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Abstract
Trend filtering simplifies complex time series data
by applying smoothness to filter out noise while
emphasizing proximity to the original data. How-
ever, existing trend filtering methods fail to reflect
abrupt changes in the trend due to ‘approximate-
ness,’ resulting in constant smoothness. This ap-
proximateness uniformly filters out the tail distri-
bution of time series data, characterized by extreme
values, including both abrupt changes and noise. In
this paper, we propose Trend Point Detection for-
mulated as a Markov Decision Process (MDP), a
novel approach to identifying essential points that
should be reflected in the trend, departing from ap-
proximations. We term these essential points as
Dynamic Trend Points (DTPs) and extract trends
by interpolating them. To identify DTPs, we uti-
lize Reinforcement Learning (RL) within a discrete
action space and a forecasting sum-of-squares loss
function as a reward, referred to as the Dynamic
Trend Filtering network (DTF-net). DTF-net in-
tegrates flexible noise filtering, preserving critical
original subsequences while removing noise as re-
quired for other subsequences. We demonstrate
that DTF-net excels at capturing abrupt changes
compared to other trend filtering algorithms and en-
hances forecasting performance, as abrupt changes
are predicted rather than smoothed out.

1 Introduction
Trend filtering emphasizes proximity to the original time se-
ries data while filtering out noise through smoothness [Leser,
1961]. Smoothness in trend filtering simplifies complex pat-
terns within noisy and non-stationary time series data, mak-
ing it effective for forecasting and anomaly detection [Park
et al., 2020]. While smoothness achieves the property of
noise filtering, an ‘abrupt change’ denotes a point in a time
series where the trend experiences a sharp transition, sig-
naling a change in slope. Given that abrupt changes deter-
mine the direction and persistence of the slope, it is crucial
to incorporate them into the trend. Traditional trend filtering
employs a sum-of-squares function to reflect abrupt changes
while utilizing second-order differences as a regularization

term to attain smoothness [Hodrick and Prescott, 1997; Kim
et al., 2009]. However, we found that the constant nature of
smoothness filters out abrupt changes, making it challenging
to distinguish them from noise.

The issue of constant smoothness arises from the reliance
on the property of ‘approximateness.’ Evidence presented by
[Ding et al., 2019] suggests that the sum-of-squares function
eliminates tail distribution as outliers since it approximates a
Gaussian distribution with a light-tail shape. As both abrupt
changes and noise reside within the tail distribution, filtering
out only noise becomes challenging. This uniform filtering
results in the loss of valuable abrupt changes that should be
reflected in the trend [Wen et al., 2019].

In this paper, we propose Trend Point Detection formulated
as a Markov Decision Process (MDP), aiming to identify es-
sential points that should be reflected in the trend, departing
from approximateness [Sutton and Barto, 2018]. These es-
sential points are termed Dynamic Trend Points (DTPs), and
trends are extracted by interpolating them. We utilize the Re-
inforcement Learning (RL) algorithm within a discrete action
space to solve the MDP problem, referred to as a Dynamic
Trend Filtering network (DTF-net) [Schulman et al., 2017].
RL can directly detect essential points through an agent with-
out being constrained by fixed window sizes or frequencies
within the time series data domain. This dynamic approach
enables the adjustment of noise filtering levels for each sub-
sequence within the time series.

Building on prior research regarding reward function learn-
ing based on Gaussian Process (GP) [Biyik et al., 2020], we
define the reward function as the sum-of-squares loss function
from Time Series Forecasting (TSF). This choice is supported
by [Ding et al., 2019], which suggests that the sum-of-squares
function approximates a Gaussian distribution and functions
similarly to a Gaussian kernel. Note that using a Gaussian
kernel function as a reward leverages RL to effectively op-
timize the agent while learning the full distribution of time
series data. Through the TSF reward, temporal dependencies
around DTPs can be captured, and the level of smoothness is
controlled by adjusting the forecasting window size. Addi-
tionally, to address the overfitting issue, we apply a random
sampling method to both the state and the reward.

We compare DTF-net with four categorized baselines:
trend filtering (TF), change point detection (CPD), anomaly
detection (AD), and time series forecasting (TSF) algorithms.
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Figure 1: Dynamic Trend Filtering. DTF-net extracts dynamic
trends from time series data. Dynamic Trend Points (DTPs) are de-
termined based on action predictions, and the dynamic trend is ex-
tracted through interpolation. The agent’s action prediction directly
influences the variation in trend extraction.

First, traditional TF approaches commonly rely on approx-
imations achieved through optimizing sum-of-squares func-
tions or employing decomposition methods, which often ne-
glect abrupt changes as noise. Second, CPD methods are
rooted in probabilistic frameworks, prioritizing the detection
of changes in distribution while often disregarding extreme
values as outliers. Third, AD methods concentrate heavily on
identifying abnormal points, sometimes overlooking the sig-
nificance of distribution shifts in the data. Lastly, TSF mod-
els are categorized into decomposition-based and patching-
based models, which also neglect abrupt changes. Contrary
to all the aforementioned baselines, DTF-net focuses on point
detection to reflect abrupt changes in the trend, enhancing
the performance of trend filtering and forecasting. To the
best of our knowledge, this is the first approach that employs
MDP and RL for trend filtering, aiming to reflect both abrupt
changes and smoothness simultaneously.

Therefore, our contributions are as follows:

• We identified the issue of ‘approximateness,’ which
leads to constant smoothness in traditional trend filter-
ing, filtering out both abrupt changes and noise.

• We introduce Trend Point Detection formulated as an
MDP, aiming to identify essential trend points that
should be reflected in the trend, including abrupt
changes. Additionally, we propose DTF-net, an RL al-
gorithm that predicts DTPs through agents.

• We employ the forecasting sum-of-squares cost func-
tion, inspired by reward function learning based on GP,
which allows for the consideration of temporal depen-
dencies when capturing DTPs. A sampling method is
applied to prevent the overfitting issue.

• We demonstrate that DTF-net excels at capturing abrupt
changes compared to other trend filtering methods and
enhances performance in forecasting tasks.

2 Related Work
2.1 Trend Filtering
Traditional trend-filtering algorithms have employed vari-
ous methods to capture abrupt changes. H-P [Hodrick and
Prescott, 1997] and ℓ1 [Kim et al., 2009] optimize the sum-
of-squares function, a widely used cost function for trend fil-
tering. However, they often face challenges in the delayed

detection of abrupt changes due to the use of second-order
difference operators for smoothness. To address this issue,
the TV-denoising algorithm [Chan et al., 2001] was intro-
duced, relying on first-order differences. Nevertheless, this
strategy introduces delays in detecting slow-varying trends
while overly focusing on abrupt changes. These methods en-
counter difficulties in handling heavy-tailed distributions due
to the use of the sum-of-squares function [Wen et al., 2019].

Contrary to sum-of-squares function methods, alternative
approaches to trend filtering exist. For example, frequency-
based methods like Wavelet [Craigmile and Percival, 2002]
are designed for non-stationary signals but are susceptible to
overfitting. The Empirical Mode Decomposition (EMD) al-
gorithm [Wu et al., 2007] decomposes a time series into a
finite set of oscillatory modes, but it generates overly smooth
trends. Lastly, the Median filter [Siegel, 1982] is a non-linear
filter that selects the middle value from the sorted central
neighbors; therefore, outlier values that deviate significantly
from the center of the data are excluded.

2.2 Extreme Value Theorem
Abrupt changes in a time series reside in the tail of the data
distribution, making them rare events. However, their impact
is significant, as they can alter the slope of the time series and
affect the consistency of trends. Once an abrupt change oc-
curs, its effects are often permanent until the next one occurs.
Therefore, detecting abrupt changes is crucial to minimize
false negative rates and capture important information.

Real-world time series data commonly exhibit a long-
heavy tail distribution. Formally, the tail distribution is de-
fined as follows:

limT→∞P{max(y1, ..., yT ) ≤ y} = limT→∞FT (y) = 0,
(1)

where T random variables {y1, ..., yT } are i.i.d. sampled
from distribution FY [von Bortkiewicz, 1921; Ding et al.,
2019]. Furthermore, extreme values within the tail distribu-
tion can be modeled using Extreme Value Theory.

Theorem 1 (Extreme Value Theory [Fisher and Tippett,
1928; Ding et al., 2019]). If the distribution in Equation (1)
is not degenerate to 0 under a linear transformation of y, the
distribution of the class with the non-degenerate distribution
G(y) should be as follows:

G(y) =

{
exp(−(1− 1

γ y)
γ), γ ̸= 0, 1− 1

γ y ≥ 0,

exp(−e−y), γ = 0.
(2)

Extreme Value Theory (EVT) has demonstrated that ex-
treme values exhibit a limited degree of freedom [Lorenz,
1963]. This implies that the occurrence patterns of extreme
values are recursive and can be memorized by a model [Alt-
mann and Kantz, 2005]. Essentially, a model with substantial
capacity and temporal invariance can effectively learn abrupt
changes, which are categorized as extreme values.

However, extreme values are typically either unlabeled or
imbalanced, making them challenging to predict. In classifi-
cation tasks, previous research [Raj et al., 2016] has high-
lighted the susceptibility of deep networks to the data im-
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Figure 2: DTF-net Architecture. DTF-net has three processes to detect DTPs: 1) The agent predicts actions within a discrete space; 2) With
the predicted actions, trends are extracted by interpolating them; 3) The agent is updated through the forecasting sum-of-squares function as a
reward; with time series data X and trend T as inputs. For the reward calculation, as demonstrated in (b)-Case 3, when DTF-net successfully
identifies abrupt changes, the prediction outcomes significantly improve, resulting in the highest reward.

balance issue. In forecasting tasks, [Ding et al., 2019] pro-
vided evidence that minimizing the sum-of-squares loss pre-
supposes a Gaussian distribution, which differs significantly
from long-heavy-tail distributions. Motivated by these is-
sues, we define Trend Point Detection as a problem formu-
lation aimed at detecting essential points that should be re-
flected in the trend rather than smoothed out. This formula-
tion identifies DTPs, which encompass abrupt changes, mid-
points of distribution shifts, and other critical points influenc-
ing changes in the trend slope, occurring in both short and
long intervals. As illustrated in Figure 1, Trend Point Detec-
tion is formulated as an MDP and utilizes RL to detect abrupt
changes directly through the agent’s action prediction. Note
that we train the DNNs as a policy network of an RL agent to
learn the pattern of extreme value occurrence, distinct from
approximating abrupt changes as output.

2.3 Markov Decision Process and Reinforcement
Learning

MDP is a mathematical model for decision-making when an
agent interacts with an environment. It relies on the first-
order Markov property, indicating that the future state de-
pends solely on the current state. MDP comprises compo-
nents denoted as ⟨S,A, P,R, γ⟩. Here, S denotes the set of
environment states, while A represents the set of actions un-
dertaken by the agent at state S. The transition probability,
P = Pr(S′|S,A), signifies the probability of transitioning
from the current state S to the next state S′. The reward,
R = E[R(S,A, S′)|S,A], where R(S,A, S′) represents the
immediate reward obtained when transitioning from state S
to S′ by taking action A. The discount factor γ ∈ (0, 1] gov-
erns the trade-off between current and future rewards [Sutton
and Barto, 2018]. We can formulate any time series data with
an MDP for Trend Point Detection, as detecting points al-
ways adheres to the first-order Markov property [Wu and Or-
tiz, 2021]. These points are determined solely by the current
time step and remain unaffected by past observations, sharing
properties similar to those of predicting stock trading points.

In RL, actions are predicted through a policy network de-
noted as π(A|S) = Pr(A|S) for each state, representing
the probability of action A at state S. The state-value func-
tion vπ(S) = Eπ[G|S] estimates the expected reward value
for a state S under policy π, where G =

∑∞
k=0 γ

kR′
k de-

notes the expected sum of future rewards starting from the
next reward R′. In RL of discrete action spaces, methods
like Advantage Actor-Critic (A2C) [Mnih et al., 2016] and
Proximal Policy Optimization (PPO) [Schulman et al., 2017]
directly train the policy π using the estimated state-value
function v. In contrast, Deep Q-Network (DQN) [Mnih et
al., 2015] finds the optimal action-value function, denoted
as qπ(S,A) = Eπ[G|S,A]. This function represents the ex-
pected cumulative reward for taking action A in state S un-
der policy π and is determined through the Bellman equation
(Appendix B). DTF-net utilizes RL to extract flexible trends
through dynamic action prediction from a deep policy net-
work π, learning within the time series data environment for-
mulated as an MDP of the Trend Point Detection problem.

3 Dynamic Trend Filtering Network
3.1 Trend Point Detection
Environment Definition
Time series data is defined as T = {(X1, y1), (X2, y2), . . . ,
(XN , yN )}, where X ∈ RD represents the input, y ∈ Rd

represents the output, and the dataset comprises a total of
N ∈ Z+ samples. Here, D and d denote the input and output
dimensions, respectively, both of which are positive integers.

The Trend Point Detection problem formulation takes in-
put X representing the environment and outputs DTPs, en-
compassing abrupt changes, midpoints of distribution shifts,
and other critical points influencing trend slope changes oc-
curring at both short and long intervals. The output consists
of specific univariate time series y(i) labeled with binary val-
ues, where i ∈ d of target.

• State S = [Xt, At]: the positional encoded vector set of
time series data X and action A with horizon t.
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• Action A: a discrete set with (a = 1) for detecting DTP
and (a = 0) for smoothing.

• RewardR(S,A, S′): the change in forecasting sum-of-
squares function value when action A is taken at state S
and results in the transition to the next state S′.

• Policy π(A|S): the probability distribution of A at S.

The RL algorithm, named DTF-net, employs a policy net-
work π within the defined MDP. It receives the state S as in-
put and outputs the binary labeled target y(i), also denoted as
A, learned through the maximization of cumulative rewards
R. DTF-net is designed to extract dynamic trends by interpo-
lating detected essential trend points, referred to as DTPs and
represented by the set {y(i) = 1} or {A|a=1}.

Episode and State for DTF-net
Previous studies in RL for time series [Liu et al., 2022a] have
generally adopted a sequential approach. In contrast, DTF-
net introduces dynamic segmentation with variable lengths
comprising one episode through random sampling. The dis-
crete uniform distribution is specifically chosen to ensure that
all sub-sequences are considered equally:

s ∼ unif{0, N},
l ∼ unif{h+ p,H}, (3)

where s represents the starting points of the sub-sequence, l
denotes the sub-sequence length, h denotes the forecasting
look-back horizon, p denotes the forecasting prediction hori-
zon, and H represents the maximum length comprising one
episode. With sampling, the length and starting point of the
sub-sequence are defined, resulting in a non-sequential and
random progression of the episode. This sampling approach
mitigates the overfitting issue by allowing the model to use
only a portion of the sequence.

Within a single episode, DTF-net cumulatively constructs
the state S. To maintain a constant state length within an
episode, we employ positional encoding as follows:

PE(pos,2i) = sin(pos/100002i/dmodel),

PE(pos,2i+1) = cos(pos/100002i/dmodel).

The cumulative state progression is achieved by gradually
expanding the state representation St as the step unfolds as
follows,

St = PE({Xs:s+t, A0:t}), where t < l. (4)

Through cumulative state construction, the agent can learn
sequential information in the time series (Appendix D.1).

3.2 Reward Function of DTF-net
GP and Reward Function Learning
Traditional trend filtering methods utilize the sum-of-squares
function, also known as the Mean Squared Error (MSE), to
approximate abrupt changes when extracting trends. How-
ever, [Ding et al., 2019] provided evidence that minimizing
the sum-of-squares function assumes that the model output
distribution determined using the MSE cost function denoted

Algorithm 1 Reward Procedure of DTF-net

procedure REWARD(St)
X′ = Xt−(h+p):t, A

′ = At−(h+p):t

T ← 0
T |a=1 ← X′

0:h|a=1

while n ≤ h do
// n for time-axis and x ∈ X′

Tn ← xn = xn−1 +
xn+1−xn−1

2
n← n+ 1

end while
ŷ ← ϕ([X′

0:h, T ])
r ← 1

p

∑p
i=1(yi − ŷi)

2

return −r
end procedure

as P̂ (Y ), follows a Gaussian distribution with variance τ ,
grounded in Bregman’s theory [Banerjee et al., 2005].

P̂ (Y ) = min
T∑

t=1

||yt − ot||2,

= maxθΠT
t=1P (yt|xt, θ),

=
1

N

T∑
t=1

N (yt, τ̂
2).

(5)

where o ∈ Y represents the output from a model parameter-
ized by θ. This also suggests that model θ operates in a man-
ner similar to a Kernel Density Estimator (KDE) employing
a Gaussian kernel [Rosenblatt, 1956].

Contrary to approximations, DTF-net utilizes a policy net-
work π to predict DTPs, including abrupt changes. However,
defining a reward function in general time series data is chal-
lenging but is the most crucial task in RL training for opti-
mizing the policy network. To tackle this challenge, DTF-
net draws inspiration from previous works, which employ the
Gaussian Process (GP) for reward function learning [Kuss
and Rasmussen, 2003; Biyik et al., 2020].

Formally, GP [Williams and Rasmussen, 1995] assumes
noisy targets yi = f(xi) + ϵi that are jointly Gaussian with a
covariance function k:

P (y|x) ∼ N (0,K), where Kpq = k(xp, xq). (6)

With a Gaussian covariance function,

k(xp, xq|θ) = v2exp(−(xp−xq)
⊤Λ−1(xp−xq)/2)+δpqσ

2
n,

where diagonal matrix Λ, v, and σ are hyperparameters in θ,
the predictive distribution for input x∗ follows Gaussian:

P (o∗t |x∗, x, y, θ) ∼N (k(x∗, x)K−1y,

k(x∗, x∗)− k(x∗, x)K−1k(x, x∗)).
(7)

The GP model inherently learns a full distribution of time
series data, enabling RL to effectively optimize the policy net-
work (Appendix B). Leveraging these insights, DTF-net’s re-
ward function is defined as the sum-of-squares function from
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Trend Filtering
Linear Signal+Noise (0.2)

1) full-sequence 2) abrupt-sequence
MSE MAE MSE MAE

CPD ADAGA [Caldarelli et al., 2022] 4.3434 1.4428 7.0120 1.8668
RED-SDS [Ansari et al., 2021] 1.0036 0.6782 1.6660 0.9365

AD
TimesNet [Wu et al., 2023] 3.0841 1.4204 3.3304 1.4364

AnomalyTransformer [Xu et al., 2022] 7.7506 2.1817 10.1336 2.7242
DCdetector [Yang et al., 2023] 0.0094 0.0255 3.6300 1.3721

TF

EMD [Wu et al., 2007] 5.3096 1.7401 6.4410 1.8431
Median [Siegel, 1982] 4.4766 1.5525 5.6859 1.8204

H-P [Hodrick and Prescott, 1997] 0.2253 0.3311 0.3238 0.3934
Wavelet [Craigmile and Percival, 2002] 1e− 30 6e− 16 2e− 30 8e− 16

ℓ1 (λ=0.1) [Kim et al., 2009] 0.0461 0.1703 0.0500 0.1807
ℓ1 (λ = 5e− 4) 0.0004 0.0175 0.0004 0.0174
DTF-net (ours) 0.0289 0.0826 0.0286 0.0855

Table 1: Comparison with advanced CPD, AD, and TF methods in synthetic data. We conduct trend filtering analysis on synthetic
data, evaluating it against the ground truth of a linear signal with added noise. We consider two cases: one with the full sequence and the
other with a 30-window interval sub-sequence containing abrupt changes. The evaluation metrics are Mean Squared Error (MSE) and Mean
Absolute Error (MAE), where lower values indicate better performance. The best performance is bolded, and the second-best performance
is underlined. For the special case of DCdetector, the performance is denoted in italic.

Time Series Forecasting (TSF). This choice leads to more ef-
ficiency in calculating rewards compared to GP while achiev-
ing reward function learning within the Gaussian distribution.
To incorporate captured abrupt changes into the forecasting
model, DTPs are included as an additional input. As shown
in Figure 2, when the forecasting model predicts upward or
downward trends instead of smoothing them out, the agent
receives a higher reward. Thus, DTF-net learns temporal de-
pendencies when capturing DTPs.

Forecasting Reward Function of DTF-net
As shown in Algorithm 1, the reward process involves time
series data Xt−(h+p):t and action At−(h+p):t in state St at
time step t, both having a sequence length denoted as (h+p),
where h denotes the past horizon and p denotes the forecast-
ing horizon (under the condition t − (h + p) > 0). The
trend T initiates with X values assigned only under the con-
dition of action A|a=1, and linear interpolation is applied for
the remaining values. Subsequently, forecasting is conducted
with a prediction length p defined by a hyperparameter. The
reward is computed as the negative sum-of-squares loss be-
tween the predicted ŷ and the ground truth y.

DTF-net uses a penalty reward as a negative value from
the Mean Squared Error (MSE) function, and there is a pos-
sibility of an overfitting issue. Therefore, DTF-net utilizes
random sampling from a discrete uniform distribution, pro-
viding better control over model updates.

k ∼ unif{s, s+ l},

R =

{
REWARD(Et) if t = k,

0 if t ̸= k.

(8)

We empirically demonstrate that irregularly applying penal-
ties through sampling can prevent overfitting rather than pe-
nalizing at every step in Section 4.2 (Appendix D.2).

In summary, DTF-net is designed to extract dynamic trends
T by interpolating detected DTPs. A simple ML time series
predictor ϕ is integrated into DTF-net to calculate the reward,
with the input of [X, T ]. As shown in Figure 2, including

Figure 3: Synthetic Data.

the detected abrupt changes as an additional input to the fore-
casting model ensures that the forecasting output reflects both
upward and downward trends, maximizing the reward.

4 Experiment
4.1 Trend Filtering Analysis
Experimental Settings
Analyzing trend filtering methods quantitatively poses two
challenges: 1) defining a ground truth for the trend is chal-
lenging, and 2) labeling abrupt changes is challenging. To
address these, as shown in Figure 3, we generate a synthetic
trend signal with 1, 000 time points. This synthetic dataset
contains 11 abrupt changes, including 1) a sudden drop to
negative values around -2 and -5 at time points 100 and 800,
respectively; 2) a mean shift from 0 to 4 with high variance
occurring between time points 500 and 700; and 3) a sine
wave starting from time point 800 to 1000, completing one
cycle. We add Gaussian noise with a standard deviation of
0.2 to simulate real-world conditions.

To evaluate the trend filtering results, we set up the experi-
ment as follows. We employ Mean Squared Error (MSE) and
Mean Absolute Error (MAE) metrics to measure the proxim-
ity to the original data, which is a key aspect of trend filter-
ing. For the ground truth, we use a linear signal with added
noise to assess DTF-net’s robustness to noisy data. In cases
with added noise, we assume that filtering out at least 10%
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(a) ℓ1(λ = 0.1) (b) ℓ1(λ = 5e− 4) (c) DTF-net

Figure 4: Qualitative comparison with ℓ1 and DTF-net. The figure illustrates the trends obtained from the ℓ1 and DTF-net using the
Nasdaq intraday dataset. The red line denotes the output of each trend filtering method, with red vertical boxes indicating arbitrarily set
abrupt changes. The blue dots denote the captured abrupt changes, while the sky-blue dots highlight the constant smoothness from ℓ1.
Notably, DTF-net has the capability to apply varying levels of smoothness to individual sub-sequences.

Methods DTF-Linear (ours) ℓ1(λ = 0.1)-Linear PatchTST/42 NLinear DLinear FEDformer-f FEDformer-w Autoformer
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Exchange

24 0.0250 0.1198 0.0266 0.1248 0.0387 0.1513 0.0275 0.1264 0.0290 0.1284 0.0381 0.1545 0.0387 0.1564 0.0687 0.2041
48 0.0487 0.1658 0.0505 0.1708 0.0624 0.1873 0.0505 0.1705 0.0585 0.1907 0.0548 0.1818 0.1068 0.2528 0.1095 0.2485
96 0.0980 0.2349 0.1007 0.2440 0.1833 0.3436 0.0990 0.2361 0.1063 0.2530 0.1440 0.2980 0.1386 0.2894 0.1834 0.3306
192 0.1983 0.3583 0.2045 0.3518 0.2550 0.3987 0.2030 0.3400 0.1959 0.3554 0.2790 0.4163 0.2841 0.4217 0.3465 0.4510
336 0.3160 0.4561 0.3337 0.4666 0.5161 0.5442 0.4174 0.4857 0.3276 0.4627 0.4466 0.5130 0.5685 0.5890 0.4488 0.5291
720 0.7933 0.6874 0.9515 0.7636 1.1143 0.8063 1.0420 0.7807 0.9071 0.7415 1.2122 0.8492 1.2912 0.8876 1.2463 0.8694

ETTh1

24 0.0253 0.1205 0.0234 0.1140 0.0266 0.1238 0.0266 0.1240 0.0273 0.1262 0.0358 0.1450 0.0381 0.1524 0.0694 0.2042
48 0.0375 0.1479 0.0366 0.1442 0.0393 0.1506 0.0388 0.1503 0.0404 0.1523 0.0547 0.1778 0.0602 0.1921 0.0797 0.2205
96 0.0519 0.1740 0.0521 0.1744 0.0550 0.1790 0.0519 0.1745 0.0551 0.1815 0.0786 0.2126 0.0919 0.2348 0.0857 0.2292
192 0.0676 0.2013 0.0693 0.2034 0.0705 0.2050 0.0694 0.2046 0.0730 0.2076 0.0933 0.2344 0.1000 0.2464 0.0993 0.2428
336 0.0803 0.2247 0.0796 0.2238 0.0814 0.2260 0.0826 0.2280 0.0948 0.2414 0.1117 0.2597 0.1418 0.2958 0.1287 0.2792
720 0.0776 0.2224 0.0789 0.2244 0.0869 0.2329 0.0814 0.2273 0.1800 0.3494 0.1310 0.2858 0.1224 0.2766 0.1378 0.2939

Illness
24 0.5881 0.5358 0.6119 0.5299 0.6228 0.5305 0.6325 0.5639 0.7831 0.7462 0.6969 0.6256 0.7100 0.6352 0.7432 0.6704
48 0.6858 0.6359 0.6925 0.6322 0.7109 0.6642 0.6892 0.6453 0.8217 0.7750 0.7099 0.6935 0.6961 0.6972 0.7855 0.7370
60 0.6640 0.6423 0.6666 0.6324 0.6465 0.6381 0.6730 0.6347 0.9195 0.8361 0.8309 0.7653 0.8192 0.7641 0.8945 0.8055

Table 2: Evaluating DTF-net in TSF task. We conduct TSF experiments using three non-stationary datasets: Exchange Rate, ETTh1,
and Illness. We evaluate performance using MSE and MAE, where lower values indicate better performance. In the following results, the
best-performing models using DTF-net are highlighted in bold, and models using ℓ1 trend filtering are highlighted in italic. Additionally, for
comparison, the best-performing models using only original data are underlined.

of noise is necessary to confirm smoothness. We divide the
proximity evaluation into two categories: full-sequence and
sub-sequence. In the sub-sequence evaluation, a 30-window
interval is set around labeled abrupt changes to assess tempo-
ral dependencies are well captured.

Performance Analysis
Table 1 emphasizes DTF-net’s superior performance com-
pared to CPD and AD algorithms. CPD algorithms are de-
signed to identify shifts in data distribution and tend to cap-
ture the midpoint of these changes, treating extreme values as
outliers. On the other hand, AD algorithms focus exclusively
on pinpointing anomalous data points, often overlooking the
midpoint of changes. For instance, DCdetector is particularly
adept at identifying abnormal values, demonstrating superior
performance across entire data sequences. However, its effec-
tiveness diminishes when dealing with abrupt sub-sequences.
This shortfall stems from its focus solely on detecting abnor-
mal points and short intervals surrounding abrupt changes.
Consequently, while it maintains commendable performance
on full sequences, it falls short in accurately filtering trends

within abrupt sub-sequences.In essence, the differing objec-
tives of CPD and AD algorithms make them less suitable for
trend-filtering (Figure 7 in Appendix A).

In comparison with other trend filtering methods, DTF-
net outperforms all methods except those prone to overfit-
ting. Decomposition-based methods like EMD and Median
generate excessively smoothed trends. The frequency-based
method, Wavelet, tends to overfit to noise. The ℓ1 method
shows sensitivity to hyperparameter λ, as evident by λ =
5e−4 causing overfitting to noise. Therefore, DTF-net excels
in capturing abrupt changes while reflecting temporal depen-
dencies within noisy and complex time series data.

Nasdaq Dataset
To demonstrate the proficiency of DTF-net on complex real-
world datasets, we perform additional analysis on the Nasdaq
intraday dataset from July 30th to August 1st, 2019, charac-
terized by rapid changes. Here, we arbitrarily set 6 abrupt
changes and qualitatively analyze the results. As shown in
Figure 4, it is evident that the ℓ1 trend filtering algorithm ex-
tracts trends that either underfit or overfit depending on the
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Figure 5: Qualitative analysis of the impact of abrupt changes on TSF. We conduct forecasting experiments to evaluate the influence
of trends incorporating extreme values with long-heavy tails on two datasets, ETTh1 and Exchange rate (EXC). The figure illustrates that
including abrupt changes (red) in forecasting plays a crucial role without undergoing smoothing (blue). It is evident that the results appear
smoother when extreme values are excluded (depicted by the blue line) in both short-term (24 pred) and long-term (336 pred) forecasting.

parameter λ due to constant smoothness. For point 3, in de-
tail, ℓ1 with (λ = 0.1) filtered out noise, while (λ = 5e − 4)
captured it as abrupt changes. In contrast, DTF-net accurately
captures five abrupt changes and concurrently performs noise
filtering for point 3. This accomplishment is attributed to the
dynamic nature of trend extraction from DTF-net.

4.2 Trend Filtering in Time Series Forecasting
Experimental Settings
We analyze how DTF-net effectively captures abrupt changes
and extend our evaluation to include a real-world dataset for
a common time series task. Time Series Forecasting (TSF)
models are expected to predict potential incidents associated
with extreme values, providing valuable insights for critical
decision-making [Van den Berg et al., 2008]. To assess the
practicality of DTF-net in real-world scenarios, we apply it
to TSF, incorporating the extracted trend as an additional in-
put feature. Formally, the forecasting model receives input as
X′ = [X,P] ∈ RD+1, where P represents the trend from
DTF-net. Under the same conditions, we compare this model
to those using ℓ1 as additional inputs and only the original
sequence X as inputs. We employ DTF-net with the TSF
models NLinear and DLinear [Zeng et al., 2023], which are
considered state-of-the-art yet simplest in the field of TSF.
The experiment focuses on the univariate forecasting case to
assess trend filtering effectiveness (Appendix C). Note that
DTF-net is not directly linked with TSF models; instead, the
extracted trend from DTF-net is provided as additional input.

Performance Analysis
We choose three non-stationary datasets from the TSF bench-
mark dataset: Exchange Rate, ETTh1, and Illness (Appendix
C.1). Table 2 indicates that DTF-net outperforms in most
cases. Among the three datasets, the exchange rate dataset
is the most intricate, exhibiting the least seasonality and the
highest level of noise. Given the absence of periodicity in
financial data, ℓ1 trend filtering encounters difficulties in ex-
tracting clear trends. However, DTF-net demonstrates robust-
ness when dealing with non-stationary time series data.

However, models employing ℓ1 trend filtering have ad-
vantages when dealing with more stationary data that ex-
hibits a recursive pattern. The piece-wise linearity assump-
tion of ℓ1 is particularly pronounced in short-term predictions
within ETTh1, as it is the least noisy and most stationary
dataset among the three. As shown in Table 2, ℓ1 achieves

the best results for 24- and 48-hour forecasting windows in
ETTh1. While DTF-net also outperforms the single forecast-
ing model, the linearity characteristic of ℓ1 is better suited for
short-term predictions within ETTh1. In contrast, for long-
term predictions, we demonstrate that DTF-net performs the
best. In the case of Illness with a small dataset size, DTF-net
also performs well without overfitting.

Ablation Study
How to prevent RL overfitting? To mitigate the risk of
overfitting in RL-based trend filtering, we introduce a reward
sampling method. As shown in Figure 9, we observe that
reward sampling prevents overfitting, achieving optimal per-
formance with a reward sampling (Appendix B.4).

Empirical analysis on extreme value DNNs often gen-
erate smooth and averaged predictions as they typically op-
timize forecasting performance through empirical risk min-
imization. However, by incorporating accurately captured
abrupt changes as additional information into the model, pre-
dictions are enhanced while representing both upward and
downward signals instead of providing solely smooth esti-
mates. To qualitatively assess the impact of abrupt changes
on forecasting tasks, we compare two different trends: the
original trends from DTF-net (red) and a version where 10%
of extreme values are excluded (blue). As shown in Figure
5, this comparison demonstrates how incorporating abrupt
changes can enrich forecasting by providing more detailed
and accurate predictions.

5 Conclusion
We propose DTF-net, a novel RL-based trend filtering
method directly identifying trend points. Traditional trend
filtering methods struggle to capture abrupt changes due to
their inherent approximations. To address this, we formal-
ize the Trend Point Detection problem as an MDP and utilize
RL within a discrete action space. The reward function is
defined as the sum-of-squares loss from forecasting tasks in-
spired by reward function learning within the Gaussian distri-
bution, allowing for the capturing of temporal dependencies
around DTPs. DTF-net also tackles overfitting issues through
random sampling. Compared to other trend filtering methods,
DTF-net excels in identifying abrupt changes. In forecast-
ing tasks, DTF-net enhances predictive performance without
compromising the prediction output to be smooth.
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