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Abstract
Contrastive learning based on data augmentation
techniques has recently achieved substantial ad-
vancement in learning a representation well-suited
for anomaly detection in image domain. However,
due to the lack of spatial structure, designing effec-
tive data augmentation methods for tabular data re-
mains challenging. Conventional techniques, such
as random mask, disregard the inter-feature corre-
lations and fail to accurately represent the data. To
address this issue, we propose a novel augmenta-
tion technique called SemanticMask which lever-
ages the semantic information from column names
to generate better augmented views. SemanticMask
aims to ensure that the shared information between
views contains sufficient information for anomaly
detection without redundancy. We analyze the rela-
tionship between shared information and anomaly
detection performance and empirically demonstrate
that good views for tabular anomaly detection tasks
are feature-dependent. Our experiment results val-
idate the superiority of SemanticMask over the
state-of-the-art anomaly detection methods and ex-
isting augmentation techniques for tabular data. In
further evaluations of the multi-class novelty detec-
tion task, SemanticMask also significantly outper-
forms the baseline.

1 Introduction
Anomaly detection has extensive applications across vari-
ous domains, such as medical diagnosis, credit card fraud,
and industrial equipment maintenance [Chandola et al., 2009;
Ruff et al., 2021]. The goal of anomaly detection is to iden-
tify whether a test sample falls into the same distribution
as the training data, which can be viewed as a one-class
classification problem [Schölkopf et al., 1999]. However,
most anomalies in real-world applications are typically new
and unknown, thus posing great challenges for supervised
anomaly detection. By contrast, without the need to access to
supervision of anomalies, self-supervised anomaly detection
(SSAD) becomes much more preferred [Sehwag et al., 2021].
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Specifically, contrastive learning (CL) based-SSAD utiliz-
ing data augmentation strategies, e.g., ContrastiveCrop [Peng
et al., 2022], colorization [Tian et al., 2020a], and Cut-
Paste [Li et al., 2021], has recently made significant progress
for anomaly detection in the image domain [Cho et al., 2021;
Tack et al., 2020].

Unfortunately, for data other than images, such as tabu-
lar data, despite its widespread usage, little consideration has
been paid on what data augmentation technique can gener-
ate a useful representation for anomaly detection. It is also
hard to design these transformations manually, because cur-
rent skills heavily depend on the prior knowledge of the spa-
tial structure of images. Existing augmentation skills for tab-
ular data, such as mixup [Verma et al., 2021], internal con-
trastive learning (ICL) [Shenkar and Wolf, 2022] and random
corrupt [Yoon et al., 2020; Bahri et al., 2021], primarily rely
on randomness and overlook the semantic information of fea-
tures, potentially degrading the quality of data representation.

In CL, selecting informative augmented views is crucial in
producing a meaningful representation that helps downstream
anomaly detection. The shared information between different
augmented views controls the information that the representa-
tion extracts [Tian et al., 2020b]. Therefore, if anomalies are
attributed to specific features, it is essential to include these
features in the shared information for a responsive represen-
tation. In conventional anomaly detection tasks, the specific
features with abnormal values that lead to anomalies remain
unidentified. As a result, it is very important to balance the
amount of shared information between views so that we can
generate representations that are not only robust to insignif-
icant variations but also still preserving the task-relevant in-
formation. One natural question arises: How can we design
an effective data augmentation method to craft better con-
trastive views for anomaly detection in tabular data?

It is noteworthy that for real-word tabular data, the column
names usually carry valuable semantic information [Wang
and Sun, 2022]. This implies that features with semanti-
cally similar column names are typically correlated, exhibit-
ing similar patterns of abnormal values when anomalies oc-
cur. For instance, anomalies that indicate the presence of dia-
betes in the Pima dataset [Rayana, 2016] may exhibit anoma-
lous values in semantically related features, such as “insulin”
and “glucose”. To leverage such semantic connection, we
propose a semantic-aware masking approach (dubbed as Se-
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manticMask) for CL-based anomaly detection. Specifically,
SemanticMask uses a language model and clustering algo-
rithm to divide features into k clusters, grouping those with
semantically similar column names together in the same clus-
ter. In designing contrastive views, as anomalous features are
unknown, it is crucial that the shared information includes
full feature coverage across the entire semantic spectrum, i.e.,
the shared features between augmented views include at least
one feature from each cluster. SemanticMask achieves this
by performing a random and equitable division of these clus-
ters into two distinct subsets. Each of the two augmented
views then selects different subsets and applies a predeter-
mined masking proportion to each cluster within its respec-
tive selected subset, while leaving unselected clusters unaf-
fected. Consequently, SemanticMask lowers the likelihood
of information loss of each cluster, while also preventing re-
dundancy, thereby achieving balance in the amount of shared
information between views. In contrast, traditional data aug-
mentation techniques, such as random mask, overlook this se-
mantic connection. They randomly select features as shared
information, thus the shared features are more likely to exclu-
sively come from partial clusters, resulting in an insufficient
representation that fails to capture the crucial anomalous fea-
tures. The main contributions are summarized as follows:

• We propose SemanticMask, a method that incorporates
the semantic information of column names to create ef-
fective augmented views for anomaly detection in the
tabular domain. Additionally, we introduce two ex-
tended variations: one incorporates a mask estimation
module to address situations where categorical features
naturally contain zero values that cause ambiguity; and
the other integrates a one-sentence prompt describing
the anomaly detection task as prior knowledge, assist-
ing in the selection of shared features.

• We analyze the relationship between the amount of
shared information and downstream anomaly detec-
tion performance in various settings of SemanticMask’s
mask probability. We also empirically demonstrate that
good views for CL-based anomaly detection are feature-
dependent.

• SemanticMask surpasses state-of-the-art anomaly detec-
tion methods and augmentation techniques for tabular
data. In addition, we also extend SemanticMask to
multi-class novelty detection and further demonstrate its
effectiveness and versatility.

2 Related Works
Anomaly detection. Studies on unsupervised anomaly de-
tection can be broadly classified into four categories [Sehwag
et al., 2021; Yang et al., 2021]: (1) density-based meth-
ods [Eskin, 2000; Zhai et al., 2016; Li et al., 2020], which de-
tect anomalies by assessing data points in low-density regions
compared to nearby high-density areas.; (2) reconstruction-
based methods [Pidhorskyi et al., 2018; Yan et al., 2021;
Nguyen et al., 2019], which identify anomalies by compar-
ing the reconstruction cost of a reconstruction model trained
on the normal data; (3) classification-based methods [Ruff

et al., 2018; Wang and Cherian, 2019; Reiss et al., 2021],
which separate space containing normal data from all other
regions; (4) self-supervised methods [Sehwag et al., 2021;
Cho et al., 2021; Tack et al., 2020; Li et al., 2020; Golan
and El-Yaniv, 2018], which utilize the strong representa-
tion learned from self-supervision [Sehwag et al., 2021;
Sohn et al., 2021] or design surrogate tasks to help distin-
guish anomalies from normal samples [Tack et al., 2020;
Shenkar and Wolf, 2022]. Our study belongs to category (4)
the self-supervised approach, as we use CL to learn represen-
tations. Studies by Sehwag et al. [Sehwag et al., 2021] and
Cho et al. [Cho et al., 2021] have shown that CL results in
significant improvements in detection performance, as it en-
hances the quality of the learned representations.
Data augmentation for tabular data in CL. Data aug-
mentation is essential in CL tasks that produce effective rep-
resentations [Chen et al., 2020]. Most existing techniques
apply only to images because their way of defining similar-
ity rely heavily on spatial relationships [Tian et al., 2020a;
Chen et al., 2020; Oord et al., 2018; He et al., 2020]. Due
to the lack of a “common” correlation structure, designing
data augmentation techniques for tabular data can be chal-
lenging [Yoon et al., 2020]. There are a few existing meth-
ods. Mixup [Verma et al., 2021] creates positive pairs by
mixing data samples. Scarf [Bahri et al., 2021] forms aug-
mented views by corrupting a random subset of features.
ICL [Shenkar and Wolf, 2022] considers a subset of features
from a sample, along with its remaining features, as positive
pairs to train the network. However, these methods primarily
depend on randomness and thus ignore the semantic informa-
tion inherent in features, making it difficult to guarantee the
quality of the augmented views.
Good views for CL. In CL, shared information between
augmented views controls the information that the represen-
tation learns and thus significantly impacts the representation
quality [Oord et al., 2018]. Tian et al. [Tian et al., 2020a]
have demonstrated that there exists a sweet spot of mutual in-
formation between views that leads to the best performance
in the downstream task. Views with either too high or too low
mutual information result in inferior representations. Build-
ing on this, Tian et al. [Tian et al., 2020b] suggest that re-
ducing the shared information between views and retaining
the task-relevant information exclusively can enhance down-
stream performance. These previous studies primarily inves-
tigate the relationship between shared information and repre-
sentation quality when the downstream task is classification
for image data. This paper delves into the relationship when
the downstream task is anomaly detection for tabular data.

3 Problem Formulation
Given a table T with column description (e.g., column names)
composed of n rows and d columns, where each row is a train-
ing sample x and each column represents a feature f , we can
obtain the training dataset Xtrain ∈ Rn×d and the set of col-
umn names C = {c1, . . . , cd}. Column names are usually in
the form of short phrases. The underlying distribution of the
training data is denoted as Pin

X . Anomalies not belonging to
Pin
X denote semantic anomalies coming from novel classes,
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Figure 1: Block diagram of the SemanticMask framework for representation learning on tabular data. (1) SBERT and k-means clustering
algorithms are employed to cluster features based on the column names C. Clusters from different subsets are distinguished by the shades
of blue and green. (2) The mask generator utilizes the partition information to generate binary mask vectors m1 and m2, which are then
applied to the original data x, yielding the augmented views v1 and v2. (3) A contrastive encoder e and a mask estimation layer sm together
form the complete model M . The augmented views are first processed by the encoder e to obtain representations z1 and z2, with contrastive
loss lc calculated from them. These representations are then fed into sm to obtain the predicted mask, and we calculate the reconstruction
loss lm using the original mask and the predicted mask. The total loss lt, a weighted sum of lc and lm, is used to update the entire model M .

characterized by abnormal feature values [Yang et al., 2021].
The task is to determine whether a new data sample belongs
to the data distribution Pin

X or not. Our detectors aim to ad-
dress this task, with access to only Xtrain and C.

4 Proposed Method: SemanticMask
In this section, we introduce an SSAD method for tabular data
that incorporates a semantic-aware data augmentation tech-
nique called SemanticMask. The motivation behind this work
is to utilize the semantic cues inherent in column names to ex-
tract crucial information on the correlation between features.
This information can enhance the comprehension of the tab-
ular data [Suhara et al., 2022], and ultimately improve down-
stream anomaly detection tasks.

4.1 SemanticMask: A Semantic-Aware Masking
Scheme for CL-Based Anomaly Detection

The framework of SemanticMask includes three steps. In the
first step, we employ Sentence-BERT (SBERT) [Reimers and
Gurevych, 2019] to acquire sentence-level embeddings for
column names. SBERT is a modification of the pre-trained
BERT model that generates fixed-size, semantically mean-
ingful vectors for input sentences. “Semantically meaning-
ful” here means that semantically similar sentences are close
in the vector space. Then we partition features into k clus-
ters, designated as g1 through gk, based on the embeddings
of the column names. This partitioning is performed using

the k-means clustering method, due to its effectiveness and
low computational complexity [Hartigan et al., 1979]. The
value of hyperparameter k adapts to the feature dimension-
ality. As the dimensionality increases, k also increases. In
Figure 1, we take the Pima diabetes dataset [Rayana, 2016]
as an example. This dataset employs eight features to deter-
mine whether a female patient will develop diabetes, with k
set to 2. After k-means clustering, features 2, 5, and 7 have
been grouped into one cluster, while the remaining features
have been grouped into the other cluster.

In the second step, we propose a data augmentation module
that generates positive pairs for CL. Traditional tabular data
augmentation techniques, such as RandomMask, indiscrim-
inately mask features with equal probabilities, disregarding
the inherent correlations between features and the impact of
shared information on representation. These techniques of-
ten leads to insufficient representation. To tackle this issue,
we design a semantic-aware augmentation technique called
SemanticMask, which effectively adjusts the shared informa-
tion between views to an appropriate level. In the process
of generating augmented views, k clusters are evenly divided
into two disjoint subsets, labeled G1 and G2, with each sub-
set incorporating features from ⌊k/2⌋ clusters. Each of the
two augmented views selects a different subset for masking.
When generating one of the augmented view vi of the sample
x, a subset of features denoted as Gi is initially selected. Sub-
sequently, a binary vector mi = [mi,1, . . . ,mi,d]

⊤ ∈ {0, 1}d
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is produced by a mask vector generator. Specifically, for the
j-th feature fj of x, if it belongs to clusters in Gi, then mi,j

follows a Bernoulli distribution with a probability pm of be-
ing zero and 1− pm of being one. For features not belonging
to Gi, mi,j is set to one. The generation of vi is given by
vi = mi ⊙ x. ⊙ here denotes element-wise multiplication.
In the example shown in Figure 1, where there are only two
clusters (k = 2), each subset Gi contains a single cluster gi.

In the third step, we pass the augmented view vi through
an encoder network e to get representation zi. The InfoNCE
contrastive loss lc is computed, encouraging representations
of the same instance to be close and representations of dif-
ferent instances to be far apart [Chen et al., 2020]. Addition-
ally, for tabular datasets that contain categorical features, it is
common for many cells to have a value of zero. In order to
differentiate between cells that have been masked to zero and
those that are naturally zero, we add an optional mask esti-
mation layer sm to predict which features have been masked
in each augmented view. Specifically, this module utilizes
the encoded representation of each view zi as input, and out-
puts a vector m̂i that predict which features of x have been
masked. The total objective loss lt of encoder is:

lt = lc + λ · lm, (1)

where the first loss function lc corresponds to the contrastive
loss, and the second loss function lm, representing the recon-
struction loss of the mask vector mi, is defined as follows:

lm(mi, m̂i) =
1

d

 d∑
j=1

(
mi,j − (e ◦ sm)j (vi)

)2

 . (2)

In equation (2), e ◦ sm represents the entire model M in Fig-
ure 1, and vi is the input to M . The expression (e ◦ sm)j (vi)
is the output of M , representing the value in the j-th position
of the predicted mask. The trade-off between these two losses
is determined by the hyperparameter λ.

Once the training of the encoder e is completed, we use
Mahalanobis distance [Sehwag et al., 2021] to calculate the
anomaly score sxt for the new sample xt:

sxt
= (zxt

− µtrain)
T
Σ−1

train (zxt
− µtrain) , (3)

where zxt
is the representation of xt encoded by e, with

µtrain and Σtrain being the sample mean and covariance of
the training data’s representation.

4.2 Incorporation of SemanticMask with
One-Sentence Task Description

Based on SemanticMask, we propose an extension that lever-
ages a single sentence s as prior knowledge to facilitate the
early identification of important features for anomaly detec-
tion. The sentence s is structured using a prompt template,
“The task is to detect {description}.”, with a specific de-
scription relevant to the dataset. For instance, the sentence
“The task is to detect the presence of heart disease.” is used
to describe the Heart disease dataset [Derrac et al., 2015].
We input s along with the column names C = {c1, . . . , cd}
into the SBERT model. We then apply k-means clustering to

divide {s, c1, . . . , cd} into k clusters, with one cluster con-
taining s, and the remaining clusters without s. The features
whose column names belong to the cluster containing s cor-
responds to the feature set gs. Aligned with SemanticMask,
we proceed to partition clusters into two subsets.

In the phase of generating augmented views, a mask vector
is constructed. Specifically, a mask probability of pm − ε is
applied to the cluster gs, while other k − 1 clusters adopt a
mask probability of pm+ε, where ε ∈ (0, pm) serves as a hy-
perparameter. By doing so, the shared information contains
more features that are semantically relevant and closely re-
lated to the task description s. Incorporating the relationship
between features and the task description into the Semantic-
Mask framework can assist in feature selection, leading to
improved performance in anomaly detection.

5 What Makes Good Augmented Views for
Anomaly Detection

This section investigates the impact of view selection on
shared information and downstream anomaly detection per-
formance in two ways: (1) we combine detailed analysis and
empirical evidence to show that the optimal performance for
anomaly detection is achieved when the amount of shared in-
formation between views is at an appropriate level; (2) we
demonstrate that good views of anomaly detection depend on
the features that cause the anomalies.

5.1 View Selection Influences Shared Information
and Detection Performance

After getting augmented views v1,v2 of the sample x by Se-
manticMask, we trace out how the amount of shared infor-
mation between views affects the downstream anomaly de-
tection performance. Previous studies have shown that for
computer vision classification tasks, optimal performance can
be achieved by a set of views that retains relevant infor-
mation while eliminating all irrelevant information [Tian et
al., 2020b]. However, in anomaly detection, views of train-
ing data lack anomaly information. We do not know which
features are anomalous, so we want to preserve the shared
information as comprehensively as possible, in order to in-
clude task-relevant information while avoiding excessive re-
dundancy. In the SemanticMask approach, the amount of
shared information is controlled by adjusting the cluster-wise

Anomaly
Detection
Performance

𝒄𝟏 𝒄𝟐 𝒄𝟑 𝒄𝟒 𝒄𝟓 𝒄𝟔 𝒄𝟕 𝒄𝟖
6 148 72 35 0 33.6 0.63 50
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𝒑𝒎 = 𝟎
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Figure 2: As the cluster-wise mask probability pm decreases, the in-
formation present in each view and the shared information between
views increases, gradually incorporating the feature information rel-
evant to the downstream anomaly detection until it is over-included,
thereby affecting the quality of the learned representation.
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mask probability pm. In the following, we present an analysis
that suggests that the optimal performance for anomaly detec-
tion is achieved when the shared information between views
is moderate, neither too high (pm = 0) nor too low (pm = 1).

SemanticMask partitions the feature set F of sample x into
two disjoint subsets, G1 and G2, based on the semantic infor-
mation of the column names, where G1 ∪ G2 = F . As-
suming the augmented view v1 selects G1 for masking, Se-
manticMask applies a mask probability pm ∈ [0, 1] to each
cluster within G1 to generate the masked version G

′

1, result-
ing in v1 = G

′

1 ∪ G2. Similarly, v2 = G1 ∪ G
′

2. Adjusting
the masking ratio pm from 0 to 1 controls the quantity of in-
formation in each view and the shared information between
views. When pm = 0, both views are identical, v1 = v2 =
G1 ∪ G2 = F . Conversely, when pm = 1, each view com-
prises distinct unmasked feature subsets: v1 = G2,v2 = G1.

The feature decoupling principle [Wen and Li, 2021] pro-
vides a theoretical explanation for the underperformance
when pm = 0. Without data augmentation techniques, deep
neural networks tend to learn representations that accentuate
dense noise, which may overshadow the more semantically
aligned sparse features. When pm = 1, v1 = G2,v2 = G1.
Our analysis follows the concept of minimal sufficient repre-
sentation zmin in CL, as defined in [Wang et al., 2022], which
includes the shared information between views and disregards
any non-shared information. In the context of CL applied to
the downstream anomaly detection task T , the minimal suf-
ficient representation of v1 is denoted as z1min. In the ideal
case, we assume that there is no interrelation among different
clusters; thus, G1 and G2 are semantically non-intersecting
and mutually independent. Then z1

min is found to lack
sufficient task-relevant information, since I(z1

min;T ) =
I(v1;T ) − I(v1;T |v2) = I(G2;T ) − I(G2;T |G1) = 0,
leading to a suboptimal performance. A conceptual illustra-
tion of the above analysis is shown in Figure 2. The optimal
point, located at the curve’s peak, corresponds to the optimal
0 < pm < 1 that balances the shared information between
views to an optimal level, covering the required feature infor-
mation for anomaly detection without redundancy.

Empirically, we evaluate the anomaly detection perfor-
mance by adjusting pm on two public tabular datasets: the
South African Heart dataset [Derrac et al., 2015] and the
Heart disease dataset [Derrac et al., 2015]. The results, shown
in Figure 5(a), reveal a reverse-U curve for both datasets, with
the optimal point around 0 < pm = 0.4 < 1. This finding is
consistent with our analysis illustrated in Figure 2.

5.2 Good Views Are Feature-Dependent
When anomalies are caused by certain anomalous features,
we empirically validate that achieving a favorable detection
performance relies on ensuring that the shared information
between views includes relevant information about these fea-
tures. Two anomaly detection tasks are conducted on the
Pima diabetes dataset [Rayana, 2016].

In the first task, we generate a synthetic dataset by arti-
ficially modifying the values of the feature f2, correspond-
ing to the column named “Plasma glucose concentration a 2
hours in an oral glucose tolerance test”. Normally, this feature
ranges from 0 to 197 with a mean of 179. We select a subset

𝒄𝟏 : Number of times pregnant
𝒄𝟐 : Plasma glucose concentration

a 2 hours in an oral glucose 
       tolerance test
𝒄𝟑 : Diastolic blood pressure 
𝒄𝟒 : Triceps skin fold thickness 
𝒄𝟓 : 2-Hour serum insulin
𝒄𝟔 : Body mass index
𝒄𝟕 : Diabetes pedigree function
𝒄𝟖 : Age

𝒇𝟐 𝒇𝟔

Subset	𝑮𝟏 Subset	𝑮𝟐

𝒙𝒂

𝒇𝟑𝒇𝟏 𝒇𝟒 𝒇𝟖𝒇𝟕𝒇𝟓

Figure 3: Synthetic anomalies induced by features f2 and f5, corre-
sponding to c2: “Plasma glucose concentration a 2 hours in an oral
glucose tolerance test” and c5: “2-Hour serum insulin”.

Task 1 Task 2

shared feature f2 f1 G1 G2 shared feature f2 f5 G1 G2

Acc(%) 90.3 69.0 91.2 54.4 Acc(%) 93.1 94.1 93.4 54.9

Table 1: We investigate the impact of the shared information be-
tween views on the representation quality by evaluating two syn-
thetic anomalous datasets.

of normal samples, replace their f2 values with values gener-
ated from a Gaussian distribution with a mean of 190 and a
standard deviation of 5, and labeled this subset as anomalous.
We then combine this subset with a portion of normal data to
create test datasets for anomaly detection during the testing
phase. Four experiments are designed to manipulate shared
information between views in different forms: one including
solely the feature f2 itself, another involving the feature f1
with the column name “Number of times pregnant” which is
semantically unrelated to the column name of f2, one com-
prising the subset G1 that contains f2, and the last encom-
passing the subset G2 that does not include f2. Results in
Table 1 indicate a notable influence of the shared information
between augmented views v1 and v2 on the anomaly detec-
tion accuracy (Acc) of the model. Specifically, it is crucial
to ensure that the anomalous feature is included in the shared
information, rather than other features. For instance, when
v1 and v2 only share features like f1 or the subset G2 that
are semantically unrelated to f2, the CL approach can hardly
capture information of f2, leading to a performance decline.

In the second task, shown in Figure 3, we concurrently
manipulate two features with semantically correlated column
names, f2 and f5, to artificially induce anomalies in the
dataset. Under normal conditions, the range of values for f5
whose column name is “2-Hour serum insulin”, lies between
0 and 744, with a mean of 68.8. Based on the anomalous sam-
ples selected from the first task, we modify the value of f5 to
values generated from a Gaussian distribution with a mean of
500 and a standard deviation of 5. Four scenarios of shared
information between v1 and v2 are exhibited in this task. In
Scenario 1, f2 is shared; in Scenario 2, f5 is shared; in Sce-
nario 3, features of the subset G1 that contains both f2 and f5
are shared; in Scenario 4, features of the subset G2 are shared.
According to Table 1, the accuracy in Scenario 1≈ Scenario
2≈ Scenario 3> Scenario 4, which suggests that good perfor-
mance is achieved when the shared information includes at
least a portion of the relevant information associated with the
anomalous features. Performance declines when all anoma-
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Methods Saheart Pima Heart Wbc Arrhythmia Drug Mammographic Bupa Seismic Average

OC-SVM [Schölkopf et al., 2001] 68.9 64.9 78.4 95.4 77.4 59.9 80.2 59.3 59.3 71.5
LOF [Breunig et al., 2000] 61.9 66.7 80.1 95.0 76.3 54.1 44.3 62.5 61.7 67.0
COPOD [Li et al., 2020] 59.1 64.0 68.3 95.5 / 54.8 22.4 57.7 / 60.3
ECOD [Li et al., 2022] 60.7 59.7 57.8 89.2 / 55.8 46.7 53.2 / 60.4
FB [Lazarevic and Kumar, 2005] 63.3±1.0 66.7±0.3 76.7±3.7 94.7±0.2 76.0±0.3 54.5±0.9 68.1±6.2 62.5±0.5 62.6±1.6 69.4
DeepSVDD [Ruff et al., 2018] 51.4±0.6 52.1±0.8 73.7±3.2 87.1±3.1 71.8±1.6 51.0±4.8 56.1±1.3 58.8±0.9 57.9±10.9 62.2
ICL [Shenkar and Wolf, 2022] 65.7±1.2 66.7±1.7 80.3±1.4 94.1±3.3 77.3±0.5 56.0±2.0 76.9±0.7 58.5±1.4 58.3±1.5 70.4
OptIForest[Xiang et al., 2023] 69.6±1.2 68.4±1.1 78.9±1.3 95.2±0.5 78.0±0.3 61.7±3.4 78.8±0.8 61.4±0.7 63.4±1.0 72.8

Gaussian [Verma et al., 2021] 64.6±3.2 65.4±1.3 72.9±2.1 91.7±0.9 76.0±2.7 63.9±3.8 74.8±1.7 60.7±1.8 69.7±0.7 71.1
Crop [Xie et al., 2022] 65.8±1.9 64.5±1.7 77.4±4.6 93.1±2.6 73.9±1.8 66.8±3.2 74.5±2.1 61.7±3.2 63.5±2.5 71.2
Mixup [Verma et al., 2021] 67.0±2.0 65.5±1.3 72.8±2.2 92.6±4.8 75.7±3.5 63.4±1.2 77.1±3.6 60.1±2.2 68.4±1.1 71.4
Vime [Yoon et al., 2020] 68.5±2.7 64.6±1.9 75.5±4.4 93.3±0.8 76.3±1.6 64.2±4.6 77.8±4.8 62.2±2.6 66.4±1.6 72.1
Random Mask [Xie et al., 2022] 67.4±2.8 67.0±1.7 74.1±3.3 93.1±2.4 76.8±2.1 63.8±3.2 78.5±0.8 62.3±1.7 67.6±1.3 72.3

SemanticMask (ours) 70.4±1.0 67.5±1.1 81.4±1.5 95.0±0.7 77.6±1.0 64.7±2.0 80.2±1.9 62.6±1.3 69.7±1.1 74.3
SemanticMask+position (ours) 70.5±2.1 68.0±1.4 80.7±1.7 96.3±0.9 78.1±1.2 66.5±1.2 80.4±1.5 64.0±2.0 69.7±0.6 74.9
SemanticMask+description (ours) 70.9±1.7 68.5±1.9 81.8±2.5 96.3±1.0 78.4±1.0 66.0±2.0 81.7±3.0 63.3±2.3 69.6±0.4 75.2

Table 2: Comparison of AUCROC with state-of-the-art unsupervised anomaly detection methods and existing augmentation techniques.

lous feature information is absent. The outcomes explain the
necessity of SemanticMask in including information from all
clusters within shared information between views when the
anomalous features are unknown, thus preventing the omis-
sion of cluster-specific information.

6 Experiment
In our experiments, we assess SemanticMask and its vari-
ants across various tabular datasets to validate their effec-
tiveness. For anomaly detection, we compare the proposed
method with the state-of-the-art anomaly detection methods
and other existing augmentation techniques for CL on tab-
ular data. Additionally, we expand the scope of Seman-
ticMask to accommodate multi-class novelty detection by
integrating the labels of training data into our framework.
The source code and appendix are available on GitHub at
https://github.com/TST826/SemanticMask.

6.1 Experiment Setup
Datasets. Aligned with the definition of anomaly detec-
tion, we refer to the class observed during training as “nor-
mal” data, treating samples from other classes as “anoma-
lies”. We conduct experiments on nine datasets with col-
umn names sourced from the Outlier Detection DataSets
(ODDS) [Rayana, 2016], the KEEL datasets [Derrac et al.,
2015] and the UCI datasets [Markelle et al., 2013]. We train
our method on a random selected 50% subset of the normal
data. The validation set, consisting of 25% normal data, is
used to determine the threshold. The methods are then tested
on the remaining normal data and all anomalous samples.

Hyperparameter setups and implementation details. For
SemanticMask and its variants, λ is set to 0.5, pm is selected
from the set {0.4, 0.5, 0.6}. For SemanticMask+description,
ϵ is set to 0.1. We set k of k-means proportionally to the fea-
ture dimension d. For d < 18, k = 2. For 18 ≤ d < 100,
k = 3. For complex datasets such as Arrhythmia [Rayana,
2016], where d ≥ 100, k = ⌊d/100⌋ + 3, features are par-
titioned into k clusters, forming two disjoint subsets with
⌊k/2⌋ clusters each. Contrastive loss uses a constant tem-
perature τ of 0.01. The threshold for identifying anomalies is

determined by the 85th quantiles of the Mahalanobis distance
in the validation set. The encoder is a multilayer perceptron
consisting of two hidden layers with 128 and 64 hidden units,
along with the ReLU activation layer. The encoder is trained
using the Adam optimizer with a learning rate of 0.001 and
default values for other hyperparameters. Each experiment is
repeated 5 times, and the mean and standard deviation (σ) of
the results are reported.

Evaluation protocol and baselines. We evaluate the per-
formance of all anomaly detection methods using two com-
monly used metrics [Han et al., 2022]: Area Under the
Receiver Operating Characteristic Curve (AUCROC) and
Area Under Precision-Recall Curve (AUCPR). We em-
ploy the following unsupervised anomaly detection meth-
ods for comparison: One-Class Support Vector Machines
(OCSVM) [Schölkopf et al., 2001], Local Outlier Factor
(LOF) [Breunig et al., 2000], COPOD [Li et al., 2020],
ECOD [Li et al., 2022], Feature Bagging (FB) [Lazarevic
and Kumar, 2005], DeepSVDD [Ruff et al., 2018], internal
contrastive learning (ICL) [Shenkar and Wolf, 2022] and Op-
tIForest [Xiang et al., 2023]. We also evaluate five baseline
data augmentation techniques. For Gaussian Noise [Verma
et al., 2021], the mean is set to 0 and the standard de-
viation is selected from the set {0.001, 0.005, 0.01}. For
Random Crop [Xie et al., 2022], the crop proportion is se-
lected from the set {0.6, 0.75, 0.9}. For Mixup [Verma et
al., 2021], the linear mixing ratio is selected from the set
{0.5, 0.7, 0.9}. For Random Mask [Xie et al., 2022] and
Vime [Yoon et al., 2020], the mask proportion is selected
from the set {0.2, 0.3, 0.4}.

6.2 Performance Analysis
Results. In table 2, “SemanticMask” here denotes the
framework proposed without the mask estimation layer. “Se-
manticMask+position” refers to the framework with the mask
estimation layer. “SemanticMask+description” denotes the
SemanticMask framework enhanced with a sentence-based
description incorporating prior knowledge of anomaly detec-
tion tasks. The results demonstrate that SemanticMask and
its variants outperform state-of-the-art unsupervised baseline
methods and common data augmentation techniques for tab-
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AUCROC (%) AUCPR (%)

Datasets Gaussian Crop Mixup Vime Mask SemanticMask (ours) Gaussian Crop Mixup Vime Mask SemanticMask (ours)

Wine 86.1±3.9 85.6±4.9 88.6±4.4 87.5±4.3 89.4±1.2 91.4±2.2 87.3±4.6 88.3±5.3 90.3±4.4 87.8±5.7 91.8±1.7 93.6±1.4
Dermatology 91.5±5.2 81.8±4.9 83.0±5.7 89.2±4.6 86.8±2.8 94.5±4.1 94.3±3.2 88.9±5.2 91.1±2.4 93.8±2.5 93.4±1.1 96.8±2.5
Ecoli 75.9±5.0 78.5±1.9 78.6±4.5 79.2±5.2 78.2±7.9 82.0±4.9 58.2±5.7 64.0±3.5 67.1±6.2 68.7±6.0 68.5±9.7 71.9±8.0
Vehicle 79.7±6.6 79.8±3.0 77.1±5.0 77.9±4.4 73.3±2.6 82.4±5.9 82.7±4.9 78.5±4.4 77.3±5.0 79.1±3.3 75.1±3.2 83.5±4.9
Pageblocks 81.0±2.7 86.9±0.7 82.6±2.1 84.1±2.8 84.1±1.4 87.1±1.2 51.2±3.6 54.9±1.2 51.8±3.2 53.2±3.0 54.9±3.9 55.1±4.0
Yeast 79.5±1.7 79.6±1.7 78.5±3.2 79.0±2.0 78.7±2.4 81.9±0.9 72.8±3.6 71.1±3.8 69.8±4.3 71.0±2.9 72.1±4.2 77.0±1.2
RedWine 59.1±1.5 61.6±2.4 60.5±2.1 60.8±2.8 60.7±2.8 63.0±3.5 23.8±1.3 27.8±2.2 24.0±0.8 25.6±1.3 25.3±1.0 26.3±2.8
HayesRoth 89.7±3.8 93.2±2.3 87.4±3.1 92.4±2.9 90.7±5.1 94.2±2.9 89.2±4.6 92.5±3.2 86.6±3.5 91.2±4.9 89.4±5.8 94.0±3.0
Cleveland 77.9±3.6 75.4±2.6 77.2±2.2 75.0±1.9 76.3±2.2 79.0±2.4 83.9±3.1 79.6±2.6 79.5±3.3 81.0±1.3 81.6±2.4 85.7±2.0
Glass 81.0±1.5 80.4±1.4 80.0±2.9 81.1±1.3 81.0±1.2 82.5±0.9 87.9±1.5 87.4±1.9 87.3±2.6 87.1±1.1 87.8±0.9 88.3±1.0

Table 3: Comparison of AUCROC and AUCPR with existing augmentation techniques in multi-class novelty detection.
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Figure 4: Average anomaly detection performance of all models on
AUCROC and AUCPR.

ular data. Notably,“SemanticMask+description” achieves an
average AUCROC of 0.752, which is 2.4% higher than the
top baseline, OptiForest, and 2.9% higher than the leading
existing augmentation technique, random mask. This im-
provement over the random mask is attributed to Semantic-
Mask’s effective design and utilization of semantic informa-
tion to create views. Figure 4 displays the average values of
AUCROC and AUCPR across all datasets, highlighting the
superiority of SemanticMask and its variants in both metrics.

Hyperparameter sensitivity analysis. In addition to the
analysis performed in Section 5.1 and Figure 5(a) for the hy-
perparameter pm, we examine two critical hyperparameters:
k and λ. k denotes the number of clusters, and λ controls the
balance between the mask estimation loss and the contrastive
loss. Experiments are conducted on both the Drug dataset
(d = 12) and the more intricate Arrhythmia dataset (d =
274). Specifically, we explore k values of {2, 3, 4, 5, 6, 7, 8}
and λ values of {0.1, 0.3, 0.5, 0.7, 0.9, 1.0}. Figure 5(b) in-
dicates that the choice of k impacts the results, with higher
dimensions (such as Arrhythmia) benefiting from a larger k
to maintain intra-cluster feature correlations. Conversely, in
lower dimensions (such as Drug), an excessively large k can
lead to sparse clusters, disrupting correlations and resulting
in poor performance. Figure 5(c) reveals that SemanticMask
is relatively insensitive to λ variations when 0.5 ≤ λ ≤ 0.9.

Figure 5: Sensitivity analysis of the hyperparameters pm, k, λ.

6.3 Extension to Multi-Class Novelty Detection
Setup. The proposed SemanticMask can also be applied to
tasks beyond standard anomaly detection, such as multi-class
novelty. Unlike anomaly detection with single-class normal
samples, multi-class novelty detection aims to distinguish
anomalies from normal samples in multi-class scenarios, each
characterized by discriminative label information [Yang et
al., 2021]. We evaluated our methods on ten multi-class
datasets with column names, where specific classes are des-
ignated as normal and the rest as anomalies. In multi-class
novelty detection, we incorporate label information to further
improve the learned representations by using supervised con-
trastive learning (SCL) loss function [Khosla et al., 2020].
We assessed SemanticMask’s performance with the afore-
mentioned baseline augmentation techniques.

Results. SemanticMask demonstrates a significant advan-
tage over other data augmentation techniques, achieving aver-
age AUCROC and AUCPR scores of 0.838 and 0.772, respec-
tively. These scores represent increases of 3.2% and 3.4%
over the top baseline, Vime. Please see Table 3 for details.

7 Conclusion
In this study, we propose SemanticMask, a data augmentation
technique, specifically designed to generate more effective
contrastive views for anomaly detection tasks in tabular data.
SemanticMask incorporates semantic information from col-
umn names, and considers the correlation between features
to adjust the shared information between views and learn an
effective representation. We establish that to achieve a good
representation for anomaly detection, the shared information
between views should be appropriately balanced, avoiding
both insufficiency and redundancy. Additionally, our empir-
ical results reveal that good views for anomaly detection are
feature-dependent. Extensive experimental results demon-
strate the superior performance of SemanticMask compared
to state-of-the-art anomaly detection methods and prevalent
augmentation techniques for tabular data. Note that this study
focuses exclusively on clear column names. In the presence
of unclear or typo-laden column names, the performance of
SemanticMask might deteriorate. To remedy the lack of se-
mantic clarity, large language models like ChatGPT-4 [Ope-
nAI, 2023] can be used for automatic standardization and col-
umn name interpretation, a task we leave as future work.
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