
Learning Multi-Granularity and Adaptive Representation for Knowledge Graph
Reasoning

Ziyu Shang1 , Peng Wang1,2∗ , Wenjun Ke1,2∗ , Jiajun Liu1 , Hailang Huang3 ,
Guozheng Li1 , Chenxiao Wu1 , Jianghan Liu4 , Xiye Chen5 and Yining Li4

1School of Computer Science and Engineering, Southeast University
2Key Laboratory of New Generation Artificial Intelligence Technology and Its
Interdisciplinary Applications (Southeast University), Ministry of Education

3SKLSDE, School of Computer Science and Engineering, Beihang University
4College of Software Engineering, Southeast University

5College of Information Engineering, Nanjing University of Finance & Economics
{ziyus1999, pwang, kewenjun, jiajliu, gzli, liujianghan, liyining}@seu.edu.cn

lerogo@buaa.edu.cn, {yanzu0311, chemistrymaths2002}@gmail.com

Abstract

Knowledge graph reasoning (KGR) aims to infer
new factual triples from existing knowledge graphs
(KGs). Recently, a new category of methods, pos-
sessing both transductive and inductive reasoning
capabilities, has been proposed to tackle this task
via learning entity-independent representations from
local neighboring structures. However, these meth-
ods are plagued by inefficiency issues and they ex-
clusively capture evidence from well-designed lo-
cal structures, ignoring the correlation between the
query and different structures within KGs. In this
work, we first propose a novel multi-granularity
and adaptive representation framework, MulGA, ex-
ploiting the connectivity subgraph to uniformly and
hierarchically model query-related triples, relation
paths, and subgraphs without explicitly extracting
any graph structure, hence mitigating inefficiency
issues. Second, we introduce a message-passing
mechanism across connectivity subgraphs, facilitat-
ing all entities to attain query-related structural rep-
resentations of diverse granularity levels, i.e., triple
and relation paths of different lengths. Third, we
design a self-attention-based merging mechanism
that allocates weights to different granularities and
then consolidates them into subgraph granularity
representations for reasoning. The systematic exper-
iments have been conducted on 15 benchmarks and
MulGA achieves a significant improvement in MRR
by an average of 1.5% on transductive and 2.7% on
inductive tasks than existing state-of-the-art meth-
ods. Moreover, MulGA boasts faster convergence
speed, competitive inference time, and alleviates the
over-smoothing prevalent in graph neural networks.

∗Corresponding authors

1 Introduction
Knowledge graphs (KGs) [Dong et al., 2014] such as Wiki-
data [Vrandečić, 2012] and DBPedia [Auer et al., 2007] have
been widely utilized in many knowledge-intensive applica-
tions including semantic search [Noy et al., 2019; Dong,
2019], recommendation systems [Wang et al., 2018; Wang
et al., 2021], and question answering [Huang et al., 2019;
Saxena et al., 2020; Li et al., 2022]. A KG is a multi-relational
graph containing factual triples. However, real-world KGs con-
structed manually or automatically are inevitably incomplete,
thus predicting unknown edges as analogous to uncovering
new facts is challenging. Traditional knowledge graph reason-
ing (KGR) methods leverage the knowledge graph embedding
(KGE) [Wang et al., 2017], projecting entities and relations
into low-dimensional dense vectors, to aid the inference of
missing factual triples [Bordes et al., 2013; Sun et al., 2019;
Liu et al., 2023; Shang et al., 2023]. Despite the better ex-
pressive capacity of KGE-based models, there remains an
inherent deficiency in their explainability. For effective KGR,
it is pivotal to acquire high-quality representations that not
only embed the factual triples but also accurately reflect the
underlying graph structure [Chen et al., 2020b].

Recent KGR studies [Zhu et al., 2021; Zhang and Yao, 2022;
Teru et al., 2020; Xu et al., 2022; Mai et al., 2021] have
moved away from KGE-based methods and focus instead
on learning entity-independent representation from existing
structures in KGs, e.g., relation paths and subgraphs. For meth-
ods based on relation paths, recent work [Zhu et al., 2021;
Zhang et al., 2022; Zhang and Yao, 2022; Zhu et al., 2023]
emphasizes capturing features of fixed-length relation paths
between two entities in KGs, overlooking the semantic cor-
relation between the query and local evidence contained in
paths of varying lengths. Intuitively, the local evidence rea-
soning required is dependent on the context of the query.
For example, for query (Messi, lives in, ?), we should
capture evidence from the local structure of the 2-hop
Path between Messi and Florida. If the query changes
to (Messi, plays in, ?), 3-hop Path deserves more atten-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2333

partof

part
of

parentof

locatedin

liv
es
in

part
of

sta
te

of

lives_in

pl
ay

s
in

Relation path-based

Subgraph-based

plays
in

Knowledge Graph

Query: (Messi, lives_in, ?)

Query Entity
Candidate Entity

1st Bread-First Searching
2nd Bread-First Searching
3rd Bread-First Searching Enclosing Subgraph Connectivity Subgraph

part
of

parentof

locatedin
lives

in

lives
in

part
of

parentof

locatedin

liv
es
in

part
of

pl
ay

s
in

partof

part
of

parentof

locatedin

lives
in

part
of

sta
te

ofpl
ay

s
in

plays_in

Query: (Messi, plays_in, ?)

2-hop Path 3-hop Path

part
of

pa
rt

of

pl
ay

s
in

Luis
Suarez

Busq
uets

Inter
Miami

Messi Florida

Mateo

Messi Florida

Inter
Miami

Mateo Messi Florida

Busq
uetsInter

Miami

Messi Florida Messi Florida

Mateo

Inter
Miami

Inter
Miami

Busq
uets

Luis
Suarez

Busq
uets U.S.

U.S.

Mateo

Figure 1: An example of two prevailing KGR solutions on a KG
about Messi. Relation path-based methods only capture limited and
local information, while enclosing subgraph-based methods may
contain redundant extraction. Our proposed connectivity subgraph
has better capability for efficiently modeling subgraphs in KGs.

tion. To mine the local evidence contained in variable-length
relation paths, subgraph-based methods [Teru et al., 2020;
Xu et al., 2022; Mai et al., 2021] are proposed, exploiting
the enclosing subgraph effectively. However, they overlook
the fact that such subgraph modeling is inefficient and in-
evitably involves unrelated entities and relations, resulting
in equal attention to different structures, increasing training
difficulty, and introducing noise. Specifically, GraIL [Teru
et al., 2020] and the subsequent works [Xu et al., 2022] first
extract enclosing subgraphs between the query entity and other
candidate entities. Then, they repeatedly apply graph neural
networks (GNNs) to enclosing subgraphs. We identify the
trend of repeated extraction of these enclosing subgraphs is
unnecessary. As illustrated in Figure 1, while extracting 2-hop
enclosing subgraphs between Messi and Florida, and Messi
and Busquets respectively, the resulting subgraph structures
are identical, suggesting that these methods could expend ex-
cessive time on extracting identical subgraph. Moreover, they
also ignore the correlation between queries and structures,
e.g., 2-hop Path and 3-hop Path between Messi and
Florida are treated equally for different queries.

To address the above limitations, we propose a novel multi-
granularity and adaptive representation framework for KGR,
referred to as MulGA. To alleviate the inefficiencies associated
with explicit enclosing subgraph extraction and to expand the
scope of subgraph information, MulGA initially exploits the
connectivity subgraph that can be implicitly extracted via the
breadth-first search (BFS) algorithm. As depicted in Figure 1,
the 2-hop enclosing subgraph between Messi and Florida,
which involves the longest relation path of length 3, can be
replaced with a connectivity subgraph of size 3. This con-
nectivity subgraph not only accurately models structures of
the enclosing subgraph but also embodies the neighboring
relations as considered in the SNRI [Xu et al., 2022]. The
iterative process of the BFS aligns with the extraction of en-
closing subgraphs. Consequently, a connectivity subgraph
can seamlessly represent multiple enclosing subgraphs, opti-
mizing time and resources. Additionally, MulGA presents a
GNN-based multi-granularity embedding propagation mod-

ule across connectivity subgraphs to produce two levels of
granularity embeddings hierarchically, i.e., triple, and relation
paths. Moreover, we propose a query-aware attention mech-
anism to select query-related edges during propagation to
enrich the relation path granularity. Furthermore, to leverage
query-relevant features contained in different structures, we
design a self-attention-based merging mechanism that adap-
tively assigns query-related weights to different granularity
embeddings, taking into account the correlation among them.
Subsequently, subgraph granularity embeddings can be ob-
tained by merging the above two granularity embeddings for
reasoning. In experiments, we find that the proposed merging
mechanism can alleviate over-smoothing in GNNs.

Our key contributions are summarized as follows:

• We adopt the connectivity subgraph to effectively model
the various structures in KGs to achieve a hierarchical
representation of triples, relational paths, and subgraphs,
optimizing time and resources.

• To obtain multi-granularity embeddings, we design a
GNN-based multi-granularity embedding propagation to
learn query-related granularity embedding hierarchically.

• We introduce a self-attention-based merging mechanism
that adaptively assigns query-related weight to different
granularities and ultimately fuse them into robust sub-
graph granularity representations for reasoning.

• Extensive experiments have been conducted on 15 bench-
marks involving both transductive and inductive reason-
ing tasks. MulGA achieves a significant improvement in
mean reciprocal rank (MRR) by an average of 1.5% on
transductive and 2.7% on inductive tasks.

2 Preliminary
2.1 Notations
Definition 1. (Knowledge Graph). A knowledge graph (KG)
G = (E ,R, T) is defined by the set of entities E , relations R,
and triples T . A triple is usually denoted as (h, r, t) ∈ T ,
where h ∈ E , t ∈ E and r ∈ R represent the head entity, the
tail entity and the relation between h and t, respectively.

Definition 2. (Transductive KGR). Given a KG G, transduc-
tive KGR task refers to predicting either the tail entity t ∈ E
given h ∈ E and r ∈ R, i.e., (h, r, ?), or the head entity h ∈ E
given r ∈ R and t ∈ E , i.e., (?, r, t), where (h, r, t) /∈ G.

Definition 3. (Inductive KGR). Given a source KG GS =
(ES ,RS , TS) and a target KG GT = (ET ,RT , TT), where GT

consists of unseen entities not in the GS: ET ∩ES = ∅, RT ⊆
RS . Inductive KGR task aims to train a model on the source
KG GS and then predict either the tail entity t ∈ ET given
h ∈ ET and r ∈ RT , i.e., (h, r, ?), or the head entity h ∈ ET
given r ∈ RT and t ∈ ET , i.e., (?, r, t), where (h, r, t) /∈ GT .

3 Method
Figure 2 illustrates the overall architecture of MulGA. Given
a query (h, r, ?) or (?, r, e), MulGA initiates by implicitly ex-
tracting the connectivity subgraph utilizing BFS. Meanwhile,
MulGA propagates structural messages from the query entity

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2334

+
=

, >

=

,

+

>

Merge Operation

h

e
(h, r, e)

Connectivity Graph & GNN-based Embedding Propagation

TransE: + =

RotatE: =

DistMult: , =< > Relation Embedding

Triple Granularity Entity Embedding

Relation Path Granularity Entity Embedding

Subgraph Granularity Entity Embedding

Input KG

Combination Operation

Query:
Self-Attention-based Merging Mechanism

Self
Attention

(SA)

Merging
(SAM)

h

e

MESSAGE FUNCTION

=

=<

=

=<

h

e

h

e

h

e

Figure 2: An overview of our proposed MulGA framework.

to candidate entities, producing two types of granularity em-
beddings: triples and relation paths of varying lengths. Finally,
the above two granularity embeddings are merged through the
proposed self-attention-based merging mechanism, generating
the final subgraph granularity embedding for reasoning.

3.1 Connectivity Subgraph
Given a query (h, r, ?), intuitively, to perform reasoning, it is
vital to utilize various structural information surrounding the
query entity h. The connectivity subgraph can model adequate
structures around query entities for this purpose.
Definition 4. (Connectivity Subgraph). Given an entity h, a
connectivity subgraph Gn

h can be modeled as follows:

Gn
h = P0

h ⊕ P1
h ⊕ P2

h ⊕ · · · ⊕ Pn
h (1)

where n is the size of the connectivity subgraph. Pi
h, namely a

connectivity subgraph component, is the set of relation paths
of length i originating from h. Besides, ⊕ denotes the combi-
nation operator on the path set.

Let E(Pi,j
h) be the set of jth entity on all i-length relation

paths originating from h, and E(Pi,0
h) = {h}. Therefore, the

entities in Pi
h are denoted as E(Pi

h) = E(Pi,0
h) ∪ E(Pi,1

h) ∪
· · · ∪ E(Pi,i

h). Analogously, the relations in Pi
h are denoted as

R(Pi
h) = R(Pi,1

h)∪R(Pi,2
h)∪· · ·∪R(Pi,i

h), where R(Pi,j
h)

is the set of jth relation on all i-length relation paths originat-
ing from h. Besides, E(Pi,j

h) = R(Pi,j
h) = ∅, if j > i.

From Definition 4, a connectivity subgraph of size n encom-
passes all entities located at a distance no more than n from the
query entity, along with their corresponding structures. Fol-
lowing the previous work [Xu et al., 2019], inverse edges of
each factual triple and self-loop edge of each entity are added
to original KGs. Specifically, if (h, r, t) exists in KGs, then
(t, r−1, h), (h, self loop, h), and (t, self loop, t) are added,
where r−1 is the inverse of r, to original KGs. Therefore, the
iterative formula for components can be obtained when i ≥ 1:

Pi
h = Pi−1

h ⊕{(e, r, t)|e ∈ E(Pi−1,i−1
h)∧(e, r, t) ∈ G} (2)

In this way, the connectivity subgraph can be easily implicitly
extracted using the BFS algorithm. For example, as shown

in Figure 2, the red arrows indicate the new connectivity sub-
graph component found by BFS. Furthermore, a connectivity
subgraph G3

h can concurrently embody the enclosing subgraph
formed between h and e, e1, e2, e3, e4, which reduces the
time-consuming extraction of duplicated structures.

3.2 GNN-based Multi-Granularity Embedding
Propagation

The GNN-based multi-granularity embedding propagation
(GMEP) utilizes the GNN to produce two levels of granularity
embeddings, i.e., triple and relation path, of entities in Gn

h .

Triple Granularity Embedding
According to Definition 4, P1

h is the set of triples in the form
of (h, r, e). Therefore, taking entity e as an example, we can
perform representation learning directly on P1

h and then obtain
corresponding triple granularity embedding eTh

= eP1
h

.

Relation Path Granularity Embedding
Similarly, in the Definition 4, Pi

h (2 ≤ i ≤ n) means the set of
all i-length relation paths originating from h. We can perform
representation learning on the Pi

h to obtain the corresponding
embeddings. Therefore, taking entity e as an example, the
relation path granularity embeddings ePh

of different lengths
in Gn

h can be denoted as ePh
= [eP2

h
, eP3

h
, · · · , ePn

h
].

Propagation Mechanism
According to Eq. 2, the triple structure P1

h is obtained before
the relational path, thus enabling the hierarchical calculation
of relational path granularity based on the triple granularity.
Drawing inspiration from the hierarchical message-passing
mechanism in GNN [Scarselli et al., 2008], we design a prop-
agation module that takes the query entity as initial subgraph
(P0

h). This module dynamically expands the current graph
structure following BFS, facilitating layer-by-layer propaga-
tion of structural information. Through this sequential prop-
agation, we obtain various granularities embedding, which
ensures a thorough capture of structural information contained
in KGs. Consequently, we can directly apply one layer of
GNN in each connectivity subgraph component. Thus, the
i-th layer of our GNN can be calculated as follows:

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2335

vPi
h
= ReLU((

∑
u∈In(v|E(Pi−1,i−1

h))

αi
urtvϕ(uPi−1

h
, rit))W

i
3

T
+ bi3) (3)

αi
urtv = σ

(
cW i

2

T
+ bi2

)
(4)

c = ReLU
([

uPi−1
h

; rit; r
i;hPi−1

h

]
W i

1

T
+ bi1

)
(5)

where i denotes the i-th connectivity subgraph component;
ϕ(·, ·) means MESSAGE function, which is used to pass
known structural information, and can be used with most off-
the-shelf KGE methods, such as TransE [Bordes et al., 2013],
RotatE [Sun et al., 2019], and DistMult [Yang et al., 2015].
rit denotes the embedding of the relation between entity u in
Pi−1
h and entity v in Pi

h at the i-th layer; In
(
v|E(Pi−1,i−1

h)
)

represents the entities on the E(Pi−1,i−1
h) pointing to entity

v in Pi
h. Since multiple queries share the same connectivity

subgraph, we design the attention mechanism to adaptively
assign weights to each edge. αi

urtv is the edge attention weight
at the i-th layer corresponding to the edge (u, rt, v); σ(·) de-
notes the sigmoid function; [·; ·] denotes tensors concatena-
tion; W i

1 ∈ Rd×4d, W i
2 ∈ R1×d, W i

3 ∈ Rd×d, bi1 ∈ R1×d,
bi2 ∈ R1×1, and bi3 ∈ R1×d are trainable parameters at the i-th
layer; d is embedding dimensions of the entity and relation.

Since GMEP propagates message in the connectivity sub-
graph from query entity h to the other entities, we can initialize
the representation of the entity h as follows:

hP0
h
= rW T

4 + b4 (6)

where W 4 ∈ Rd×d, b4 ∈ R1×d are trainable parameters and
r denotes the embedding of query relation.

Finally, we stack n layers of GNN in Eq. 3 to form GMEP
module. As a result, the triple embedding eTh

(1-th GNN
layer) and relation path embeddings of different lengths ePh

(from 2-th to n-th GNN layers) can be produced.

Subgraph Granularity Embedding
Similar to triple and relation path granularity, subgraph gran-
ularity can be derived via representation learning across the
entire connectivity subgraph. However, this may result in du-
plicated calculations. To avoid this, given representations of
connectivity components, we can merge them to generate the
subgraph granularity. Taking entity e as an example, subgraph
embedding of the entity e in Gn

h can be expressed as eGn
h

:

eGn
h
= ⊗ (eTh

, ePh
) = ⊗(eP1

h
, eP2

h
, · · · , ePn

h
) (7)

where ⊗ signifies the merging operation, and ePi
h
= 0, if

E(Pi
h) ∩ {e} = ∅. For merging operations, there are several

common options, such as max, sum, mean, concat. How-
ever, the particularities of different granularity embeddings
are ignored in such merging operations. To this end, we pro-
pose a self-attention-based merging mechanism, which can
incorporate structural features among different granularities.

3.3 Self-Attention-based Merging Mechanism
Given n different granularity embeddings H = [eP1

h
, eP2

h
,

· · · , ePn
h
] ∈ Rn×d, the self-attention-based merging (SAM)

mechanism, inspired by the Transformer [Vaswani et al., 2017;
Lee et al., 2019], is to fuse n different granularity embeddings
into a subgraph embedding, i.e., Rn×d → R1×d. Concretely,
the SAM mechanism consists of two functions: the multi-head
attention function (MA), and the self-attention function (SA).

The Multi-head Attention Function: To tackle the lim-
itation of simple merging methods to distinguish important
granularity, we use the multi-head attention (MA) [Vaswani et
al., 2017], which can be formulated as follows:

MA(H,H,H) = Concat(head1, · · · , headm)WO (8)

headi = Att(HW i
Q, HW i

K , HW i
V) (9)

where Att(Q,K,V) = w(QKT)V , w is an activation
function; W i

Q ∈ Rd×d, W i
K ∈ Rd×d, W i

V ∈ Rd×d

are trainable parameters and the output projection matrix is
WO ∈ Rmd×dfinal , where dfinal is the output dimension of
the multi-head attention function.

Self-attention Function: Another evident disadvantage
of simple merging operations is deemed as the neglect of
relationships among different granularity embeddings. To this
end, we introduce a self-attention (SA) function which can be
formulated as follows:

SA(H) = LN (T + rFF (T)) (10)
T = LN(H +MA(H, H, H)) (11)

where LN is the LayerNorm function, and rFF is any row-wise
feedforward layer.

Overall Self-Attention-based Merging Mechanism: In
order to fuse n different granularity embeddings into a more
powerful subgraph embedding eGn

h
, we introduce a trainable

parameter QEG
∈ R1×d that is directly optimized in an end-

to-end fashion, as follows:

eGn
h
= LN(T + rFF (T)) (12)

T =LN
(
QEG

+MA
(
QEG

, SA(H), SA(H)
))

(13)

Finally, for the query (h, r, ?), we define a simple function
to score the candidate entity e, as follows:

f(h, r, e) = eGn
h
W T

5 + b5 (14)

where W 5 ∈ R1×d and b5 ∈ R1×1 are trainable parameters.

3.4 Optimization
Following previous works [Dettmers et al., 2018; Vashishth et
al., 2019], for each triple (h, r, t) in the KG, we first convert
it to queries (h, r, ?) and (t, r−1, ?). Taking (h, r, ?) as
an example, we minimize the binary cross-entropy loss to
optimize the model parameters, as follows:

L = − log σ (f (h, r, t))−
N∑

j=1

log
(
1− σ

(
f
(
h, r, t′j

)))
(15)

where (h, r, t′j) denotes the j-th negative triple by corrupting
tail entity in (h, r, t). Since the MulGA can obtain multi-
granularity embedding of all entities in the KG given the query
(h, r, ?) or (t, r−1, ?), we set N = |E| − 1 in Eq. 15.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2336

Type Methods WN18RR FB15K-237 NELL-995
MRR Hits@1(%) Hits@10(%) MRR Hits@1(%) Hits@10(%) MRR Hits@1(%) Hits@10(%)

Triple

TransE [2013] 0.226 N/A 53.2 0.294 N/A 46.5 0.424 34.0 55.5
ConvE [2018] 0.427 39.2 49.8 0.325 23.7 50.1 0.511 44.6 61.9
RotatE [2019] 0.477 42.8 57.1 0.337 24.1 53.3 0.508 44.8 60.8
QuatE [2019] 0.480 44.0 55.1 0.350 25.6 53.8 0.533 46.6 64.3

DistMult [2015] 0.430 39.0 49.0 0.241 15.5 41.9 0.485 40.1 61.0

Relation Path

MINERVA [2018] 0.448 41.3 51.3 0.293 21.7 45.6 0.513 41.3 63.7
Neural LP [2017] 0.435 37.1 56.6 0.252 18.9 37.5 N/A N/A N/A

DRUM [2019] 0.486 42.5 58.6 0.343 25.5 51.6 0.532 46.0 66.2
RNNLogic [2020] 0.483 44.6 55.8 0.344 25.2 53.0 0.416 36.3 47.8

NBFNet [2021] 0.551 49.7 66.6 0.415 32.1 59.9 0.525 45.1 63.9
RED-GNN [2022] 0.535 48.9 62.4 0.369 27.7 55.2 0.547 48.3 65.5

A*Net [2023] 0.549 49.5 65.9 0.411 32.1 58.6 N/A N/A N/A

Subgraph

R-GCN [2018] 0.402 34.5 49.4 0.273 18.2 45.6 0.12 8.20 18.8
CompGCN [2019] 0.479 44.3 54.6 0.355 26.4 53.5 0.463 38.3 59.6

DPMPN [2019] 0.482 44.4 55.8 0.369 28.6 53.0 0.513 45.2 61.5
DisenKGAT [2021] 0.486 44.1 57.8 0.368 27.5 55.3 0.549 46.5 66.0

MulGA 0.573 52.3 67.1 0.422 33.2 60.0 0.564 50.4 66.9

Table 1: Experimental results in the transductive setting. The bold scores indicate the best results and underlined ones indicate the second best
results. N/A means unavailable results. Results of compared methods are from [Zhang and Yao, 2022; Zhu et al., 2023].

4 Experiments
4.1 Experimental Setup
Datasets and Baselines
For transductive setting, WN18RR [Dettmers et al., 2018],
FB15K-237 [Toutanova et al., 2015], and NELL-995 [Das et
al., 2018] are used to evaluate the performance of MulGA.
For inductive setting, we use the inductive benchmark datasets
provided in GraIL [Teru et al., 2020]. To evaluate the per-
formance, we chose three categories totaling 16 baselines for
transductive setting and 8 baselines for inductive setting.

Evaluation Metrics
In transductive and inductive settings, we report mean recipro-
cal rank (MRR), Hits@1, and Hits@10 following the filtered
setting as described in [Bordes et al., 2013; Zhu et al., 2023].

4.2 Main Results
Comparison for Performance
Table 1 reports results of MulGA and all baselines in the
transductive setting. As expected, models that only exploit
the single granularity structural feature in KGs do not show
competitive performance. Conversely, MulGA consistently
achieves the best performance on most benchmarks, demon-
strating the effectiveness of the unified way to obtain different
granularity embeddings and our proposed merging technique.
Notably, on WN18RR, FB15K-237, and NELL-995, MulGA
improves MRR by 9.3%, 7.2%, and 3.1% compared with the
best triple-based methods, 2.2%, 0.7%, and 1.7% compared
with the best relation path-based methods, and 8.7%, 5.3%,
and 1.5% compared with the best subgraph-based methods.

In the inductive setting, the experimental results are pre-
sented in Table 2. MulGA achieves the best performances on
most datasets. Overall, MulGA achieves remarkable improve-
ments over the strongest baselines w.r.t. MRR by 0.1%-8.2%
in the inductive setting. Such results indicate that the utiliza-
tion of different granularity features in triples, relation paths,

and subgraphs is helpful for MulGA to learn similar struc-
tural information to generalize unseen entities in target KGs.
Similarly, MulGA has a significant improvement on Hits@1,
which means MulGA can better capture semantic correlation
between queries and various structures in KGs. Specifically,
MulGA improves Hits@1 by 0.1%-8.3% compared with the
second best results. Additionally, WN18RR (V1-V4) induc-
tive dataset contains many empty subgraphs [Mai et al., 2021],
i.e., the enclosing subgraphs of the head and candidate entities
at a given hop only have the current triple and no other valid
edges. This could be the reason why the results of MulGA on
the WN18RR dataset are slightly lower than A*Net. Although
the sparse KG can reduce different granularity information sig-
nificantly, the performance of MulGA is competitive with the
previous state-of-the-art methods in WN18RR (V1-V4). More-
over, methods explicitly extracting subgraphs and surrounding
neighboring relation paths, such as SNRI, suffer from scal-
ability drawbacks as the sizes of KGs increase(FB15K-237
(V3) (V4) and NELL-995 (V3) (V4)). Expansion of the graph
scale results in a rapid rise in CPU memory usage, ultimately
leading to an out-of-memory (OOM) breakdown.

Comparison for Efficiency
We further select seven competitive models to compare the
efficiency with MulGA and results are shown in Table 3 and
Figure 3. We can draw three conclusions: (1) MulGA achieves
a trade-off between performance and efficiency across diverse
graph scales, i.e., from large-scale transductive to small-scale
but challenging inductive reasoning tasks. (2) The inference
time of MulGA is notably shorter than subgraph-based meth-
ods such as GraIL and SNRI, which require explicit enclos-
ing subgraph extraction. This demonstrates the advantage of
utilizing connectivity subgraphs in enhancing computational
efficiency. (3) The wall time per epoch of MulGA is not partic-
ularly fast, mainly because it requires dynamically propagating
on connectivity subgraphs with different sizes, which is harder
to parallel on GPUs. However, MulGA can efficiently utilize

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2337

Metrics Methods WN18RR FB15K-237 NELL-995
V1 V2 V3 V4 V1 V2 V3 V4 V1 V2 V3 V4

MRR

RuleN [2018] 0.717 0.686 0.410 0.638 0.373 0.432 0.425 0.398 0.728 0.443 0.310 0.360
Neural LP [2017] 0.649 0.635 0.361 0.628 0.325 0.389 0.400 0.396 0.610 0.361 0.367 0.261

DRUM [2019] 0.666 0.646 0.380 0.627 0.333 0.395 0.402 0.410 0.628 0.365 0.375 0.273
GraIL [2020] 0.627 0.625 0.323 0.553 0.279 0.276 0.251 0.227 0.481 0.297 0.322 0.262
SNRI [2022] 0.576 0.539 0.305 0.486 0.186 0.227 OOM OOM 0.363 0.20 OOM OOM

NBFNet [2021] 0.741 0.704 0.452 0.641 0.422 0.514 0.476 0.453 0.584 0.410 0.425 0.287
RED-GNN [2022] 0.701 0.690 0.427 0.651 0.369 0.469 0.445 0.442 0.637 0.419 0.436 0.363

A*Net [2023] 0.727 0.704 0.441 0.661 0.457 0.510 0.476 0.466 0.789 0.439 0.489 0.311
MulGA 0.747 0.705 0.476 0.655 0.485 0.538 0.492 0.472 0.812 0.525 0.510 0.429

Hits@1(%)

RuleN [2018] 67.0 63.0 37.6 59.8 30.9 33.1 32.1 30.1 66.0 34.2 23.1 26.1
Neural LP [2017] 59.2 57.5 30.4 58.3 24.3 28.6 30.9 28.9 50.0 24.9 26.7 13.7

DRUM [2019] 61.3 59.5 33.0 58.6 24.7 28.4 30.8 30.9 50.0 27.1 26.2 16.3
GraIL [2020] 55.4 54.2 27.8 44.3 20.5 20.2 16.5 14.3 42.5 19.9 22.4 15.3
SNRI [2022] 47.9 44.8 23.4 39.9 10.7 14.4 OOM OOM 18.5 12.8 OOM OOM

NBFNet [2021] 69.5 65.1 39.2 60.8 33.5 42.1 38.4 36.0 50.0 27.1 26.2 23.3
RED-GNN [2022] 65.3 63.3 36.8 60.6 30.2 38.1 35.1 34.0 52.5 31.9 34.5 25.9

A*Net [2023] 68.2 64.9 38.6 61.6 38.1 41.9 38.9 36.5 72.9 34.0 39.4 26.7
MulGA 70.8 65.2 42.4 61.1 40.2 44.4 39.2 37.2 75.0 42.5 42.2 34.1

Hits@10(%)

RuleN [2018] 79.8 69.4 40.7 68.1 48.0 63.0 60.6 58.5 87.0 60.5 46.7 52.3
Neural LP [2017] 77.2 74.9 47.6 70.6 46.8 58.6 57.1 59.3 87.1 56.4 57.6 53.9

DRUM [2019] 72.3 68.8 31.2 64.4 40.0 49.6 44.3 46.7 79.5 62.5 56.4 50.7
GraIL [2020] 76.0 77.6 40.9 68.7 42.9 42.4 42.4 38.9 56.5 49.6 51.8 50.6
SNRI [2022] 75.0 69.8 43.2 65.2 33.2 38.8 OOM OOM 55.5 33.3 OOM OOM

NBFNet [2021] 82.6 79.8 56.8 69.4 57.4 68.5 63.7 62.7 79.5 63.5 60.6 59.1
RED-GNN [2022] 79.9 78.0 52.4 72.1 48.3 62.9 60.3 62.1 86.6 60.1 59.4 55.6

A*Net [2023] 81.0 80.3 54.4 74.3 58.9 67.2 62.9 64.5 90.3 61.2 67.3 37.5
MulGA 82.7 80.1 56.0 73.6 62.2 70.7 66.2 65.2 93.5 70.9 67.9 57.1

Table 2: Experimental results in the inductive setting. OOM denotes no answer due to out-of-memory (1 TiB RAM). Except for SNRI and
RuleN which we reproduce, the results of other compared methods are from [Zhang and Yao, 2022; Zhu et al., 2023].

Methods FB15K-237 Methods FB15K-237 (V1)
WT(m) IT(m) P(M) WT(s) IT(s) P(M)

RotatE 0.2 2.2 29.32 NBFNet 5.0 0.02 2.38
NBFNet 42.9 4.7 3.10 RED-GNN 1.9 1.4 0.05

RED-GNN 384.1 94.4 0.12 A*Net 3.8 0.02 2.31
A*Net 21.7 2.0 3.10 GraIL 58.4 4.63 h 0.03

DisenKGAT 0.8 0.2 18.21 SNRI 69.4 7.96 h 0.20
MulGA 50.5 6.3 3.05 MulGA 6.1 0.06 2.32

Table 3: Efficiency of competitive models in an A100 GPU (80GB),
which involves three aspects: wall time per epoch (WT), inference
time (IT), and the number of free parameters (P).

the existing structure of KGs and thus has superior conver-
gence speeds in both transductive and inductive tasks.

4.3 Ablation Study
Effect of Granularity Embeddings
We investigate the effect of different granularity embeddings
on MulGA performance and results are presented in Table 4.

We make the following observations: (1) Reasoning only
with triple granularity embedding does not yield superior re-
sults. This can be attributed to the fact that the correct entities
are not located in the one-hop neighborhood of the query en-
tity. To make accurate predictions, it is necessary to leverage
more structural information between the target entity and the
query entity. (2) Compared with the best results using only
a single granularity, MulGA improves MRR by 4.2%-26.4%

0 2 4 6 8 10
Training Time (hrs)

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

M
R

R RotatE
DisenKGAT
A*Net
RED-GNN
NBFNet
MulGA

0 20 40 60 80 100120140
Training Time (sec)

0.1

0.2

0.3

0.4

0.5

M
R

R

NBFNet
RED-GNN
A*Net
GraIL
SNRI
MulGA

Figure 3: Validation MRR w.r.t. training time for competitive models
during training on FB15K-237 (left) and FB15K-237 (V1) (right).

on WN18RR, 1.3%-12.5% on WN18RR (V1), 3.9%-18.2%
on FB15K-237 (V1), and 3.5%-19.0% on NELL-995 (V1),
respectively. (3) For relation path granularity, we observe
that the longer the relation path, the better the performance
on the WN18RR and FB15K-237 (V1). Nevertheless, on
WN18RR (V1) and NELL-995 (V1), the best performance
does not always correspond to the longest relation path. The
main reason is that stacking too many GNN layers could cause
over-smoothing, i.e., there is no obvious difference between
the positive and negative entities.

Furthermore, we need to determine whether the over-
smoothing leads to decreased performance on NELL-995 (V1)
and WN18RR (V1). To quantitatively measure the smooth-
ness of representation, we employ the Mean Average Distance

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2338

Methods WN18RR WN18RR (V1) FB15K-237 (V1) NELL-995 (V1)
MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10 MRR Hits@1 Hits@10

MulGA-t 0.309 20.3 38.1 0.622 60.9 63.3 0.303 27.8 33.4 0.716 60.0 91.5
MulGA-rp-2 0.483 44.2 58.7 0.684 65.7 72.9 0.349 30.7 37.6 0.719 62.0 91.0
MulGA-rp-3 0.499 45.4 59.1 0.705 66.5 78.6 0.419 35.9 51.2 0.736 62.0 93.0
MulGA-rp-4 0.505 46.5 60.3 0.734 69.4 80.9 0.438 36.6 53.9 0.777 69.5 92.5
MulGA-rp-5 0.510 46.3 62.5 0.726 67.0 81.9 0.434 37.6 54.4 0.678 62.5 76.0
MulGA-rp-6 0.531 48.2 63.4 0.725 67.6 81.9 0.446 36.8 57.6 0.622 57.5 69.5

MulGA 0.573 52.3 67.1 0.747 70.8 82.7 0.485 40.2 62.2 0.812 75.0 93.5

Table 4: Experimental results of different granularity embedding. -t denotes the results of reasoning only with the triple granularity embedding
(i.e., eGn

h
= eP1

h
), -rp-i denotes reasoning only with the relation path granularity embedding of length i (i.e., eGn

h
= ePi

h
).

Methods WN18RR (V1) NELL-995 (V1)
Validation Test Validation Test

MulGA-t 0.999 0.998 0.999 0.982
MulGA-rp-2 0.997 0.993 0.988 0.789
MulGA-rp-3 0.987 0.984 0.926 0.543
MulGA-rp-4 0.964 0.973 0.825 0.646
MulGA-rp-5 0.916 0.957 0.661 0.367
MulGA-rp-6 0.832 0.938 0.538 0.645

MulGA 0.901 1.081 0.924 1.110

Table 5: The results of MAD on NELL-995 (V1), where the range
of values is in (0, 2]. A smaller value represents a higher degree of
smoothness and a greater tendency to cause over-smoothing.

Methods WN18RR (V1) FB15K-237 (V1) NELL-995 (V1)
MRR Hits@10 MRR Hits@10 MRR Hits@10

MulGA-sum 0.737 81.9 0.435 55.1 0.761 84.6
MulGA-max 0.732 81.9 0.457 56.8 0.730 85.3
MulGA-mean 0.735 82.2 0.449 56.8 0.765 90.6
MulGA-concat 0.737 82.2 0.442 57.1 0.754 82.3
MulGA-SAM 0.747 82.7 0.485 62.2 0.812 93.5

Table 6: The experimental results of different merging operations.

(MAD) [Chen et al., 2020a], which depicts the smoothness
by calculating the mean of average distances between two
nodes. For all queries in the validation and test set, we calcu-
late the average of the sum of MAD, namely MAD, between
the positive entity and other candidate entities, and results
are presented in Table 5. Since training is performed on GS ,
the smoothing on validation set is more representative. Our
findings reveal that the smoothness of MulGA-rp-i gradually
increases as the relation path length i grows, raising the risk of
over-smoothing. Moreover, Table 5 indicates that applying pro-
posed self-attention mechanism can alleviate over-smoothing.
Specifically, on NELL-995 (V1) test set, the MAD of MulGA-
rp-6 is 0.645, whereas, the MAD of MulGA is 1.11.

Effect of Merging Operations
Regarding the merging process, we compare the common
operations of sum, max, mean, and concat with our pro-
posed SAM mechanism. The results, shown in Table 6, show
that compared with the best results from the common merg-
ing operations, MRR is improved by 1.0%, 2.8%, and 4.7%
on WN18RR (V1), FB15K-237 (V1) and NELL-995 (V1)
datasets, respectively, when using our proposed SAM mecha-
nism. The substantial improvement in performance with SAM

mechanism is the result of considering the unique features in
each granularity through adaptive weight assignment.

5 Related Work
We give a brief overview of different types of KGR meth-
ods. (1) KGE-Based (Triple-based) Methods: Such meth-
ods generally treat relations as operations between head and
tail entities in a vector space to learn entity-specific embed-
dings, such as addition for TransE [Bordes et al., 2013],
rotation for RotatE [Sun et al., 2019], and other complex
transformations [Zhang et al., 2019]. (2) Relation Path-
Based Methods: Relation paths have richer local structural
features than triples, and can provide more clues for KGR
to infer missing triples. Relation path-based methods use
multi-hop relation paths between head and tail entities directly.
NBFNet [Zhu et al., 2021], RED-GNN [Zhang and Yao, 2022],
and A*Net [Zhu et al., 2023] use the generalized Bellman-
ford algorithm [Bellman, 1958] to compute relation path rep-
resentations between two entities to learn entity-independent
representation. Some relation path-based KGR models also
learn logical rules as a form of generalized relation path be-
tween two entities [Meilicke et al., 2018; Yang et al., 2017;
Sadeghian et al., 2019; Qu et al., 2020]. (3) Subgraph-Based
Methods: Some subgraph-based methods extend traditional
GNNs by further considering the relational information in the
whole KGs. RGCN [Schlichtkrull et al., 2018] aggregates
relation-specific transformation matrices with neighborhood
information. CompGCN [Vashishth et al., 2019] instead uti-
lizes composition operators to jointly embed entities and rela-
tions in KGs. Moreover, GraIL [Teru et al., 2020], SNRI [Xu
et al., 2022], and CoMPILE [Mai et al., 2021] strive to ex-
plicitly extract enclosing subgraphs, utilizing them to derive
entity-independent relational semantics.

6 Conclusion
In this paper, we propose MulGA, which can efficiently pro-
duce high-quality multi-granularity embeddings of all entities
for KGR. This is realized by adopting a hierarchical approach
in modeling KGs structures via connectivity subgraphs, then
proposing a multi-granularity message-passing module to ef-
ficiently obtain different granularity embeddings, and finally
designing the SAM mechanism to facilitate adaptively assign-
ment of weights to different granularity embeddings. Empir-
ical results show that MulGA achieves new state-of-the-art
KGR performance in both transductive and inductive settings.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2339

Acknowledgments
We thank the reviewers for their insightful comments. This
work was supported by National Science Foundation of China
(Grant Nos.62376057) and the Start-up Research Fund of
Southeast University (RF1028623234). All opinions are of
the authors and do not reflect the view of sponsors.

References
[Auer et al., 2007] Sören Auer, Christian Bizer, Georgi Kobi-

larov, Jens Lehmann, Richard Cyganiak, and Zachary Ives.
Dbpedia: A nucleus for a web of open data. In ISWC, 2007.

[Bellman, 1958] Richard Bellman. On a routing problem.
Quarterly of applied mathematics, 16:87–90, 1958.

[Bordes et al., 2013] Antoine Bordes, Nicolas Usunier, Al-
berto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data.
In NIPS, 2013.

[Chen et al., 2020a] Deli Chen, Yankai Lin, Wei Li, Peng Li,
Jie Zhou, and Xu Sun. Measuring and relieving the over-
smoothing problem for graph neural networks from the
topological view. In AAAI, 2020.

[Chen et al., 2020b] Xiaojun Chen, Shengbin Jia, and Yang
Xiang. A review: Knowledge reasoning over knowledge
graph. Expert Systems with Applications, 141:112948,
2020.

[Das et al., 2018] Rajarshi Das, Shehzaad Dhuliawala,
Manzil Zaheer, Luke Vilnis, Ishan Durugkar, Akshay
Krishnamurthy, Alex Smola, and Andrew McCallum. Go
for a walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. In ICLR,
2018.

[Dettmers et al., 2018] Tim Dettmers, Pasquale Minervini,
Pontus Stenetorp, and Sebastian Riedel. Convolutional
2d knowledge graph embeddings. In AAAI, 2018.

[Dong et al., 2014] Xin Dong, Evgeniy Gabrilovich, Geremy
Heitz, Wilko Horn, Ni Lao, Kevin Murphy, Thomas
Strohmann, Shaohua Sun, and Wei Zhang. Knowledge
vault: A web-scale approach to probabilistic knowledge
fusion. In SIGKDD, 2014.

[Dong, 2019] Xin Luna Dong. Building a broad knowledge
graph for products. In ICDE, 2019.

[Huang et al., 2019] Xiao Huang, Jingyuan Zhang,
Dingcheng Li, and Ping Li. Knowledge graph em-
bedding based question answering. In WSDM, 2019.

[Lee et al., 2019] Juho Lee, Yoonho Lee, Jungtaek Kim,
Adam R. Kosiorek, Seungjin Choi, and Yee Whye Teh. Set
transformer: A framework for attention-based permutation-
invariant neural networks. In ICML, 2019.

[Li et al., 2022] Guozheng Li, Xu Chen, Peng Wang, Jiafeng
Xie, and Qiqing Luo. Fastre: Towards fast relation ex-
traction with convolutional encoder and improved cascade
binary tagging framework. In IJCAI, 2022.

[Liu et al., 2023] Jiajun Liu, Peng Wang, Ziyu Shang, and
Chenxiao Wu. Iterde: an iterative knowledge distillation
framework for knowledge graph embeddings. In AAAI,
2023.

[Mai et al., 2021] Sijie Mai, Shuangjia Zheng, Yuedong
Yang, and Haifeng Hu. Communicative message passing
for inductive relation reasoning. In AAAI, 2021.

[Meilicke et al., 2018] Christian Meilicke, Manuel Fink, Yan-
jie Wang, Daniel Ruffinelli, Rainer Gemulla, and Heiner
Stuckenschmidt. Fine-grained evaluation of rule-and
embedding-based systems for knowledge graph comple-
tion. In ISWC, 2018.

[Noy et al., 2019] Natasha Noy, Yuqing Gao, Anshu Jain,
Anant Narayanan, Alan Patterson, and Jamie Taylor.
Industry-scale knowledge graphs: Lessons and challenges.
Commun. ACM, 62(8):36–43, 2019.

[Qu et al., 2020] Meng Qu, Junkun Chen, Louis-Pascal Xhon-
neux, Yoshua Bengio, and Jian Tang. Rnnlogic: Learning
logic rules for reasoning on knowledge graphs. In ICLR,
2020.

[Sadeghian et al., 2019] Ali Sadeghian, Mohammadreza Ar-
mandpour, Patrick Ding, and Daisy Zhe Wang. Drum:
End-to-end differentiable rule mining on knowledge graphs.
In NeurIPS, 2019.

[Saxena et al., 2020] Apoorv Saxena, Aditay Tripathi, and
Partha Talukdar. Improving multi-hop question answering
over knowledge graphs using knowledge base embeddings.
In ACL, 2020.

[Scarselli et al., 2008] Franco Scarselli, Marco Gori,
Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele
Monfardini. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

[Schlichtkrull et al., 2018] Michael Schlichtkrull, Thomas N
Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and
Max Welling. Modeling relational data with graph convo-
lutional networks. In ESWC, 2018.

[Shang et al., 2023] Ziyu Shang, Peng Wang, Yuzhang Liu,
Jiajun Liu, and Wenjun Ke. Askrl: An aligned-spatial
knowledge representation learning framework for open-
world knowledge graph. In ISWC, 2023.

[Sun et al., 2019] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun
Nie, and Jian Tang. Rotate: Knowledge graph embedding
by relational rotation in complex space. In ICLR, 2019.

[Teru et al., 2020] Komal Teru, Etienne Denis, and Will
Hamilton. Inductive relation prediction by subgraph rea-
soning. In ICML, 2020.

[Toutanova et al., 2015] Kristina Toutanova, Danqi Chen,
Patrick Pantel, Hoifung Poon, Pallavi Choudhury, and
Michael Gamon. Representing text for joint embedding of
text and knowledge bases. In EMNLP, 2015.

[Vashishth et al., 2019] Shikhar Vashishth, Soumya Sanyal,
Vikram Nitin, and Partha Talukdar. Composition-based
multi-relational graph convolutional networks. In ICLR,
2019.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2340

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, 2017.

[Vrandečić, 2012] Denny Vrandečić. Wikidata: A new plat-
form for collaborative data collection. In WWW, 2012.

[Wang et al., 2017] Quan Wang, Zhendong Mao, Bin Wang,
and Li Guo. Knowledge graph embedding: A survey of
approaches and applications. IEEE Transactions on Knowl-
edge and Data Engineering, 29(12):2724–2743, 2017.

[Wang et al., 2018] Hongwei Wang, Fuzheng Zhang, Jialin
Wang, Miao Zhao, Wenjie Li, Xing Xie, and Minyi Guo.
Ripplenet: Propagating user preferences on the knowledge
graph for recommender systems. In CIKM, 2018.

[Wang et al., 2021] Xiang Wang, Tinglin Huang, Dingxian
Wang, Yancheng Yuan, Zhenguang Liu, Xiangnan He, and
Tat-Seng Chua. Learning intents behind interactions with
knowledge graph for recommendation. In WWW, 2021.

[Wu et al., 2021] Junkang Wu, Wentao Shi, Xuezhi Cao, Ji-
awei Chen, Wenqiang Lei, Fuzheng Zhang, Wei Wu, and
Xiangnan He. Disenkgat: knowledge graph embedding
with disentangled graph attention network. In CIKM, 2021.

[Xu et al., 2019] Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xi-
aohui Xie, Zhiqing Sun, and Zhi-Hong Deng. Dynamically
pruned message passing networks for large-scale knowl-
edge graph reasoning. In ICLR, 2019.

[Xu et al., 2022] Xiaohan Xu, Peng Zhang, Yongquan He,
Chengpeng Chao, and Chaoyang Yan. Subgraph neigh-
boring relations infomax for inductive link prediction on
knowledge graphs. In IJCAI, 2022.

[Yang et al., 2015] Bishan Yang, Scott Wen-tau Yih, Xi-
aodong He, Jianfeng Gao, and Li Deng. Embedding entities
and relations for learning and inference in knowledge bases.
In ICLR, 2015.

[Yang et al., 2017] Fan Yang, Zhilin Yang, and William W
Cohen. Differentiable learning of logical rules for knowl-
edge base reasoning. In NIPS, 2017.

[Zhang and Yao, 2022] Yongqi Zhang and Quanming Yao.
Knowledge graph reasoning with relational digraph. In
WWW, 2022.

[Zhang et al., 2019] Shuai Zhang, Yi Tay, Lina Yao, and
Qi Liu. Quaternion knowledge graph embeddings. In
NeurIPS, 2019.

[Zhang et al., 2022] Denghui Zhang, Zixuan Yuan, Hao Liu,
Hui Xiong, et al. Learning to walk with dual agents for
knowledge graph reasoning. In AAAI, 2022.

[Zhu et al., 2021] Zhaocheng Zhu, Zuobai Zhang, Louis-
Pascal Xhonneux, and Jian Tang. Neural bellman-ford
networks: A general graph neural network framework for
link prediction. In NeurIPS, 2021.

[Zhu et al., 2023] Zhaocheng Zhu, Xinyu Yuan, Mikhail
Galkin, Sophie Xhonneux, Ming Zhang, Maxime Gazeau,
and Jian Tang. A* net: A scalable path-based reasoning
approach for knowledge graphs. In NeurIPS, 2023.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2341

	Introduction
	Preliminary
	Notations

	Method
	Connectivity Subgraph
	GNN-based Multi-Granularity Embedding Propagation
	Triple Granularity Embedding
	Relation Path Granularity Embedding
	Propagation Mechanism
	Subgraph Granularity Embedding

	Self-Attention-based Merging Mechanism
	Optimization

	Experiments
	Experimental Setup
	Datasets and Baselines
	Evaluation Metrics

	Main Results
	Comparison for Performance
	Comparison for Efficiency

	Ablation Study
	Effect of Granularity Embeddings
	Effect of Merging Operations

	Related Work
	Conclusion

