
Unsupervised Deep Graph Structure and Embedding Learning

Xiaobo Shen1 , Lei Shi1 , Xiuwen Gong2∗ and Shirui Pan3

1Nanjing University of Science and Technology
2University of Technology Sydney

3Griffith University
njust.shenxiaobo@gmail.com, 918106840541@njust.edu.cn, gongxiuwen@gmail.com,

s.pan@griffith.edu.au

Abstract
Graph Neural Network (GNN) is powerful in graph
embedding learning, but its performance has been
shown to be heavily degraded under adversarial at-
tacks. Deep graph structure learning (GSL) is pro-
posed to defend attack by jointly learning graph
structure and graph embedding, typically in node
classification task. Label supervision is expen-
sive in real-world applications, and thus unsuper-
vised GSL is more challenging and still remains
less studied. To fulfill this gap, this paper pro-
poses a new unsupervised GSL method, i.e., un-
supervised property GNN (UPGNN). UPGNN first
refines graph structure by exploring properties of
low rank, sparsity, feature smoothness. UPGNN
employs graph mutual information loss to learn
graph embedding by maximizing its correlation
with refined graph. The proposed UPGNN learns
graph structure and embedding without label super-
vision, and thus can be applied various downstream
tasks. We further propose Accelerated UPGNN
(AUPGNN) to reduce computational complexity,
providing a efficient alternative to UPGNN. Our
extensive experiments on node classification and
clustering demonstrate the effectiveness of the pro-
posed method over the state-of-the-arts especially
under heavy perturbation.

1 Introduction
Graph is pervasive data structure, and its related applications
have emerged in a wide range of domains, e.g., social me-
dia, finance, bioinformatics. Graph Neural Networks (GNNs)
[Kipf and Welling, 2017] as powerful deep learning technique
modeling graph have been successfully applied in various
graph analytical tasks, e.g., node classification [Gao et al.,
2020], node clustering [Zhang et al., 2019a], link prediction
[Peng et al., 2020]. GNNs aim to learn embedding of one
node by recursively aggregating information from its neigh-
bors, and their key success lies in message-passing scheme.

GNNs assume that graph is perfect, however this assump-
tion is often violated, as graph may be attacked in real-world

∗Corresponding author.

scenarios. Recent studies [Dai et al., 2018; Wu et al., 2019]
have shown that performances of GNNs are heavily degraded
under adversarial attacks that perform slight perturbations on
graph. The lack of robustness of GNNs may lead to seri-
ous consequence in some critical applications, e.g., financial
transaction. Therefore, it is of great significance to improve
robustness of GNNs.

Recently deep graph structure learning (GSL) [Yang et al.,
2019; Zhu et al., 2019] has been investigated to improve
robustness of GNNs and boost performance of downstream
tasks. It often first models graph adjacency matrix with
learned parameters, and jointly learns adjacency matrix and
GNNs under supervision of downstream node classification
task [Jin et al., 2020; Wan and Kokel, 2021]. Existing GSL
methods parameterize adjacency matrix with different learn-
ing schemes, e.g., probabilistic model [Zhang et al., 2019b;
Veličković et al., 2017], full parameterization [Jin et al.,
2020; Wan and Kokel, 2021], metric learning [Zhang and Zit-
nik, 2020]. Most existing GSL methods are supervised where
label is used to guide the training [Jin et al., 2020]. However,
label is usually expensive to obtain, and enables existing GSL
methods to be only applied to a few supervised scenarios. The
unsupervised deep GSL that can be applied to various down-
stream tasks is more challenging but rarely studied.

To address the above issue, this work studies unsupervised
deep GSL, and proposes unsupervised property GNN, i.e.,
UPGNN. Compared to existing deep GSL methods, the ad-
vantage of UPGNN lies in joint learning of graph structure
and embedding without label supervision, and thus it can be
applied to various downstream tasks. As shown in Figure 1,
UPGNN includes two modules, where the first module re-
fines graph structure by exploring some essential properties
of clean graph, and the second module employs an unsuper-
vised loss to guide training. UPGNN performs SVD on in
each iteration, which requires time complexity of O(N3) (N
is number of nodes) to obtain low-rank graph, and is com-
putationally expensive for large graph. To address efficiency
issue of UPGNN, we further accelerate UPGNN by reducing
the dimension of the core low-rank component to avoid per-
forming SVD on large original graph. The main contributions
of this work are as follows:

• We propose UPGNN, an unsupervised property GNN,
that can jointly learn graph structure and embedding in
an unsupervised manner. As UPGNN is developed in-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2342

a

Input Data

Poisoned Graph

Attribute

Graph Structure Refinement
Low-rank and Sparsity

Feature Smoothness

Graph Mutual Information Exploration

Node Embedding

GCN

Refined Graph

←:MI between features
←:MI between edges

Figure 1: The overall pipeline of the proposed UPGNN. UPGNN
jointly learns graph structure and embedding in an unsupervised
manner. UPGNN generates a clean graph by exploring low rank,
sparsity, and feature smoothness of graph. UPGNN employs graph
mutual information loss on graph to maximize correlation between
refined graph and embedding.

dependent of specific task, it can be freely applied to
various downstream tasks.

• UPGNN refines graph structure by exploring low rank,
sparse, and feature smooth properties of graph. Addi-
tionally, an unsupervised loss based on graph mutual in-
formation is employed to maximize the correlation be-
tween the refined graph and the learned graph embed-
ding.

• We further propose Accelerated UPGNN (AUPGNN) to
reduce computational complexity, providing a efficient
alternative to UPGNN.

• The proposed methods are verified on node classifica-
tion and clustering, and empirical results demonstrate
that the proposed methods outperform the state-of-the-
arts under adversarial attacks.

2 Related Work
2.1 Graph Neural Networks
Graph neural networks (GNNs) are powerful models for
learning graph representations by capturing complex depen-
dencies within graphs. GCN [Kipf and Welling, 2017] is a
popular GNN model that utilizes spectral graph convolution
to gather information from neighboring nodes. This mecha-
nism enables nodes to exchange and update their representa-
tions based on the information in their local neighborhoods.
Another notable GNN is the Graph Attention Network (GAT)
[Veličković et al., 2017], which incorporates attention mech-
anisms to focus on relevant neighborhood information.

One challenge faced by GNNs is their reliance on labeled
data for training, which can be costly and difficult to ob-
tain in real-world applications. To address this challenge,
researchers have explored unsupervised GNN models such
as the Graph Autoencoder (GAE) [Kipf and Welling, 2016].
GAE learns to encode and decode graph structures, effec-
tively capturing efficient representations without explicit su-
pervision. In addition, graph comparison learning models
based on maximizing mutual information (MI) have achieved
promising results in capturing graph similarity without rely-
ing on labeled data. [Hjelm et al., 2018; Belghazi et al., 2018;

Peng et al., 2022] For instance, GCA enhances the discrim-
inative power of the learned representations for downstream
tasks by introducing a contrastive framework and employing
adaptive data augmentation techniques[Zhu et al., 2021].

In summary, GNNs excel at capturing local and global
structures of graphs, allowing them to learn expressive rep-
resentations. Unsupervised methods like GAE and graph
contrastive learning provide another possibility to learn from
graph data without relying on labelled examples.

2.2 Structure Learning for GNNs
Existing studies show that GNNs are vulnerable to adversar-
ial attacks, that is, slight or unnoticeable perturbations to the
input can fool GNNs to output a wrong prediction. There are
some adversarial attacks against graph. The nettack [Zügner
et al., 2018] is designed for targeted attack, and degrades per-
formance of GNN on target nodes. Based on meta-learning,
the metattack [Zügner and Günnemann, 2019] is proposed to
generate poisoning attacks on the whole graph.

Until now some mechanisms have been designed to defend
these attacks. One family is to educe the weight of potentially
adversarial nodes in information aggregation. AGCN [Li et
al., 2018] first computes the generalized Mahalanobis dis-
tance between each pair of nodes in the latent space. There-
after, it models the edge weight using a Gaussian kernel
given the distance. SimP-GCN [Jin et al., 2021] constructs a
new feature graph according to node features which achieve
robustness by joint learning on structure graph and feature
graph.

Another family modifies the graph structure by explor-
ing the graph prior, and they tend to use the graph struc-
ture directly as a learnable parameter. Attackers tend to con-
nect nodes with different features, suggesting the removal of
links between dissimilar nodes. Additionally, nettack leads
to changes in the higher-order spectrum of the graph, propos-
ing a preprocessing step with its lower-order approximation.
GCN-SVD [Entezari et al., 2020] is an approach for defend-
ing against adversarial attacks in graphs. It utilizes singu-
lar value decomposition to enhance the robustness of GCN.
GLNN [Gao et al., 2020] combines the initial graph struc-
ture, sparsity, and feature smoothing into a hybrid objective
to defend against contamination. Additionally, ProGNN [Jin
et al., 2020] incorporates kernel norms with a low-rank prior
to further improve the performance of graph neural networks.
ProGNN enhances graph analysis and prediction by adap-
tively learning the importance of nodes and integrating struc-
tural information with graph attributes. This comprehensive
approach effectively tackles challenges in graph data like at-
tacks and contamination, resulting in improved performance.

3 Methodology
3.1 Problem Definition
Let G = (V , E) be a graph, where V and E represent vertex
and edge sets respectively. We denote node feature and initial
graph structure as feature matrix X ∈ RN×F and adjacency
matrix A ∈ RN×N respectively. In this work, it is assumed
that adversarial attacks are only performed on graph structure,
thus edges are modified and node features remain unchanged.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2343

Given G with A being poisoned by adversarial edges and fea-
ture matrix X unperturbed, the goal of this work is to jointly
learn clean graph with adjacency matrix S ∈ S = [0, 1]N×N ,
graph embedding H, and GNN parameters Θ without any se-
mantic supervision. Some downstream tasks, e.g., node clas-
sification, node clustering can be performed with the learned
graph embedding.

3.2 UPGNN
As illustrated in Figure 1, the proposed UPGNN includes two
modules: graph structure refinement, and graph mutual infor-
mation exploration.

Graph Structure Refinement
Adversarial attacks can lead to obvious reduced performance
of GNNs by generating carefully-crafted perturbation on
graph [Zügner et al., 2018; Zügner and Günnemann, 2019].
Thus it is highly desirable to defend attack by cleaning per-
turbed graph. It is well known that clean graph often share
certain properties, e.g., low rank, and sparsity. However, ad-
versarial attacks tend to add edge to link nodes of different
communities [Wu et al., 2019; Xu et al., 2020], and signifi-
cantly increase rank and singular value of adjacency matrix.
Motivated by such observation, UPGNN considers properties
of clean graph as the guideline to conduct graph structure re-
finement. Specifically, UPGNN aims to learn a clean graph
with a new adjacency matrix S that should be close to that
of poisoned graph, and share the desirable properties of low
rank and sparsity. To this end, we have the following objec-
tive function:

Ls = ∥A− S∥2F + α∥S∥1 + β∥S∥∗ (1)

where the first term ensures that learned and original adja-
cency matrices should be close, ∥S∥1 and ∥S∥∗ [Richard et
al., 2012] enforces the learned adjacency matrix to be sparse
and low-rank respectively, α and β are two regularization
parameters. In addition, it is often observed that connected
nodes are more likely to share similar node features. In this
work, node features are assumed to be unperturbed, which
motivates us to employ such feature smoothness property to
refine graph. We have the following objective function:

Lf =
1

2

N∑
i=1

N∑
j=1

Sij

(
xi√
di
− xj√

dj

)2

= Tr
(
X⊤L̂X

)
(2)

where L̂ = D−1/2 (D− S)D−1/2 is normalized Laplacian
matrix, D is degree matrix of S, and di denotes the degree
of node i. Minimizing (2) ensures that connected nodes are
required to share similar features, otherwise large loss is in-
curred. By such way, graph structure can be further refined
based on smoothness of unperturbed node features.

Graph Mutual Information Exploration
Some existing GSL methods employ classification loss to
train GNN, and are applied in a supervised learning sce-
nario [Elinas et al., 2020; Veličković et al., 2019]. How-
ever, such methods rely on label supervision that is expen-
sive to be collected in real-world applications. This work
focuses on more general unsupervised scenarios where label

is unavailable, and can handle more downstream tasks other
than node classification. Inspired by wide use of mutual in-
formation (MI) [Hjelm et al., 2018; Belghazi et al., 2018;
Peng et al., 2022], we employ graphical mutual information
to measure correlation between refined graph and embedding,
and further minimize such loss to train GNN and learn em-
bedding.

Specifically, given node i, its support graph is defined as Gi
that includes features of neighbors Xi and refined adjacency
matrix of neighbors Si. The MI between embedding of node
i and its support graph is defined as:

I (hi;Gi) =
in∑
j=1

wijI (hi;xj) + I (wij ;Sij) (3)

where xj is the j-th neighbor of node i, in is the number of all
elements in Xi, and the weight wij = σ

(
h⊤
i hj

)
is character-

ized by similarity between hi and hj that reveals the contri-
bution of I (hi;xj), and σ (·) is a sigmoid function. The first
and second terms measure MIs of both features and edges in
refined graph respectively. In this work, Jensen-Shannon MI
estimator (JSD) [Nowozin et al., 2016] is used due to its ef-
fectiveness and efficiency, and then I (hi;xj) can be defined
as:

I (hi;xj) = −sp (−DΩ (hi,xj))− EP̃
[
sp
(
DΩ

(
hi,x

′
j

))]
(4)

where DΩ is a discriminator parameterized with Ω, and sim-
ply defined as DΩ (hi,xj) = σ

(
h⊤
i Ωxj

)
that scores the

feature pairs through a simple bilinear function, sp(x) =
log(1 + ex) is soft-plus function, x′

j is a sampled negative
node with respect to node i. To this end, by summarizing all
nodes in graph, we have the following objective function:

Lm = −
N∑
i=1

I (hi;Gi) (5)

Final Objective Function
By combining the above three losses, i.e., (1), (2), (5), we
have the final objective function of UPGNN as follows:

min
S,Θ,Ω

L = Ls + λLf + γLm (6)

s.t. S = S⊤,S ∈ S

where λ and γ are two regularization parameters, and the con-
straints enforce the learned adjacency matrix to be symmetric
and binary.

3.3 Optimization
It is challenging to jointly optimize S, Θ, and Ω in (6), and
an alternating optimization scheme is applied. The training
procedure of UPGNN is illustrated in Algorithm 1.

Update Θ,Ω

With fixed S, Θ and Ω are only related to Lm. It is a typical
neural network optimization problem, and stochastic gradient
descent is used to optimize the two variables.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2344

Algorithm 1 UPGNN
Input: Adjacency matrix A, Attribute matrix X, parameters
α, β, γ, λ, τ , learning rate η, η′;
Output: adjacency matrix S, network parameters Θ, Ω.

1: Initialize S← A
2: Randomly initialize Θ
3: while Stopping condition is not met do
4: S← S− η∇S

(
∥A− S∥2F + λLf + γLm

)
5: S← proxηβ∥·∥∗

(S)

6: S← proxηα∥·∥1
(S)

7: S← PS(S)
8: for i = 1 to τ do
9: Θ← Θ− η′ ∂Lm

∂Θ

10: Ω← Ω− η′ ∂Lm

∂Ω
11: end for
12: end while

Update S
By removing irrelevant terms with respect to S, we have:

min
S

L(S,A) + α∥S∥1 + β∥S∥∗ (7)

s.t. S = S⊤,S ∈ S

where L(S,A) = ∥A − S∥2F + λLf + γLm. It is clear that
both ℓ1 norm and nuclear norm are non-differentiable. The
Forward-Backward splitting method is employed that alter-
nates gradient descent and proximal steps as:

S(k) = ProxηR
(
S(k−1) − η∇S (L (S,A))

)
(8)

where η is learning rate, and proximal operator with respect
to non-differentiable function R(S) is defined as:

ProxR(Z) = argmin
S
∥S− Z∥2F +R(S). (9)

In particular, the proximal operator of ℓ1 norm and nuclear
norm are defined as follows [Savalle et al., 2012]:

proxα∥.∥1
(S) = sgn(S)⊙ (|Z| − α)+ (10)

proxβ∥∥∗
(S) = U diag

(
(σi − β)+

)
V⊤ (11)

where sgn denotes sign function, and S =
U diag (σ1, . . . , σn)V

⊤ is singular value decomposi-
tion (SVD) of S. To this end, in each iteration, S can be
updated as follows [Raguet et al., 2013]: S = S− η∇S(∥A− S∥2F + λLf + γLm)

S = proxηβ∥·∥∗
(S)

S = proxηα∥·∥1
(S)

(12)

We let S = S+S⊤

2 to satisfy symmetric constraint. We further
assign Sij to 0 if Sij < 0, and assign Sij to 1 if Sij > 1.

After UPGNN is trained, the learned graph embedding can
be used for some downstream tasks. Specifically, in this
work, for node classification, learned embedding is fed into
logistic regression; for node clustering, learned embedding is
fed into k-means.

3.4 Accelerated UPGNN
As shown in (12), in each iteration, proximal operator of nu-
clear norm in UPGNN requires applying SVD on S, whose
computational complexity is O(N3). It is computationally
expensive on large graph, which limits the capability of UP-
GNN on dealing with large-scale applications. This section
studies accelerating UPGNN, and provides its efficient alter-
native.

The proposed Accelerated UPGNN (AUPGNN) is inspired
by recent advances of robust principal component analysis
(RPCA) [Feng and Wang, 2022]. The key idea is to reduce
the dimension of the core low-rank component, and to avoid
performing SVD on original large matrices. Specifically, in-
stead of directly employing S to approximate given A, we
propose to decompose A as a low rank component ZWZ⊤

and a sparse component E, where Z ∈ RN×r is a orthogonal
matrix with full-column rank, W ∈ Rr×r is the learned low-
rank matrix, where r is much smaller than N , E ∈ RN×N

is the learned sparse matrix that is used to separate perturba-
tion from original graph. To this end, we have a new graph
structure refinement with properties of low rank and sparsity:

min
W,E

1

2

∥∥∥A− ZWZ⊤ −E
∥∥∥2
F
+ α∥E∥1 + β∥W∥∗ (13)

where Z is considered as mostly a tall matrix, and minimizing
(13) allows us to find a smaller low-rank matrix of dimension
r × r, rather than a matrix of original dimension N × N .
Similar to optimizing S, optimizing E and W also involves
proximal operator of ℓ1 norm and nuclear norm, and is de-
tailed as follows: W = W − η∇W

(
1

2

∥∥A− ZWZ⊤ −E
∥∥2

F
+ λLf + γLm

)
W = proxηβ∥·∥∗ (W)

(14)
and E = E− η∇E

(
1

2

∥∥∥A− ZWZ⊤ −E
∥∥∥2
F

)
E = proxηα∥·∥1

(E)
(15)

As can be observed, (14) performs proximal operator of W,
and requires performing SVD on a smaller matrix with di-
mension of r× r, whose computational complexity isO(r3).
Therefore, AUPGNN has computational advantage over UP-
GNN. The training procedure of AUPGNN is similar to that
of UPGNN, and involves iterative optimization of W, E, net-
work parameters Θ, Ω.

4 Experiments
4.1 Datasets
Three benchmark datasets, i.e., Cora, Citeseer, Polblogs are
employed for evaluation, and the largest connected compo-
nent is considered for each graph. For each graph, we ran-
domly choose 10% of nodes for training, 10% of nodes for
validation, and the remaining 80% of nodes for testing. The
average performance of 10 runs is reported for each experi-
ment.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2345

Dataset Ptb Rate (%) Node2Vec Deep Walk GCN DGI GMI GCN-SVD DGC SLAPS-2S UPGNN

Cora

0 75.57±0.78 78.42±0.46 83.50±0.44 78.98±0.11 83.60±0.12 80.63±0.45 83.07±0.42 75.49±0.58 83.58±0.09
5 75.96±0.40 70.68±0.12 76.55±0.79 74.15±0.12 78.34±0.87 78.39±0.54 75.00±1.03 78.96±0.53 78.07±0.02
10 70.58±0.93 68.77±1.10 70.39±1.28 69.69±0.15 72.22±0.68 71.47±0.83 75.54±1.01 73.29±1.31 76.20±0.06
15 65.76±1.74 61.27±1.39 65.10±0.71 57.53±0.09 66.82±0.83 66.69±1.18 73.16±1.37 68.25±1.79 74.16±0.04
20 51.65±1.87 50.54±0.96 59.56±2.72 51.23±0.13 53.73±1.01 58.94±1.13 65.65±1.29 65.37±0.16 72.57±0.39
25 48.08±2.17 46.08±1.05 47.53±1.96 45.60±0.11 49.68±1.21 52.06±1.19 59.65±1.29 63.62±1.06 71.41±0.13

Citeseer

0 64.01±0.49 67.32±0.48 71.96±0.55 73.63±0.08 73.83±0.09 70.65±0.32 72.85±1.39 74.27±0.60 74.38±0.04
5 65.59±0.91 67.25±0.56 70.88±0.62 73.49±0.08 72.12±0.17 68.84±0.72 72.29±0.94 69.85±1.08 72.25±0.03
10 67.63±0.80 63.96±0.99 67.55±0.89 69.63±0.09 70.02±0.36 68.87±0.62 71.87±0.58 68.07±0.30 72.17±0.15
15 62.86±1.31 60.34±0.83 64.52±1.11 65.38±0.07 68.51±0.19 63.26±0.96 68.82±0.75 68.08±0.93 71.22±0.13
20 56.49±0.97 54.02±0.88 62.03±3.49 62.75±0.16 59.18±0.44 58.55±1.09 65.77±0.70 65.70±1.12 69.32±0.15
25 54.19±2.15 51.50±0.64 56.94±2.09 62.92±0.09 57.08±0.80 57.18±1.87 62.16±0.28 66.59±0.63 68.33±0.29

Polblogs

0 93.69±0.53 93.72±0.25 95.69±0.38 91.00±0.13 95.40±0.07 95.31±0.18 94.61±0.44 95.08±0.62 95.62±0.04
5 77.62±2.62 69.90±0.26 73.07±0.80 79.12±0.24 90.62±0.19 89.09±0.22 83.75±0.14 82.88±0.95 94.40±0.71
10 73.91±0.27 73.39±0.55 70.72±1.13 75.47±0.19 76.56±0.10 81.24±0.49 69.52±0.17 73.87±0.69 82.98±0.20
15 70.31±0.17 66.94±0.52 64.96±1.91 71.44±0.14 71.60±0.14 68.10±3.73 64.75±0.07 67.38±0.84 78.03±0.65
20 59.60±0.96 49.55±0.29 51.27±1.23 51.95±0.21 63.89±0.32 57.33±3.15 64.75±0.23 58.39±1.54 74.84±0.04
25 46.09±1.58 38.56±0.93 49.23±1.36 42.57±0.22 62.03±0.80 48.66±9.93 61.07±0.80 50.75±0.13 68.22±0.42

Table 1: Node classification performance (Accuracy±Std) under non-targeted adversarial attack, i.e., metattack.

0 2 4
Number of Perturbations Per Node

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(a) Cora

0 2 4
Number of Perturbations Per Node

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(b) Citeseer

0 2 4
Number of Perturbations Per Node

0.75

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

(c) Polblogs

Figure 2: Node classification performance under target attack, i.e., nettack.

4.2 Experimental Setup
Downstream Tasks
Two tasks, i.e., node classification and clustering are used to
evaluate the quality of learned graph and embedding. For
evaluation, classification accuracy is employed as metric for
classification task, and clustering accuracy, Normalized Mu-
tual Information (NMI), F1-scores are employed as metrics
for clustering task.

Baselines
For node classification, three categories of methods are com-
pared, including raph embedding methods, i.e., DeepWalk
[Perozzi et al., 2014], Node2Vec [Grover and Leskovec,
2016], graph structure-fixed GNNs, i.e., GCN [Kipf and
Welling, 2017], DGI [Veličković et al., 2019], GMI [Peng
et al., 2022], and deep GSL methods, i.e., GCN-SVD [En-
tezari et al., 2020], DGC [Gasteiger et al., 2019], SLAPS-
2S [Fatemi et al., 2021]. For node clustering, three cat-
egories of methods are compared, including feature-based
clustering methods, i.e., k-means, spectral clustering (SC),
structure-based clustering methods, i.e., DeepWalk [Perozzi
et al., 2014], DNGR [Cao et al., 2016], M-NMF [Wang et al.,
2017b], and attributed graph based clustering methods, i.e.,
TADW [Yang et al., 2015], VGAE [Kipf and Welling, 2016],
MGAE [Wang et al., 2017a]. For the proposed method, α,
β, γ, and λ are searched in a wide range. For GNNs, we

set dimensions of hidden and output layers to 512 and 64 re-
spectively. For the baselines, we use official codes or borrow
results reported in their papers.

4.3 Node Classification
We evaluate node classification performance against two
types of attacks, i.e., non-target attack, target attack. We first
use the attack method to poison graph, then train multiple
models on the poisoned graph, and finally evaluate node clas-
sification performance.

Against Non-targeted Adversarial Attack
Non-targeted adversarial attack degrades the overall perfor-
mance on the whole graph, and a representative one, i.e.,
metattack is employed. The perturbation rate, i.e., the ratio
of changed edges is varied from 0 to 25% with a step of 5%.
Table 1 reports average accuracy with standard deviation of
all the methods, and the bold indicates the best. We find the
following observations:

• The proposed UPGNN outperforms all the baselines on
14 out of 18 cases. The advantage of the proposed UP-
GNN is more obvious under large perturbation where
it outperforms most baselines by a large margin. For
instance, at 25% perturbation rate, the proposed UP-
GNN improves conventional GCN by 23.88%, 11.39%,
18.99% on Cora, Citeseer, Polblogs respectively.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2346

0 25 50 75 100
Perturbation Rate(%)

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

(a) Cora

0 25 50 75 100
Perturbation Rate(%)

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

(b) Citeseer

0 25 50 75 100
Perturbation Rate(%)

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

(c) Polblogs

Figure 3: Node classification performance under random attack.

0 5 10 15 20 25
Perturbation Rate(%)

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

UPGNN-Accuracy
AUPGNN-Accuracy
UPGNN-Time
AUPGNN-Time

560

1000

8680
Ti

m
e

(a) Cora

0 5 10 15 20 25
Perturbation Rate(%)

0.700
0.725
0.750
0.775
0.800
0.825
0.850
0.875

Ac
cu

ra
cy

460

1000

6050

Ti
m

e

(b) Citeseer

0 5 10 15 20 25
Perturbation Rate(%)

0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99
1.00

Ac
cu

ra
cy

280

1000

2400

Ti
m

e

(c) Polblogs

Figure 4: UPGNN versus AUPGNN under target attack, i.e., nettack on three datasets.

• Deep GSL methods generally outperform graph
structure-fixed GNNs, which verifies effectiveness of
GSL. Among three GSL methods, DGC generally out-
performs SLAPS-2S, and GCN-SVD performs worst.
Among three structure-fixed GNNs, GMI outperforms
DGI, and GCN underperforms.

• GNNs outperform conventional graph embedding meth-
ods, indicating advantage of GNN on graph modeling.
The above empirical results verify effectiveness of GSL,
and demonstrate that the proposed UPGNN well defends
non-targeted adversarial attack.

Against Targeted Adversarial Attack
Targeted adversarial attack generates attacks on specific
nodes, and one of state-of-the-arts, i.e., nettack [Zügner et
al., 2018] is employed. The node classification accuracy on
target attack is shown in Figure 2. From this figure, we see
that the proposed UPGNN achieves the best performance in
most cases. As the number of perturbations increases, the
performance drop of the proposed UPGNN is not as heavy as
the baselines. It indicates that the proposed UPGNN is more
capable of resisting targeted adversarial attack.

Against Random Adversarial Attack
Random attack randomly injects fake edges into the graph,
and can be viewed as adding random noise to graph. The re-
sults are reported in 3 The figure shows that UPGNN consis-
tently outperforms all other baselines and successfully resists
random attack. Together with observations from 4.3 and 4.3,
we can conclude that UPGNN is able to defend various types
of adversarial attacks

Dataset Cora Citeseer
ACC NMI F1 ACC NMI F1

k-means 50.0 31.7 37.6 54.4 31.2 41.3
SC 39.8 29.7 33.2 30.8 9.0 25.7

DeepWalk 52.9 38,4 43.5 39.0 13.1 30.5
DNGR 41.9 31.8 34.0 32.6 8.0 30.0

M-NMF 42.3 25.6 32.0 33.6 9.9 25.5
TADW 53.6 36.6 40.1 52.9 32.0 43.6
VGAE 59.2 40.8 45.6 39.2 16.3 27.8
MGAE 68.1 48.9 53.1 66.9 41.6 52.6

UPGNN 70.0 54.1 67.4 65.6 41.2 57.3

Table 2: Node clustering performance (in percentage).

4.4 Node Clustering
Table 2 reports node clustering performance of all the meth-
ods. From this table, we see that the proposed UPGNN out-
performs most baselines in most cases. The performance gain
benefits from refinement of graph structure in the proposed
method. The above empirical results indicate good perfor-
mance of the proposed method on more downstream tasks
other than node classification.

4.5 UPGNN Versus AUPGNN
This section empirically compares UPGNN and AUPGNN in
terms of effectiveness of efficiency. Figure 4 illustrates accu-
racy and training time of the two methods on three datasets.
As can be observed, UPGNN generally have higher accuaries
than AUPGNN in most cases. However, AUPGNN is around
10 times faster than UPGNN, verifying our theoretical find-
ings on computational compelity of AUPGNN.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2347

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(a) Original Feature

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(b) Deepwalk

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(c) GCN

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(d) GMI

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(e) DGC

0.00 0.25 0.50 0.75 1.00
0.0

0.2

0.4

0.6

0.8

1.0

(f) UPGNN

Figure 5: Visualization of the learned graph embedding by six representative methods on Cora under 20% perturbation by metattack [Zügner
and Günnemann, 2019].

0 5 10 15 20 25
Perturbation Rate(%)

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

GCN
Raw Features
UPGNN-
UPGNN-
UPGNN-
UPGNN-
UPGNN

Figure 6: Ablation study of the proposed UPGNN on Cora.

4.6 Ablation Study
This section conducts ablation study on each loss in the pro-
posed UPGNN. Specifically, we compare the proposed UP-
GNN with four variants, including (1) UPGNN-α that only
includes sparsity loss, (2) UPGNN-β that only includes low
rank loss, (3) UPGNN-γ that only includes GNN related loss,
(4) UPGNN-λ that only includes feature smoothing loss. Fig-
ure 6 illustrates accuracies of all the methods with respect
to different perturbation rates on Cora. It can be observed
that UPGNN outperforms all the variants, confirming the im-
portance of each loss in defending against adversarial attacks
Among these variants, UPGNN-β outperforms the other vari-
ants, demonstrating the crucial role of low-rank property.
Notably, even with substantial graph perturbations, UPGNN
maintains competitive performance, surpassing methods that
rely solely on raw features, while the variants and GCN per-
form worse.

4.7 Parameter Analysis
This section emprically investigates the sensitivity of some
parameters, i.e., α, β, γ, and λ in the proposed UPGNN. Fig-
ure 7 reports accuracies with respect to varying parameters
using metattack at a 15% perturbation rate on Cora. As can
be observed, with the increase of these parameters, accuracy
of UPGNN first improves and then decreases. The perfor-
mance remains relatively stable with varying γ, compared to
the other parameters. UPGNN can achieve the good perfor-
mance when α, β, γ, and λ are set to 2× 10−3, 2.5, 2−3, and
4× 10−3 respectively.

1.252.5 5 10 20 40 80 160
 (10 4)

0.72
0.73
0.74
0.75
0.76
0.77

Ac
cu

ra
cy

(a) α

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.69
0.70
0.71
0.72
0.73
0.74
0.75

Ac
cu

ra
cy

(b) β

2 42 32 22 1 20 21 22 23

0.68
0.69
0.70
0.71
0.72
0.73
0.74

Ac
cu

ra
cy

(c) γ

1.252.5 5 10 20 40 80 160
 (10 4)

0.72
0.73
0.74
0.75
0.76
0.77

Ac
cu

ra
cy

(d) λ

Figure 7: Parameter analysis of the proposed UPGNN on Cora.

4.8 Visualization
Figure 5 shows the visualization of graph embedding learned
by six representative methods on Cora under 20% perturba-
tion by metattack. As can be observed, compared to base-
lines, UPGNN can generate small clusters, and separate clus-
ters better. The qualitative empirical results are consistent
with previous quantitative empirical results.

5 Conclusion
This work focuses on the challenging and less studied area
of unsupervised graph structure and learning without label
supervision. We propose a new unsupervised deep GSL
method, i.e., UPGNN that refines graph structure by explor-
ing desirable properties of clean graph, and employs unsu-
pervised graph mutual information loss to maximize correla-
tion between refined graph and graph embedding. We further
propose AUPGNN as a efficient alternative of UPGNN. Ex-
periments on node classification and clustering validate the
effectiveness of the proposed methods.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China under Grant No. 62176126, 62101268,

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2348

the Natural Science Foundation of Jiangsu Province, China
under Grant No. BK20230095.

References
[Belghazi et al., 2018] Mohamed I. Belghazi, Aristide

Baratin, Sai Rajeswar, Sherjil Ozair, Yoshua Bengio,
Aaron Courville, and Hjelm R D. Mine: mutual in-
formation neural estimation. In ICML, pages 531–540,
2018.

[Cao et al., 2016] Shaosheng Cao, Wei Lu, and Qiongkai
Xu. Deep neural networks for learning graph represen-
tations. In AAAI, pages 1145–1152, 2016.

[Dai et al., 2018] Hanjun Dai, Hui Li, Tian Tian, Xin Huang,
Lin Wang, Jun Zhu, and Le Song. Adversarial attack on
graph structured data. In ICML, pages 1115–1124, 2018.

[Elinas et al., 2020] Pantelis Elinas, Edwin V Bonilla, and
Louis Tiao. Variational inference for graph convolutional
networks in the absence of graph data and adversarial set-
tings. NIPS, 33:18648–18660, 2020.

[Entezari et al., 2020] Negin Entezari, Saba A Al-Sayouri,
Amirali Darvishzadeh, and Evangelos E Papalexakis. All
you need is low (rank) defending against adversarial at-
tacks on graphs. In WSDM, pages 169–177, 2020.

[Fatemi et al., 2021] Bahare Fatemi, Layla El Asri, and
Seyed Mehran Kazemi. Slaps: Self-supervision im-
proves structure learning for graph neural networks. NIPS,
34:22667–22681, 2021.

[Feng and Wang, 2022] Long Feng and Junhui Wang. Pro-
jected robust PCA with application to smooth image re-
covery. JMLR, 23:249:1–249:41, 2022.

[Gao et al., 2020] Xiang Gao, Wei Hu, and Zongming Guo.
Exploring structure-adaptive graph learning for robust
semi-supervised classification. In ICME, pages 1–6. IEEE,
2020.

[Gasteiger et al., 2019] Johannes Gasteiger, Stefan Weißen-
berger, and Stephan Günnemann. Diffusion improves
graph learning. NIPS, 32, 2019.

[Grover and Leskovec, 2016] Aditya Grover and Jure
Leskovec. node2vec: Scalable feature learning for
networks. In SIGKDD, pages 855–864, 2016.

[Hjelm et al., 2018] R Devon Hjelm, Alex Fedorov, Samuel
Lavoie-Marchildon, Karan Grewal, Phil Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representa-
tions by mutual information estimation and maximization.
arXiv preprint arXiv:1808.06670, 2018.

[Jin et al., 2020] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng
Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. In SIGKDD,
pages 66–74, 2020.

[Jin et al., 2021] Wei Jin, Tyler Derr, Yiqi Wang, Yao Ma,
Zitao Liu, and Jiliang Tang. Node similarity preserving
graph convolutional networks. In WSDM, pages 148–156,
2021.

[Kipf and Welling, 2016] Thomas N Kipf and Max Welling.
Variational graph auto-encoders. NeurIPS, 2016.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In ICLR, 2017.

[Li et al., 2018] Ruoyu Li, Sheng Wang, Feiyun Zhu, and
Junzhou Huang. Adaptive graph convolutional neural net-
works. In AAAI, volume 32, 2018.

[Nowozin et al., 2016] Sebastian Nowozin, Botond Cseke,
and Ryota Tomioka. f-gan: Training generative neu-
ral samplers using variational divergence minimization.
NIPS, 29, 2016.

[Peng et al., 2020] Zhen Peng, Wenbing Huang, Minnan
Luo, Qinghua Zheng, Yu Rong, Tingyang Xu, and Jun-
zhou Huang. Graph representation learning via graphical
mutual information maximization. In Proceedings of The
Web Conference 2020, pages 259–270, 2020.

[Peng et al., 2022] Zhen Peng, Minnan Luo, Wenbing
Huang, Jundong Li, Qinghua Zheng, Fuchun Sun, and
Junzhou Huang. Learning representations by graphical
mutual information estimation and maximization. TPAMI,
2022.

[Perozzi et al., 2014] Bryan Perozzi, Rami Al-Rfou, and
Steven Skiena. Deepwalk: Online learning of social rep-
resentations. In SIGKDD, pages 701–710, 2014.

[Raguet et al., 2013] Hugo Raguet, Jalal Fadili, and Gabriel
Peyré. A generalized forward-backward splitting. SIAM
Journal on Imaging Sciences, 6(3):1199–1226, 2013.

[Richard et al., 2012] Emile Richard, Pierre-André Savalle,
and Nicolas Vayatis. Estimation of simultaneously sparse
and low rank matrices. ICML, 2012.

[Savalle et al., 2012] Pierre-André Savalle, Emile Richard,
and Nicolas Vayatis. Estimation of simultaneously sparse
and low rank matrices. In ICML, 2012.

[Veličković et al., 2017] Petar Veličković, Guillem Cucurull,
Arantxa Casanova, Adriana Romero, Pietro Lio, and
Yoshua Bengio. Graph attention networks. ICLR, 2017.

[Veličković et al., 2019] Petar Veličković, William Fedus,
William L. Hamilton, Pietro Liò, Yoshua Bengio, and
R Devon Hjelm. Deep graph infomax. In ICLR, 2019.

[Wan and Kokel, 2021] Guihong Wan and Harsha Kokel.
Graph sparsification via meta-learning. AAAI, 2021.

[Wang et al., 2017a] Chun Wang, Shirui Pan, Guodong
Long, Xingquan Zhu, and Jing Jiang. MGAE: marginal-
ized graph autoencoder for graph clustering. In CIKM,
pages 889–898, 2017.

[Wang et al., 2017b] Xiao Wang, Peng Cui, Jing Wang, Jian
Pei, Wenwu Zhu, and Shiqiang Yang. Community preserv-
ing network embedding. In AAAI, pages 203–209, 2017.

[Wu et al., 2019] Huijun Wu, Chen Wang, Yuriy Tyshetskiy,
Andrew Docherty, Kai Lu, and Liming Zhu. Adversarial
examples on graph data: Deep insights into attack and de-
fense. IJCAI, 2019.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2349

[Xu et al., 2020] Han Xu, Yao Ma, Hao-Chen Liu, Debayan
Deb, Hui Liu, Ji-Liang Tang, and Anil K Jain. Adversarial
attacks and defenses in images, graphs and text: A review.
IJAC, 17:151–178, 2020.

[Yang et al., 2015] Cheng Yang, Zhiyuan Liu, Deli Zhao,
Maosong Sun, and Edward Y. Chang. Network represen-
tation learning with rich text information. In IJCAI, pages
2111–2117, 2015.

[Yang et al., 2019] Liang Yang, Zesheng Kang, Xiaochun
Cao, Di Jin, Bo Yang, and Yuanfang Guo. Topology op-
timization based graph convolutional network. In IJCAI,
pages 4054–4061, 2019.

[Zhang and Zitnik, 2020] Xiang Zhang and Marinka Zitnik.
Gnnguard: Defending graph neural networks against ad-
versarial attacks. NeurIPS, 33:9263–9275, 2020.

[Zhang et al., 2019a] Xiaotong Zhang, Han Liu, Qimai Li,
and Xiao-Ming Wu. Attributed graph clustering via adap-
tive graph convolution. IJCAI, 2019.

[Zhang et al., 2019b] Yingxue Zhang, Soumyasundar Pal,
Mark Coates, and Deniz Ustebay. Bayesian graph con-
volutional neural networks for semi-supervised classifica-
tion. In AAAI, volume 33, pages 5829–5836, 2019.

[Zhu et al., 2019] Dingyuan Zhu, Ziwei Zhang, Peng Cui,
and Wenwu Zhu. Robust graph convolutional networks
against adversarial attacks. In SIGKDD, pages 1399–1407,
2019.

[Zhu et al., 2021] Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang
Liu, Shu Wu, and Liang Wang. Graph contrastive learning
with adaptive augmentation. In WWW, pages 2069–2080,
2021.

[Zügner and Günnemann, 2019] Daniel Zügner and Stephan
Günnemann. Adversarial attacks on graph neural networks
via meta learning. In ICLR, 2019.

[Zügner et al., 2018] Daniel Zügner, Amir Akbarnejad, and
Stephan Günnemann. Adversarial attacks on neural net-
works for graph data. In SIGKDD, pages 2847–2856,
2018.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2350

	Introduction
	Related Work
	Graph Neural Networks
	Structure Learning for GNNs

	Methodology
	Problem Definition
	UPGNN
	Graph Structure Refinement
	Graph Mutual Information Exploration
	Final Objective Function

	Optimization
	Update ,
	Update S

	Accelerated UPGNN

	Experiments
	Datasets
	Experimental Setup
	Downstream Tasks
	Baselines

	Node Classification
	Against Non-targeted Adversarial Attack
	Against Targeted Adversarial Attack
	Against Random Adversarial Attack

	Node Clustering
	UPGNN Versus AUPGNN
	Ablation Study
	Parameter Analysis
	Visualization

	Conclusion

