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Abstract
Anomaly subgraph detection is a crucial task in var-
ious real-world applications, including identifying
high-risk areas, detecting river pollution, and mon-
itoring disease outbreaks. Early traditional graph-
based methods can obtain high-precision detection
results in scenes with small-scale graphs and obvi-
ous anomaly features. Most existing anomaly de-
tection methods based on deep learning primarily
concentrate on identifying anomalies at the node
level, while neglecting to detect anomaly groups
in the internal structure. In this paper, we propose
a novel end-to-end Graph Neural Network (GNN)
based anomaly subgraph detection approach(ASD-
HC) in graph-structured data. 1)We propose a
high-order neighborhood sampling strategy to con-
struct our node & k-order neighbor-subgraph in-
stance pairs. 2)Anomaly features of nodes are cap-
tured through a self-supervised contrastive learn-
ing model. 3) Detecting the maximum connected
anomaly subgraph is performed by integrating the
Non-parameter Graph Scan statistics and a Ran-
dom Walk module. We evaluate ASD-HC against
five state-of-the-art baselines using five benchmark
datasets. ASD-HC outperforms the baselines by
over 13.01% in AUC score. Various experiments
demonstrate that our approach effectively detects
anomaly subgraphs within large-scale graphs.

1 Introduction
Anomaly Detection (AD) is a vital application in real-world
datasets. AD typically involves two primary tasks: Anoma-
lous Node Detection (AND) and Anomaly Subgraph Detec-
tion (ASD). Existing AD approaches are usually categorized
into two main groups: graph-based and deep learning-based
approaches. Early traditional graph-based ASD approaches
can obtain high-precision detection results in scenes with
small-scale graphs and obvious anomaly features[Akoglu et
al., 2015]. As the demand for large-scale data applications
grows and AI technology advances, numerous deep learning-
based AD approaches continue to be proposed. These ap-
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Figure 1: A toy example illustrates our sampling strategy for the k-
order neighbor-subgraph. A ∈ Rn×n is the adjacency matrix and Bi

denotes the numbers of the high-order neighbors of node vi. With
k = 3, our k-order neighbor-subgraph sampling procedure selects
node v0’s neighbor v2 based on max(b⃗3

1, b⃗
3
2). Subsequently, node

v4 is chosen based on max(b⃗3
3, b⃗

3
4).

proaches learn node representations through deep and shal-
low machine-learning models. Some of them project the
node embeddings into Euclidean or hyperbolic space and
identify outliers based on their distances. Others define
anomaly-measuring functions to calculate anomaly scores for
all nodes, with the top-K anomalous nodes identified as the
detection result[Pang et al., 2021]. In summary, most recent
AD approaches based on deep learning techniques primarily
focus on identifying anomalies at the node level rather than
detecting anomalous subgraphs with their internal structures.

Graph anomalies often appear as structural anomalies and
contextual anomalies. A structural anomaly refers to an
anomalous pattern or behavior in the overall structure of a
system or dataset. It involves deviations from the expected
relationships, connections, or configurations within the data.
A contextual anomaly refers to an anomalous behavior or
pattern that is considered unusual within a specific context
or environment, such as a specific time period. Anomaly
subgraphs are clusters of nodes exhibiting anomaly features
along with associated structures. Typically, an anomaly sub-
graph consists mostly of anomalous nodes, with only a mi-
nority being normal in it. However, detecting anomaly sub-
graphs faces multiple challenges: (1) The rarity of anoma-
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lous nodes in large graphs may result in ineffective repre-
sentations of anomaly features for subgraphs. (2) The chal-
lenge of deriving anomaly features for subgraphs leads exist-
ing deep learning-based AD approaches to neglect the over-
all anomalous attributes of interconnected nodes (i.e., sub-
graphs) within graphs. (3) The limited capacity to represent
subgraphs within existing deep-learning models hampers the
development of an end-to-end ASD algorithm. (4) Detect-
ing subgraph is an optimization problem with exponential
growth, posing a significant challenge in terms of time cost.
With the expansion of the graph’s size, the number of all pos-
sible subgraphs increases exponentially, leading to a signifi-
cant rise in computational costs.

Our paper aims to detect the maximum connected anomaly
subgraph in a graph and proposes a novel end-to-end ASD
approach. Initially, we investigate a high-order sampling
strategy to build node-subgraph instance pairs for contrastive
learning, as shown in Fig.1. Next, we utilize a GNN mod-
ule to capture the representation embeddings of instance pairs
within the graph. Additionally, we apply a self-supervised
contrastive learning method to reveal the anomalous charac-
teristics of nodes and subsequently rank them based on their
anomaly scores. Furthermore, we establish an evaluation
function utilizing Non-Parametric Scan Statistics (NPSS) to
gauge the level of anomalous significance in a subgraph. Fi-
nally, we employ a suboptimal procedure to detect the maxi-
mum anomaly subgraph within the graph.

The main contributions of this paper are as follows.

• We propose a novel end-to-end algorithm ASD-HC de-
signed for detecting anomaly subgraphs. ASD-HC em-
ploys a novel high-order neighborhood sampling and
contrastive learning method to extract the anomaly fea-
tures of nodes within the graph comprehensively.

• We present a suboptimal detecting anomaly subgraph
method with non-parameter scan statistics assessing
function, effectively reducing the run-time cost.

• Our approach is evaluated against five state-of-the-art
deep learning-based anomaly detection algorithms on
five real-world benchmark datasets, confirming its effec-
tiveness and accuracy.

2 Related Works
Traditional graph-based approaches achieve detection capa-
bilities by extracting features from graph data[Wu et al.,
2019; Sun et al., 2020; Sun et al., 2022]. However, they
encounter limitations in scalability due to the constraints im-
posed by the size of the graphs on their algorithms. Most,
if not all, recent anomaly detection approaches are based
on deep learning techniques, with a predominant focus on
anomalous node detection(AND). There are also a few ap-
proaches that tackle anomaly subgraph detection(ASD).

Contrastive learning-based AND: Contrastive learning,
a self-supervised approach drawing insights from unlabeled
data, has become popular in anomaly detection. It eliminates
the need for manual labeling, reducing associated costs. [Jin
et al., 2021] estimates node anomalous scores through the
contrast of node & node and node& ego-net multi-scale in-

stance pairs. In [Liu et al., 2022], contrastive learning is ap-
plied to capture anomaly features and calculate the anomaly
scores of nodes. Its instance pairs consist of the node and its
K-hop neighborhood which is constructed through a random
walk procedure. Another approach is presented by [Hu et
al., 2023], which detects anomalous nodes via the subgraph-
aligned contrastive learning across multiple views of the
graph. [Duan et al., 2023] calculates the anomaly scores
of nodes via contrastive learning among node-node,node-
subgraph, and subgraph-subgraph multi-scale instance pairs
between the original view and the augmentation view.

Deep learning-based ASD: Recently, several deep
learning-based ASD approaches have been proposed for dif-
ferent scenarios. For instance, [Wu et al., 2022] focuses on
detecting anomaly subgraphs in multiple attributed networks
within the federated learning framework. [Zhang et al., 2023]
employs the k-hop Breadth-First Search strategy and Triadic
closure to identify anomaly subgraphs in dynamic graphs.
[Huang et al., 2023] proposes a Hybird-Order GAT model
to detect anomalous nodes and anomalous motif instances
within an attributed network. [Zhang and Zhao, 2022] em-
ploys a location-aware graph autoencoder to reconstruct the
given graph and identify anomalous areas through a resid-
ual graph, which reveals disparities between the original and
the reconstructed graphs. Hence, [Zhang and Zhao, 2022] is
the only one among the above approaches, which detects the
anomaly subgraph in scenarios most similar to our approach.

3 Preliminaries
In this paper, we first define an attributed graph as G =
(V,E,A,X), where V and E are the node and edge sets,
A ∈ Rn×n denotes the adjacency matrix of G, X ∈ Rn×m

is the observed m dimensional attribute sets of nodes in G,
E ⊆ V × V , n = |V | denotes the number of nodes (n ∈ R),
S = (VS , ES ,AS,XS) is a connected subgraph of G, where
Vs ⊆ V and Es ⊆ E.

Definition 3.1 (Anomaly subgraph detection). Given G =
(V,E,A,X) and S = (VS , ES ,AS,XS), S ⊆ G is a
connected subgraph of an attributed graph G, the function
f (S) ∈ R measures the significantly anomalous lever of a
subgraph S. If f (S) ≥ K (K is a constant), then S is defined
as “Anomaly Subgraph”.

To evaluate the significantly anomalous lever of a subgraph
within a graph, we introduce the Higher Criticism(HC) statis-
tic to define our objective function f (S). Notably, HC is one
of the Non-Parametric Graph Scan statistics(NPGS) that have
been utilized in road congestion detection, event detection,
and other real-world applications. Our approach can also be
generalized to other NPGSs.

Definition 3.2 (Maximum anomaly subgraph). Given the
significant level of anomaly feature α (e.g.,0.25), the max-
imum anomaly subgraph of the graph G, denoted as Ŝ, is
defined as follows:

Ŝ = argmax
S⊆G

f
(
α,Nα(S), N(S)

)
=

Nα(S)−N(S)α√
N(S)α(1− α)

. (1)
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Figure 2: Illustration of our ASD-HC approach for maximum anomaly subgraph detection. ASD-HC comprises three components: (1)
Preprocessing through k-order neighborhood sampling; (2) GNN-based contrastive learning; (3) Identification of the maximum anomaly
subgraph in the provided graph, relying on the anomalous nodes with the significant anomaly features. p(ϖi) is the p-value that the null
hypothesis is invalid for the gap between positive and negative samples following a uniform distribution.

where Nα(S) = Σvi∈VS
δ(p(ϖi) ≤ α) denotes the number

of anomalous nodes of S, ϖi is the anomaly score of node
vi, and p(ϖi) denotes the p-value associated with ϖi. As for
the function δ(·) = 1 if its input is True, otherwise δ(·) = 0.
N(S) = Σvi∈VS

δ(1) is the total number of nodes in S.

4 Methodology
4.1 High-Order Neighborhood Sampling Strategy
This paper proposes a high-order neighborhood sampling
method to find the k-order neighbor subgraph of each node.
Firstly, the high-order neighborhood weight of the graph is
represented by matrix B = (b⃗(1), b⃗(2), .., b⃗(k)) ∈ Rn×k,
where vector b⃗(k) ∈ Rn denotes the number of k-order neigh-
bors for each node. Let b⃗(1)

i =
∑n

j=1 a(i, j), 1 ≤ i ≤ n,
where a(i, j) denote the elements of the adjacency matrix A.
Secondly, the k-order neighborhoods of nodes are calculated
as the following equation:

b⃗(k) = Ab⃗(k−1), (2)

where k is a hyperparameter. b⃗(k) is also represented as a
column vector, where each element quantifies the influence
of the k-order neighborhood of each node. Therefore, the k-
order maximum influential neighbor υ̂i of the current node vi
is defined in Eq.(3).

υ̂i = argmax
j∈Ni

b⃗
(k)
j , (3)

where Ni denotes the neighbors of the node vi. Our high-
order neighborhood sampling strategy sets υ̂i as the next node
of vi in the k-order neighbor subgraph.

4.2 Contrastive Learning of Anomaly Features
To enhance the efficiency of our algorithm, we initially pre-
process the data and subsequently generate the candidate sets

of positive and negative samples, i.e., positive and nega-
tive neighbor subgraphs, respectively. In our paper, we ex-
tract k-order maximal/minimal neighbor-subgraphs from
the high-order neighborhood to construct contrastive instance
pairs. EPi denotes the positive instance pair comprising a tar-
get node vi and its corresponding k-order maximal neighbor-
subgraph, denoted as Pi (initiated with vi). On the other
hand, the negative instance pair ENi consists of vi and the k-
order minimal neighbor-subgraph derived from another node.
They are defined as follows:

EPi = (vi , Pi), ENi = (vi , Pj), s.t. i ̸= j. (4)
To facilitate the comparison of nodes and subgraphs in posi-
tive and negative instance pairs, it is essential to execute the
training process for nodes and subgraphs within the same pa-
rameter space.

1). Node Embedding: Our approach trains the node em-
beddings using the weight matrix W and the activate func-
tion σ(·), consistent with the GCN module, the input is the
attribute of nodes without the structural data. Therefore, the
module is similar to the MLP:

h(l)
vi

= σ(h(l−1)
vi

W (l−1)) (5)

where h
(0)
vi = X(i) is the attribute vector of node vi, i.e., the

i-th row of the matrix X associated with the graph G.
2). k-Order Neighbor-subgraph Embedding: As the

GNN[Scarselli et al., 2009] method is widely used for pro-
cessing graph data, our paper leverages this model to learn
embeddings of nodes in the k-order neighbor-subgraph from
the graph’s structure and attribute information. In this paper,
we conduct experiments using the GCN [Kipf and Welling,
2017] model. Additionally, the GCN module can be substi-
tuted with other GNN models, such as GAT[Veličković et al.,
2018], GraphSAGE[Hamilton et al., 2018], etc. For an at-
tributed graph G = (V,E,A,X), our GCN module calcu-
lates the following iteration equation:

H(l) = σ(D̃− 1
2 ÃD̃− 1

2H(l−1)W (l−1)) (6)
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where Ã = A + I , I is an identity matrix, D̃ = D + I , D
is the degree matrix of graph G, σ(·) is an activation func-
tion(e.g. ReLU), W (l) is the l -layer trainable parameter ma-
trix, H(0) = X is the initial input matrix. Therefore, the k-
order neighbor-subgraph Pi, being a set of connected nodes,
undergoes its representation learning through the GCN mod-
ule, utilizing the adjacency matrix APi and the attribute ma-
trix XPi , then Eq.(6) is rewritten as the following equation:

H
(l)
Pi

= σ(D̃
− 1

2

Pi
ÃPi

D̃
− 1

2

Pi
H

(l−1)
Pi

W (l−1)) (7)

For computational convenience, a readout layer follows the
output of Eq.(7) to transform the matrix into a vector.

hPi = Readout(HPi) =
1

t

t∑
j=1

HPi(j) (8)

where t = |Pi| is the number of nodes in the k-order
neighbor-subgraph Pi, HPi

(j) is the j-th row of matrix HPi
.

3). Loss of Contrastive Learning Module We employ the
Bilinear function to evaluate the relationships x between node
embeddings hv and k-order neighbor-subgraph embeddings
hP , and the relationships of the positive and negative instance
pairs x(+), x(−) are denoted by Eq.(9), respectively.

x
(+)
i = Bilinear(hvi

, hPi
);

x
(−)
i = Bilinear(hvi

, hPj
), s.t. i ̸= j.

(9)

The loss function in our contrastive learning module utilizes
the Binary Cross-Entropy Loss function in conjunction with
a Sigmoid layer, shown in Eq.(10).

L = −
nB∑
i=1

(yi log(σ(xi)) + (1− yi) log(1− σ(xi))) (10)

where nB is the batch size, σ() denotes the Sigmoid function,
y represents the labels of positive(EP ) and negative(EN ) in-
stance pairs, defined as follows.

yi =

{
1, vi ∈ EPi

0, vi ∈ ENi

(11)

4). Anomaly Score Function: The intuitive concept
of contrastive learning is to train the correlation value of a
node’s positive instance pair, x(+), to approach 1, and the
node’s negative instance pair, x(−), to approach 0. The ma-
jority of nodes in the graph are expected to be normal and
adhere to the rule stated above. However, for the anomalous
node, the values of x(+) and x(−) deviate from this expected
pattern. Like the other contrastive learning model, we intro-
duce the anomaly score function (shown in Eq.(12)) to derive
the anomaly features for nodes in the graph.

ϖi = x
(−)
i − x

(+)
i , (12)

where i denotes the node vi. When vi is a normal node, it
can be inferred from the above equation that ϖi is a negative
number, ideally set to −1. Conversely, vi is an anomalous
node, ϖi will be greater than −1. The greater the anomaly
of the node, the farther the value of ϖi deviates from −1.
The vector ϖ represents the anomaly features of each node
learned through our approach.

Algorithm 1 Anomaly Subgraph Detection With High-Order
Neighborhood Sampling Contrastive Learning (ASD-HC)

Input: G = (V,E,A,X), k (k-order), t (the k-order neighbor-
subgraph size), E (number of epoch), nB (the batch size), the
anomalous threshold α

Output: Maximal connected anomaly subgraph Ŝ
1: Randomly initializing the parameters of model W ;
2: Initialization: b⃗(1) =

∑
a(i, j), i, j ≤ |V |; e← 0;

3: Calculate the k-order vector b⃗(k) = Ak−1b⃗(1);
4: for all node i ∈ V do
5: Generating positive subgraphs {Pi} with max(b⃗

(k)
i );

6: Generating negative subgraphs {Ni} with min(b⃗
(k)
i );

7: end for
8: while e ≤ E do
9: Selecting the batch set {v0, v1, ..., vnB} ∈ V

10: for vi ∈ {v0, v1, ..., vnB} training do
11: EP ← (vi, Pi); EN ← (vi, Pj), s.t. i ̸= j;
12: Embedding by GCN : hvi , hPi as Eq.(5), (8);
13: Quantifying EPi and ENi : x(+)

i , x(−)
i as Eq.(9);

14: Defining labels of EPi and ENi : y(+)
i ← 1, y

(−)
i ← 0;

15: Training W as loss: L← BCEWithLogitsLoss(x, y);
16: end for
17: end while
18: for all nodes testing do
19: Calculating anomaly score ϖi ← x

(−)
i − x

(+)
i , vi ∈ V ;

20: end for
21: Filtering out anomalous nodes: Ω← {vi|p(ϖi) ≤ α}
22: RWR start with Ω in G: → {S0, S1, S2, ...}
23: while S ∈ {S0, S1, S2, ...} do
24: Ŝ ← argmax f (S)
25: end while
26: return Ŝ;

4.3 Anomaly Subgraph Detection Algorithm
To create an efficient algorithm for detecting connected
anomaly subgraphs, we adopt the following steps:

1 Assuming that the ϖ values follow a uniform distribu-
tion, then calculate the probability of ϖ, i.e. p(ϖ).

2 Filtering out the anomalous nodes with p(ϖ) values less
than a specified threshold α.

3 Constructing connected anomaly subgraphs within a
larger graph based on the filtered anomalous nodes via
the Random Walk with Restart (RWR) algorithm.

4 Assessing the candidate connected anomaly subgraphs
with NPGS in Eq.(1).

5 Iterative optimization processing.
Based on hypothesis testing and statistical theory, if the null
hypothesis is valid and the distribution of ϖ should theoret-
ically be uniform, the p-values are expected to follow a nor-
mal distribution within the interval [0, 1]. The p-value of
the observed data is relatively low under the null hypothesis,
which means that the observed data represent an even more
extreme scenario. This provides evidence for rejecting the
null hypothesis. Consequently, in our paper, we establish a
predefined threshold α (e.g., α = 0.25), then when the prob-
ability of a node’s anomalous score ϖi, represented as p(ϖi),
is less than or equal to α, it indicates that the node vi has a
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Dataset #nodes #edges #attributes #anomalies
Cora 2, 708 5, 803 1, 433 150
ACM 16, 484 90, 557 8, 337 597

Citeseer 3, 327 5, 198 3, 703 150
BlogCatalog 5, 196 172, 783 8, 189 300

Flickr 7, 575 241, 304 12, 407 450

Table 1: Statistics of datasets involved in our experiments.

high likelihood of being an anomalous node. A collection
of anomalous nodes Ω is filtered based on the condition of
p(ϖi) ≤ α.

As we know, the computational complexity of graph de-
tection increases exponentially with larger graph sizes. The
computational cost is one of the challenges of the graph de-
tection process. Our approach employs the RWR algorithm
[Tong et al., 2006] to construct candidate connected anomaly
subgraphs. The induced subgraphs are constructed around a
set of anomalous nodes Ω = {vi|p(vi) ≤ α} but are not
confined solely to these anomalous nodes. Therefore, this
strategy addresses the challenges associated with traditional
anomaly subgraph detection algorithms and significantly mit-
igates the computational demands for subgraph identification
in large graphs.

5 Experiments

Our approach and baselines are all evaluated on the five
benchmark datasets, as shown in Table 1. We explore all ex-
periments on the GPU: GeForce GTX 1080 Ti (11GB) ×2,
with a total memory of 128GB.

5.1 Dataset

Our paper leverages five widely recognized datasets to as-
sess the performance of our algorithm and baselines. These
datasets are commonly employed in other deep learning-
based approaches[Zheng et al., 2023; Liu et al., 2022; Jin
et al., 2021], and their key information is outlined in Table 1.
These datasets are categorized into two types:

Citation Networks: Cora1[McCallum et al., 2000], Cite-
Seer2[Lawrence et al., 1999], ACM[Sen et al., 2008][Tang
et al., 2008]. In these graphs, nodes represent correspond-
ing documents, edges denote links between those documents,
and their node features are extracted from the text contents of
each document.

Social Networks: BlogCatalog3 and Flickr[Tang and Liu,
2009]. BlogCatalog data is extracted from the blog-sharing
website BlogCatalog, while Flickr is sourced from the image-
sharing platform Flickr. In these two graphs, nodes represent
users of the respective websites, and edges signify the rela-
tionships between users. Additionally, the features of nodes
are derived from the tag contents of the posted blogs and pho-
tos, respectively.

1www.cora.justresearch.com
2www.scienceindex.com
3http://www.blogcatalog.com

Algorithms Cora ACM Citeseer Flickr BlogCatalog
DOMINANT 0.8124 0.7986 0.8267 0.7454 0.6465

CoLA 0.8942 0.8322 0.8786 0.7468 0.7800
ANEMONE 0.8975 0.8398 0.9137 0.6620 0.6417

GRADATE 0.8421 0.8231 0.8079 0.7181 0.6058

AS-GAE 0.6786 0.5019 0.6730 0.5021 0.4947

ASD-HC 0.9217 0.8786 0.9057 0.7719 0.7800

Table 2: AUC evaluation of anomalous node detection by ASD-HC
and its competitive baselines across five benchmark datasets.

5.2 Experiment Setting
Metrics: We use the AUC metric to evaluate both anoma-
lous node detection and anomaly subgraph detection, which
is commonly used to evaluate the performance of a binary
classification model. AUC quantifies the model’s ability to
distinguish between positive and negative instances. A higher
AUC value, closer to 1, indicates better performance.

Baselines: Our experiments explore five state-of-the-art
deep learning-based baselines for anomalous node detection
and one method (AS-GAE) for anomaly subgraph detection.

1) DOMINANT[Ding et al., 2019] employs a deep graph
autoencoder method and utilizes graph structure and fea-
tures for detecting anomalous nodes in a graph.

2) ANEMONE[Jin et al., 2021] is an anomalous node
detection method based on Graph Neural Networks
(GNN), aiming to identify graph anomalies using multi-
scale patch and context-level contrastive learning.

3) CoLA[Liu et al., 2022] is an anomaly detection algo-
rithm focusing on nodes, utilizing a GNN-based con-
trastive learning method at the node-subgraph level. It
computes anomaly scores for nodes by evaluating repre-
sentations derived from nodes and subgraphs in positive
and negative instance pairs.

4) GRADATE[Duan et al., 2023] is an anomalous node
detection approach based on node-node, node-subgraph,
and subgraph-subgraph multi-view contrastive learning.

5) AS-GAE[Zhang and Zhao, 2022] is an anomaly sub-
graph detection algorithm utilizing a graph auto-
encoder. It generates a residual graph by reconstructing
the given graph and detects anomaly subgraphs by iden-
tifying different areas between the original graph and its
reconstructed graph.

Anomaly injection: To evaluate the detecting ability of
our algorithm, having anomaly ground truth in datasets is es-
sential. However, all experimental datasets lack anomaly la-
bels. We explore two types of anomaly injection: structural
anomaly injection and attribute anomaly injection. We ran-
domly select q nodes and induce q connected subgraphs using
a random walk approach and then transform them into q fully
connected subgraphs. Similarly, we randomly sample q con-
nected subgraphs with the same number of nodes as Set T ,
and select k nodes as Set C. The attribute of each node in T
is perturbed based on the Euclidean distance between it and
the randomly selected node in C. The number of anomalies
in each dataset can be found in Table 1.
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Figure 3: ROC curve evaluations for the detection of anomalous nodes on five distinct datasets, comparing ASD-HC to other baselines.

Methods
Cora ACM Citeseer Flickr BlogCatalog

Nα(S) N(S) AUC f(Ŝ) Nα(S) N(S) AUC f(Ŝ) Nα(S) N(S) AUC f(Ŝ) Nα(S) N(S) AUC f(Ŝ) Nα(S) N(S) AUC f(Ŝ)

AS-GAE - 542 0.7590 - - 22 0.5175 - - 666 0.7951 - - 4 0.25 - - 1039 0.5458 -
ASD-HC(RWR) 166 389 0.9153 15.29 1240 2653 0.8139 45.78 184 385 0.9252 18.02 494 1259 0.7153 24.08 336 1060 0.6829 15.23

ASD-HC(BFS) 655 2502 0.9231 1.36 4117 16445 0.8784 0.10 667 2223 0.9310 5.45 1894 7575 0.7718 0.01 1300 5196 0.7783 0.03

Table 3: Evaluation of anomaly subgraph detection by two ASD-HCs and AS-GAE across five benchmark datasets. (“AUC” denotes the
evaluation of anomalies within the detected anomaly subgraph, f(Ŝ) denotes the significant level within the detected anomaly subgraph,
where Nα(S) = Σvi∈VS δ(p(ϖi) ≤ α) denotes the number of anomalous nodes in S, N(S) = Σvi∈VS δ(1) denotes the number of nodes in
S, α = 0.25.)

5.3 Experimental Result Analysis
Anomaly Detection Evaluation
In this section, we focus on evaluating the performance of
our approach in detecting anomalous nodes within the graph
and comparing it with other baseline methods. Due to the
prevalent use of the ROC curve and the Area Under the Curve
(AUC) metric for evaluating binary classification algorithms,
our experiments utilize these two metrics to assess our al-
gorithm’s capability in distinguishing anomalous nodes from
normal nodes within a graph. The figures from our exper-
iments, as indicated in Table 2, illustrate that our approach
outperforms the baselines across five benchmark datasets. In
the Cora dataset, our approach, ASD-HC, achieves the high-
est AUC score of 0.9217, surpassing the competitive base-
line ANEMONE by 2.42%. ASD-HC also attains the highest
AUC score of 0.8786 in ACM, outperforming the competi-
tive baseline ANEMONE by 3.88%. Similarly, in the Flickr
dataset, ASD-HC achieves a score of 0.7719, consistently
surpassing the baselines by at least 2.51%. Moreover, in the
BlogCatalog dataset, ASD-HC and ColA both attain the high-
est score of 0.7800, exceeding other baselines by 13.35%.
Although our approach does not maintain the highest score in
the Citeseer dataset, it is only 0.8% less than ANEMONE.

Based on the experimental data depicted in Figure 3, when
the average degrees of nodes are small, such as in Cora, ACM,

and Citeseer as shown in Figure 3(f), where the degrees are
all less than 65.5, ANEMONE serves as the competitive base-
line for our approach. When the degrees of graphs increase,
CoLA becomes the primary competitive baseline for ASD-
HC. In both scenarios, whether compared with ANEMONE
or CoLA, ASD-HC either surpasses them or closely matches
their performances. Therefore, our focus is directed to-
ward analyzing the distinctions between ASD-HC and them.
ANEMONE learns node embeddings through node&node
and node&ego-net contrastive instance pairs within multi-
views. It considers the influence from the node’s direct neigh-
bor to the target node. CoLA’s result is derived from its node-
subgraph contrastive instance pairs by employing the random
walking method to sample 4 nodes for each subgraph. The
choice of 4 is the default setting in its original algorithm and
serves as the walking path length in RWR, which aligns with
the ideal value described in its paper. We attribute the supe-
rior performance of ASD-HC over ANEMONE and CoLA to
our high-order neighbor-subgraph sampling strategy, which
enables a more comprehensive capture of the characteristics
of node structure and relationships between key neighbors.

Compared to the state-of-the-art algorithms in deep
learning-based anomaly detection within graph structural
data, these results highlight the excellent ability of our ap-
proach to detect anomalous nodes in a graph. Figure 3
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presents detailed data from our experiments on ROC curves.
The ROC curve is generated by calculating True Positive
Rate (TPR) and False Positive Rate (FPR) scores at vari-
ous thresholds between predicted anomalous and normal in-
stances. These curves are then plotted to illustrate the perfor-
mance characteristics of the models. Figure 3 reveals that the
AUC score corresponds to the values presented in Table 2.
The ROC curves represented by the red lines in each dataset
also demonstrate the effectiveness of our approach. How-
ever, in these experiments, we only assess the performance
of detecting anomalous nodes for ASD-HC and all baselines.
Anomalous node detection is not really our ultimate goal.
Therefore, there is a need to further assess our algorithm and
AS-GAE in the context of anomaly subgraph detection.

Anomaly Subgraph Detection Evaluation
After anomaly features have been extracted from each node
through contrastive learning, we predict the distribution of
the anomalies within the entire graph. Under the Uniform
distribution, we calculate the p-values (probabilities) for all
nodes’ anomalous scores p(ϖ). Anomalous nodes are identi-
fied by filtering out those with p-values lower than the spec-
ified significantly anomalous threshold (i.e., p(ϖi) ≤ α). In
our experiments, the threshold α is set to 0.25. Addition-
ally, our approach employing the RWR algorithm is desig-
nated as ”ASD-HC(RWR).” To enable a thorough compari-
son, we replace RWR in our approach with the Breadth-First
Search (BFS) algorithm, creating a variant denoted as ”ASD-
HC(BFS).” Additionally, AS-GAE serves as another baseline
in the anomaly subgraph detection experiment. We evalu-
ate the nodes in the maximum anomaly subgraph detected by
our two variants ASD-HCs and AS-GAE, calculating AUC
metrics, as shown in Table 3. The AUC metrics of both
our ASD-HCs consistently outperform the AUC of AS-GAE,
demonstrating an improvement of at least 13.01%. Further-
more, the detection result of AS-GAE is a set of nodes, not
refined into anomalous and normal nodes. Hence, we repre-
sent its node count in the ”N(S)” column. When comparing
the two ASD-HCs, the subgraphs detected by ASD-HC(BFS)
are notably larger and almost equal to the entire graph. Al-
though ASD-HC(BFS)’s AUC slightly outperforms that of
ASD-HC(RWR), this advantage is not deemed satisfactory.
According to the values of f(Ŝ) in Table 3, the subgraph
detected by ASD-HC(RWR) demonstrates the most signifi-
cantly anomalous levers on all benchmark datasets. In sum-
mary, ASD-HC(RWR) exhibits the most optimal capability in
detecting anomaly subgraphs. Furthermore, ASD-HC(BFS)’s
running time is longer compared to ASD-HC(RWR).

Parameter Studying
In our experiment, the batch size is set to 200, and the num-
ber of epochs is set to 100 for smaller graphs (e.g., Cora and
Citeseer). For larger graphs with a substantial number of
nodes or edges (e.g., ACM, Flickr, and BlogCatalog) reflect-
ing more complex graph structures, additional training time
is required. In such cases, we set the number of epochs to
400. The learning rate is set in the range of [0.001, 0.0035].
In addition to these above common parameters, our algo-
rithm introduces three other crucial parameters: the order of
neighbors (denoted as k) that we consider, the size of the

Figure 4: Evaluation of influences of k-order neighbors and the size
of the neighbor-subgraph t. (a) As k = 3, evaluating the effect of
t on the AUC, (b) When t is set to 5, 10, 15, and 20, respectively,
AUC varies with k on the Cora dataset.

neighbor-subgraph (denoted as t), and the significant level of
the anomaly α. Typically, we set k equal to 3, t to 15, and
assign a value to α within the range of [0.15, 0.25].

5.4 Ablation Studies
Effect of the Size of Neighbor-Subgraph
In Figure 4(a), with the order of neighbors k set to 3, the
size of the neighbor-subgraph t increases accordingly. AUC
shows a rising trend, reaching optimal values when t is in the
range of [15, 20], and then followed by a decline. This pattern
is consistent across most datasets. However, in the BlogCata-
log dataset, the AUC does not exhibit a downward trend until
t > 35. After analysis, BlogCatalog has the highest edge-
node ratio, indicating a tighter and more complex graph struc-
ture with stronger correlations between nodes. Enlarging the
subgraph size t is beneficial for capturing node features with
greater accuracy.

Effect of the High-Order of Neighbors
Taking the Cora dataset as an example, although specifying
four different orders of neighbors (k = 1, 2, 3, 4), the AUC
value achieves its optimal value when t is set to 15. However,
when increasing the value of k, the AUC exhibits an upward
trend, as shown in Figure 4(b).

6 Conclusion
Detecting anomaly subgraphs is vital for numerous real-
world applications. Most existing anomaly detection meth-
ods overlook the identification of anomaly subgraphs in the
graph data. In this paper, we present ASD-HC, a novel
end-to-end Graph Neural Network (GNN)-based contrastive
learning approach designed to detect the maximum connected
anomaly subgraph within graph-structured data. ASD-HC
employs a high-order neighborhood sampling strategy to con-
struct node-subgraph instance pairs. It extracts anomaly fea-
tures of nodes and defines an evaluation function based on the
Non-Parametric Graph Scan statistics to detect the maximum
connected anomaly subgraph. Our approach highlights its
capabilities in detecting anomalous nodes and anomaly sub-
graphs, especially, outperforming baselines by over 13.01%
in detecting the maximum anomaly subgraph. Experiment
results show our approach effectively detects anomaly sub-
graphs in large-scale graphs.
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