrix Â (w/o ANA); (4)Remove latent features Se-
mantic Learning (w/o LFLoss);

As shown in Table 2, we observe that all components con-
tribute to the performance improvement of HeterGCL. Re-
moving Lo did not affect the model performance significantly
on heterophilic graph Actor. However, on Cornell, Texas, and
Wisconsin Lo plays a significant role, indicating that node
features are more helpful on these three small datasets. In
contrast, La is more contributive to the larger Actor dataset,
which captures more information about nodes with similar
features and local structure. In addition, ANA improves per-
formance on all datasets compared to traditional recursive
aggregation, demonstrating that our aggregation scheme is
more promising for discovering valuable neighbor nodes. Fi-
nally, we find that the effect of LFLoss is greater on het-
erophilic graphs, which supports our conjecture that even
though neighbor nodes in heterophilic graph do not belong
to the same class, they may still have semantic similarity.

5.5 Effect of ANA Scope
As shown in Figure.5, we explored the role of ANA on struc-
ture learning in a larger neighbor range. We take the SGC
with traditional recursive aggregation as a baseline and show
the performance of the model under different L. First, the
performance curve of HeterGCL on the heterophilic graph
Cornell is stable, suggesting that the contrastive pattern of
HeterGCL can adapt to heterophilic graphs. In contrast, SGC
with recursive MP does not work in slightly deeper layers.
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Figure 5: Impact analysis of L in structural augmentation.

It demonstrates the effectiveness of ANA in making rational
use of neighbor information. Second, as L increases, the per-
formance of HeterGCL also decreases because the number
of homophilic nodes on Citeseer is decreasing. On the con-
trary, the performance of the SGC improves slightly, benefit-
ing from the additional information brought by the labels.

6 Conclusion
In this paper, we focus on self-supervised representation
learning for heterophilic graphs and propose a novel network
embedding framework HeterGCL. We effectively fuse node
features and graph topology information through three con-
trastive losses. In addition, we propose ANA to guide in-
formation propagation to construct self-supervised signals,
avoiding information mixing on heterophilic graphs. Exten-
sive experiments show that HeterGCL has better downstream
performance on homophilic and heterophilic graphs.
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R. Devon Hjelm. Deep graph infomax. In 7th Inter-
national Conference on Learning Representations, ICLR,
2019.

[Wang et al., 2022a] Haonan Wang, Jieyu Zhang, Qi Zhu,
and Wei Huang. Augmentation-free graph contrastive
learning with performance guarantee. arXiv preprint
arXiv:2204.04874, 2022.

[Wang et al., 2022b] Tao Wang, Di Jin, Rui Wang, Dongx-
iao He, and Yuxiao Huang. Powerful graph convolutional
networks with adaptive propagation mechanism for ho-
mophily and heterophily. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 36, pages 4210–
4218, 2022.

[Wang et al., 2022c] Yanling Wang, Jing Zhang, Haoyang
Li, Yuxiao Dong, Hongzhi Yin, Cuiping Li, and Hong
Chen. Clusterscl: Cluster-aware supervised contrastive
learning on graphs. In Frédérique Laforest, Raphaël
Troncy, Elena Simperl, Deepak Agarwal, Aristides Gionis,
Ivan Herman, and Lionel Médini, editors, WWW ’22: The
ACM Web Conference 2022, Virtual Event, Lyon, France,
April 25 - 29, 2022, pages 1611–1621. ACM, 2022.

[Wang et al., 2023] Chenhao Wang, Yong Liu, and Yan
Yang. Network embedding with adaptive multi-hop con-
trast. In Ingo Frommholz, Frank Hopfgartner, Mark Lee,
Michael Oakes, Mounia Lalmas, Min Zhang, and Rodrygo
L. T. Santos, editors, Proceedings of the 32nd ACM Inter-
national Conference on Information and Knowledge Man-
agement, CIKM 2023, Birmingham, United Kingdom, Oc-
tober 21-25, 2023, pages 4330–4334. ACM, 2023.

[Wu et al., 2019] Felix Wu, Amauri Souza, Tianyi Zhang,
Christopher Fifty, Tao Yu, and Kilian Weinberger. Simpli-
fying graph convolutional networks. In International con-
ference on machine learning, pages 6861–6871. PMLR,
2019.

[Xu et al., 2018] Keyulu Xu, Chengtao Li, Yonglong Tian,
Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping
knowledge networks. In International conference on ma-
chine learning, pages 5453–5462. PMLR, 2018.

[Xu et al., 2023] Zhe Xu, Yuzhong Chen, Qinghai Zhou,
Yuhang Wu, Menghai Pan, Hao Yang, and Hanghang
Tong. Node classification beyond homophily: Towards
a general solution. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, pages 2862–2873, 2023.

[Zhang et al., 2018] Ziwei Zhang, Peng Cui, Xiao Wang,
Jian Pei, Xuanrong Yao, and Wenwu Zhu. Arbitrary-order
proximity preserved network embedding. In Yike Guo
and Faisal Farooq, editors, Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD 2018, London, UK, August 19-
23, 2018, pages 2778–2786. ACM, 2018.

[Zhang et al., 2021] Hengrui Zhang, Qitian Wu, Junchi Yan,
David Wipf, and Philip S Yu. From canonical correla-
tion analysis to self-supervised graph neural networks. Ad-
vances in Neural Information Processing Systems, 34:76–
89, 2021.

[Zhong et al., 2022] Zhiqiang Zhong, Guadalupe Gonzalez,
Daniele Grattarola, and Jun Pang. Unsupervised het-
erophilous network embedding via r-ego network discrim-
ination. CoRR, abs/2203.10866, 2022.

[Zhu et al., 2020] Jiong Zhu, Yujun Yan, Lingxiao Zhao,
Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limita-
tions and effective designs. Advances in neural informa-
tion processing systems, 33:7793–7804, 2020.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2405


	Introduction
	Related Work
	Notations and Preliminaries
	Method
	Homophiliy Level Analysis
	HeterGCL
	Model Training

	Experiments
	Datasets and Experimental Settings
	Node Classification Results
	Node Clustering Results
	Ablation Study
	Effect of ANA Scope

	Conclusion

