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Abstract
In Community Question Answering (CQA) web-
sites, most current expert finding methods often
model expert embeddings from textual features and
optimize them with expert-question first-order in-
teractions, i.e., this expert has answered this ques-
tion. In this paper, we try to address the limitation
of current models that typically neglect the intrin-
sic high-order connectivity within expert-question
interactions, which is pivotal for collaborative ef-
fects. We introduce an innovative and simple ap-
proach: by conceptualizing expert-question inter-
actions as a bipartite graph, and then we pro-
pose a novel graph-based expert finding method
based on contrastive learning to effectively cap-
ture both first-order and intricate high-order con-
nectivity, named CGEF. Specifically, we employ
a question encoder to model questions from titles
and employ the graph attention network to recur-
sively propagate embeddings. Besides, to alleviate
the problem of sparse interactions, we devise two
auxiliary tasks to enhance expert modeling. First,
we generate multiple views of one expert, includ-
ing: 1) behavior-level augmentation drops inter-
action edges randomly in the graph; 2) interest-
level augmentation randomly replaces question ti-
tles with tags in the graph. Then we maximize
the agreement between one expert and the corre-
sponding augmented expert on a specific view. In
this way, the model can effectively inject collabora-
tive signals into expert modeling. Extensive experi-
ments on six CQA datasets demonstrate significant
improvements compared with recent methods.

1 Introduction
Lots of people have begun to use online Community Question
Answering (CQA) platforms, such as StackOverflow, Zhihu
for asking questions and seeking helps. To help CQA users
efficiently obtain high-quality answers [Zhao et al., 2017;
Hu et al., 2021], expert finding technique that aims to find-
ing suitable experts for unanswered questions, is widely
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Figure 1: Example of the high-order connectivity (e.g., “L = 3”).

used [Zhao et al., 2014; Yuan et al., 2020; Peng et al., 2022a;
Amendola et al., 2024].

A key point in expert finding is how to learn better ex-
pert representations. Most existing works [Robertson and
Zaragoza, 2009; Zhou et al., 2012; Ghasemi et al., 2021;
Peng et al., 2022a] utilize various learning methods to auto-
matically learn informative expert representations from their
historical behaviors. Some works [Chang and Pal, 2013;
Yang et al., 2013; Liu et al., 2015] employ traditional meth-
ods to learn question topic features and model experts. Ji et
al. [Ji and Wang, 2013] introduce statistical features and in-
trinsic relationships into a learning to rank model for ranking
potential answerers. Furthermore, some works employ the
neural networks (e.g., Transformer [Vaswani et al., 2017])
to model experts [Zhang et al., 2020; Peng et al., 2022a].
PMEF [Peng et al., 2022a] uses a multi-view learning method
for modeling more comprehensive expert embeddings from
the expert-question interactions. These models have achieved
effective performance on expert finding.

However, they often model experts based on the first-order
interactions (i.e., “L=1” in Figure 1) and omit the high-order
connectivity underlying expert-question interactions. In fact,
the high-order connectivity could help inject the collaborative
effects into the model and improve the quality of user repre-
sentations [Wang et al., 2019b; Wu et al., 2021]. For exam-
ple, as illustrated in Figure 1, the path u2 → q1 → u1 indi-
cates the behavior similarity between u1 and u2, because they
have answered a same question q1; compared with q5, q4 is
more likely recommended to u1, since q4 has two longer path
(e.g., q4 → u3 → q3 → u1) with u1 while q5 has only one
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path. In a word, if the model could not capture this high-order
connectivity, it would lose the ability to model the expert u1

using the question q4, which results in the model being unable
to recommend questions like q4 to the expert.

Recently, the Graph Neural Networks [Kipf and Welling,
2016] have demonstrated powerful capabilities in various
field, e.g., recommender systems [Wang et al., 2019b; Wu et
al., 2021]. This inspires us to construct an expert-question in-
teraction graph and employ the GNN-based method for cap-
turing high-order connectivity. However, it is non-trivial to
employ the GNN-based method in expert finding due to the
challenge of sparse expert answering behaviors. For exam-
ple, in English dataset from StackExchange, the ratio of in-
teraction accounts for 0.047% in the all interaction space.
Moreover, the power-law distribution commonly observed in
the interactions among expert-questions. However, the GNN-
based methods would easily bias towards high-degree ex-
perts, making it insufficient to model low-degree experts.

In this paper, inspired by [Wang et al., 2019b], we pro-
pose a Contrastive Graph learning model for Expert Finding
(CGEF), aiming to effectively capture high-order connectiv-
ity underlying the expert-question interactions. Towards this
end, we construct an expert-question bipartite graph based
on the historical interactions and propagate expert and ques-
tion representations along the graph. Considering the target
question is usually a new question during inference, we em-
ploy the question title and design a question encoder for ini-
tializing question embeddings as the question node informa-
tion. During propagating, since different neighbors or differ-
ent high-order paths have different importance on modeling
experts, the graph attention network [Veličković et al., 2018]
is utilized to obtain the weight of each neighbor for modeling
experts. Besides, for enhancing expert modeling with limited
interaction data, we construct auxiliary tasks for discriminat-
ing the expert representation of an expert itself. Specifically,
it contains: 1) data augmentation to generate different views
of the graph. We design a behavior-level augmentation to ran-
domly drop interactions in the graph, which might help cap-
ture the more useful interaction patterns. And we propose an
interest-level augmentation to randomly replace question ti-
tles as question tags for helping learn different grained expert
interests; 2) contrastive learning to promote consistent rep-
resentations across different perspectives of the same expert
on the modified graph. During the inference phase, we use
the candidate expert embedding and the target question em-
bedding (derived from the question encoder) to match. The
contributions are summarized as:

(1) To the best of our knowledge, we are the first to pro-
pose the GNN-based contrastive expert finding model in the
CQA, which can effectively capture high-order connectivity
underlying expert-question interactions.

(2) For alleviating the sparsity of expert-question interac-
tion, we design two auxiliary tasks based on the behavior-
level and interest-level to offer additional supervised signals
for expert representation learning.

(3) Extensive experimental results demonstrate that CGEF
outperforms existing baselines, validating the effectiveness of

https://archive.org/details/stackexchange

capturing high-order connectivity.

2 Related Work

2.1 Expert Finding

Expert finding is to predict whether a CQA user will provide
a suitable answer to a given question [Li and King, 2010].
Many of these approaches utilize neural networks (e.g., con-
volutional neural network), to acquire question or expert char-
acteristics through the modeling of question-expert interac-
tions and question content. For example, RMRN [Fu et
al., 2020] introduced a novel recurrent memory reasoning
mechanism to address the challenge of matching question se-
mantics by learning the implicit relevance between the ex-
pert and target questions. Peng et al. [Peng et al., 2022b]
designed a hierarchical matching network to learn multi-
grained and comprehensive matching clues for finding ex-
perts better. MATER [Zahedi et al., 2024] considered both
time-awareness user interest and expertise for expert find-
ing, and have obtained superior performance. Nevertheless,
these methods might omit the higher-order connectivity for
modeling experts. Another line of research [Li et al., 2019;
Ghasemi et al., 2021] exploited the expert-question graph
to infer expert preference. For instance, NeRank [Li et al.,
2019] constructed a CQA heterogeneous information net-
work with a metapath2vec [Dong et al., 2017] method for
learning answerer interests and routed new questions to high-
ranking answerers. Ghasemi et al. [Ghasemi et al., 2021] pro-
posed a framework to simultaneously capture semantic sim-
ilarities from question-answer and use node2vec to capture
experts’ relations based on graphs, which could benefit find-
ing experts. However, although these methods have achieved
good results, they only could model the co-occurrence prob-
ability of nodes.

2.2 Graph Neural Recommendation

In recent times, Graph Neural Networks have demonstrated
remarkable performance in acquiring node embeddings by
leveraging the amalgamation of node features and the inher-
ent graph structure [Huo et al., 2023a; Huo et al., 2023b].
During the propagation process, it iteratively gathers infor-
mation from neighboring nodes and integrates this aggregated
information with the central node embedding [Wu et al.,
2022], which have been applied to diverse domains [Battaglia
et al., 2016; Wang et al., 2019a; Wang et al., 2019b; Wu
et al., 2021]. For example, GC-MC [van den Berg et al.,
2017] utilized a graph auto-encoder framework to complete
the user-item interaction matrix. GraphRec [Fan et al., 2019]
employed a social-based graph recommender model to cap-
ture both interactions and opinions, enabling more accurate
recommendations. These methods all demonstrate the power-
ful capability of the GNNs in different recommendation do-
mains. However, different from these methods that rely on
user and item IDs, expert finding has its own unique char-
acteristics, e.g., the target question is usually a new question
during inference, and the model could not infer the new ques-
tion representation based on the existing GNN methods.
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Figure 2: This demonstrates the main process of our proposed model, CGEF. The top layer illustrates the workflow of the primary supervised
expert finding task. The bottom layer represents the operational processes of contrastive learning introduced within the model.

3 Method
We assume an expert set is U = {u1, u2, · · · , um} contain-
ing m experts and a question set is Q = {q1, q2, · · · , qn}
containing n questions. For the i-th question qi in Q, it is
associated with the tag set qgi = {gi1, gi2, · · · , giv} including
v tags, and the title word set qwi = {wi

1, w
i
2, · · · , wi

l} includ-
ing l words. The tag and title of the target question qt are
same. It is noted that the expert who provides the “accepted
answer” is the ground truth and the objective of the paper is to
predict the most suitable expert, delivering an “accepted an-
swer” for a given question. Then, we introduce CGEF, which
can effectively capture expert-question high-order collabora-
tive information for modeling experts. The working flow of
CGEF are shown in Figure 2.

3.1 Interaction Graph Construction
In this part, based on the interactions, we construct the expert-
question interaction graph, where the expert and question em-
beddings are derived from the expert and question encoder.

Expert Encoder
We first embed each expert as a vector for initializing ex-
pert node embedding. Specifically, we prepare an embedding
lookup table U ∈ Rm×d, where m represents the number
of experts. Afterward, we embed each expert. For the i-th
expert, the embedding is retrieved by:

ui = Uh(i), (1)

where h(i) is a one-hot vector with m as dimension, and the
non-zero element is the position of i in expert’s embedding
U. The embedding table serves as initializing expert node
embeddings and will be optimized during the model training.

Question Encoder
In the expert finding, the target question is usually a new
question during inference, i.e., this question usually has not

been answered before. Hence, we could not directly use the
question ID to embed the new target question like expert,
which makes it impossible to calculate the matching score.
Fortunately, the question has the off-the-shell question title
information, which could be employed for inferring the ques-
tion embedding.

Specifically, given the question title qw = {w1, · · · , wl}
with l words, we employ the BERT [Devlin et al., 2018] to
capture the question overall feature. We include a special to-
ken [CLS] at the beginning of qw and [SEP ] at the end, and
the input is denoted as follows:

{[CLS], w1, w2, · · · , wl, [SEP ]}. (2)

The output embedding derived from the token [CLS] can be
viewed as the question node embedding q ∈ Rdw . Then we
employ a linear layer to transform the dimension of that as
Rd. Note that the parameters of the question encoder will
be updated during training, and we employ that to reason the
new question representations during inference.

Graph Construction
Then, we construct a bipartite graph G = {U ,Q, E} based
on the expert-question interactions. E is the set of edges in
the graph G and each edge e = (u, q) ∈ E indicates that
expert u has answered question q. The expert node embed-
ding is initialized from the expert encoder (i.e., i-th expert’s
embedding is ui) and the question node embedding is initial-
ized with the question encoder (i.e., q). By incorporating the
question title information into the expert-question interaction
graph, we could alleviate the problem faced by GNN-based
methods where new questions cannot be encoded due to the
absence of interaction with experts.

3.2 High-order Connectivity Encoder
As denoted above, the high-order connectivity like q4 →
u3 → q3 → u1 is crucial to estimating the relevance score
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between the experts and questions. Based on the graph, we
employ the GNN-based method to aggregate neighbor ques-
tion node information for learning expert embeddings. Be-
sides, different questions and different high-order connectiv-
ity paths that the central expert has interacted with are of dif-
ferent informativeness in learning expert embeddings. Hence,
we exploit the idea of the graph attention network [Veličković
et al., 2018] to capture high-order connectivity for different
experts by attentively propagating the embeddings of expert
and question nodes on the graph.

Specifically, let u(l−1),q
(l−1)
j ∈ Rd denote the projected

embeddings of the central expert and neighborhood question
j after (l − 1)-th propagation layers. The expert embedding
in l-th layer is calculated as follow:

u(l) =
N∑
j=1

αqjq
(l−1)
j , (3)

where N is the neighborhood question node number, and
αqj is the attention weight indicating different importance of
questions, which is calculated as follows:

α∗
qj = w2 ⊙ [u(l−1);q

(l−1)
j ] , (4)

αqj =
exp(LeakyReLU(α∗

qj ))∑N
j=1 exp(LeakyReLU(α∗

qj ))
, (5)

where the [·; ·] operator is the concatenate operator, and
LeakyReLU(·) is the activation function. The final expert and
question embeddings are denoted as uw and qw.

Next, we introduce the traditional expert finding training
loss, which is built upon the final expert and question embed-
dings to predict expert-question matching score. A classical
solution to predict the score Sc can be denoted as follows:

Sc = (uw)Tqw . (6)

The way to optimize the parameters in most existing method
can be denoted as follows:

S̄c =
Sc∑K+1

g=1 exp(Sg)
, c ∈ {1, 2, · · · ,K + 1}, (7)

Lmain = −
K+1∑
c=1

ŜclogS̄c, (8)

where K is the number of negative samples, and Ŝc denotes
the ground truth, and Sc represents the predicted probability,
and S̄c denotes the normalized probability. Note that during
the inference, the target questions are usually not answered by
any experts. Their embeddings are generated from the ques-
tion encoder without neighbor aggregation. In our method,
we choose it as the primary supervised task.

3.3 Expert Contrastive Learning
In this section, we introduce two auxiliary tasks aimed at mit-
igating the issue of sparse historical behaviors.

1) Behavior-level. The expert representation learning pro-
cess may be affected by the limited interaction behaviors

exhibited in most experts. Besides, these low-degree ex-
perts would be greatly influenced by the high-degree (with
a large number of interactions) experts during the representa-
tion learning. In this part, we devise a behavior-level con-
trastive learning task, aiming to capture more valuable in-
teraction patterns within the expert-specific local structure,
which could help mitigate the impact of high-degree expert
nodes.

Specifically, we randomly drop interactions in the original
graph with a dropout ratio ρ as an augmentation view. For
the j-th expert, we employ the above encoder to obtain origi-
nal embedding uw

j and the augmented embedding ûw
j derived

from the augmentation graph. The contrastive loss is:

L1
cl = −

m∑
j=1

log
exp(sim(ûw

j · uw
j )/τ)∑m

j′=1 exp(sim(ûw
j · uw

j′)/τ)
, (9)

where sim(·) quantifies the resemblance between two vectors,
τ is a temperature parameter.

2) Interest-level. On many CQA websites, the question is
usually labeled with some tags, which are highly related to the
question field and reflect the expert’s coarse-grained interests.
We directly introduce the question tag as a natural augmented
information to construct an augmented graph. This allows us
to distinguish the representation of a particular expert from
other experts, while capturing both the different grained in-
terests of the experts.

Specifically, given the v-th tag gv in the i-th question tag
set, we embed the v-th tag as a low-dimensional feature vec-
tor as gv ∈ Rd via a tag embedding layer. Then, we aggre-
gate all tag features of this question with a max aggregator,
which is computed as follow:

qg
i = max[g1,g2, · · · ,gv], (10)

where qg
i ∈ Rd is the i-th question tag embedding.

Then, we randomly replace the question title embedding
qw as the question tag embedding qg with the ratio λ in the
graph. Based on this, given the j-th expert, we can obtain the
original embedding uw

j and the augmented embedding ug
j .

Afterwards, the augmented embedding ug
j is considered as

the positive one of uw
j , while other experts are considered as

negative samples, and the contrastive loss is:

L2
cl = −

m∑
j=1

log
exp(sim(uw

j · ug
j )/τ)∑m

j′=1 exp(sim(uw
j · ug

j′)/τ)
. (11)

3.4 Multi-task Training
To improve expert finding with the above auxiliary tasks, we
leverage a multi-task training strategy with α as the controller
parameter to jointly unify these tasks, which is defined as:

L = Lmain + α(L1
cl + L2

cl) . (12)

4 Experiment
4.1 Experimental Settings
Our experiments are conducted on real-world CQA datasets
from StackExchange. Following previous works, we utilize
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Dateset AI Bioinformatics Print

Method
Metric MRR P@1 NDCG@10 MRR P@1 NDCG@10 MRR P@1 NDCG@10

CNTN .4516 .2777 .5153 .4369 .2551 .5228 .4762 .2918 .5532
NeRank .4989 .3313 .5407 .4515 .2812 .5266 .5136 .3135 .6058
TCQR .4206 .2828 .4916 .3956 .2611 .4451 .4521 .2677 .5250
RMRN .4526 .2789 .5139 .4446 .2728 .5312 .4836 .3019 .5646

UserEmb .4086 .2405 .4687 .3799 .2515 .4319 .3628 .2865 .5053
PMEF .5226 .3509 .5588 .4666 .3089 .5405 .5212 .3426 .6161
EFHM .5135 .3343 .5623 .4603 .3055 .5371 .5236 .3627 .6063

CGEF .5443 .3889 .5846 .4723 .3544 .5592 .5532 .4043 .6225

Dataset History English Biology

Method
Metric MRR P@1 NDCG@10 MRR P@1 NDCG@10 MRR P@1 NDCG@10

CNTN .3940 .2546 .4332 .2988 .1857 .4231 .3368 .2019 .3692
NeRank .4685 .2783 .5653 .4896 .2819 .5643 .4231 .2389 .4990
TCQR .4121 .2757 .4966 .3435 .1938 .4826 .4062 .2436 .4756
RMRN .5308 .3356 .6136 .4680 .2632 .5685 .4386 .2463 .5188

UserEmb .4169 .2739 .4463 .3163 .1966 .4652 .3323 .2068 .3626
PMEF .5533 .3677 .6407 .4967 .2925 .5885 .4720 .2962 .5508
EFHM .5686 .3688 .6401 .5077 .3186 .6099 .4850 .3053 .5229

CGEF .6029 .4534 .6664 .5098 .3412 .6111 .4901 .3346 .5670

Table 1: Expert finding results of different baselines (underlined is the best performance in baselines).

Datasets
Statistics # questions # answerers # answers avg.title length

AI 1,205 195 1,719 10.97
Print 1,033 112 1,686 9.51

History 4,904 471 9,452 12.38
Biology 8,704 630 11,411 9.84
English 46,692 4,781 104,453 9.68

Bioinformatics 958 113 1,489 9.93

Table 2: Statistical details of the datasets.

six datasets, i.e., Bioinformatics, English, Print, History, Bi-
ology and AI for evaluation. Every dataset consists of a set
of questions, where each question is accompanied by its title,
tag, and corresponding answerers. Noted that each question
has one expert providing the “accepted answers”. We pre-
process each dataset following the previous works [Li et al.,
2019; Zahedi et al., 2024]. For every question, we create
a candidate expert set comprising 20 experts. This set in-
cludes the original answerer, who provided the accepted an-
swer, along with other randomly selected experts from the
answerer pool. The word length of the question title is 15.
Table 2 summarizes comprehensive statistics for six datasets
in detail. We exclude other CQA datasets, like Yahoo! An-
swers, from our evaluation as they do not provide the nec-
essary “accepted answers” that serve as the ground truth [Li
et al., 2019]. Each dataset is partitioned into three distinct
sets, namely a training set, a validation set, and a testing
set. The allocation ratios for these sets are 80%, 10%, and
10% respectively, maintaining the chronological order. To
evaluate the ranking quality, we utilize commonly employed
recommendation ranking metrics, including Mean Recipro-
cal Rank (MRR), Precision@1 (P@1), and Normalized Dis-

1 2 3 4
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Figure 3: Performance with the different interaction sparsity.

counted Cumulative Gain (NDCG@10).
The hyperparameters were tuned using the validation set.

The dimensions of the question and expert embeddings (d)
were set to 100. The embedding dimension in the high-order
connectivity encoder is set to 384. The model consisted of
3 graph attention layers, and the batch size of 128 was used.
To mitigate overfitting, a dropout technique [Srivastava et al.,
2014] was employed with a dropout ratio of 0.3. We employ
the Adam [Kingma and Ba, 2015] to optimize our model, set-
ting the learning rate to 0.001 and the weight decay to 0.0005.
The interest-level replacing ratio λ is 0.3 and the behavior-
level dropping ratio ρ is 0.25. The temperature τ is 0.1.

4.2 Performance-Overall Evaluation
We evaluate the performance of our method, CGEF, by com-
paring it with several recent competitive approaches, includ-
ing: (1) CNTN [Qiu and Huang, 2015]: It uses convo-
lutional neural networks for learning question embeddings;
(2) NeRank [Li et al., 2019]: NeRank learns question con-
tent/raiser/answerers embeddings, then uses a scoring func-
tion for routing questions; (3) TCQR [Zhang et al., 2020]:
This method uses a temporal context-aware model for ques-
tion routing that employs a temporal-aware attention with
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multi-shift/resolution functions; (4) RMRN [Fu et al., 2020]:
For exploring the implicit relevance between experts and
questions, it leverages a novel recurrent memory reason-
ing network for expert finding; (5) UserEmb [Ghasemi et
al., 2021]: It combines experts’ community relations and
question-answer semantic relationships for finding experts;
(6) PMEF [Peng et al., 2022a]: This paper proposes an atten-
tive multi-view mechanism for expert finding, which could
comprehensively learn different grained expert-question re-
lationships; (7) EFHM [Peng et al., 2022b]: EFHM uses
a multi-grained hierarchical matching mechanism to model
three-tier semantic matching information for expert finding.
For models that have been open sourced (e.g, NeRank, PMEF,
etc.), we directly use the public code for evaluation. For mod-
els that are not open sourced (e.g., RMRN, UserEmb, etc.),
we reproduce them according to their original paper for eval-
uation. We conduct each experiment independently, repeating
it 5 times, and report the average results.

Table 1 shows the performance w.r.t. ranking performance
among the methods on six CQA datasets. We can see: (1)
The approaches that take into account the multi-grained inter-
ests of experts (e.g., PMEF) typically outperform those that
disregard them (e.g., CNTN, TCQR, UserEmb). This is be-
cause user interests are multi-grained. It is difficult for a sin-
gle representation vector to model user interests, which may
be sub-optimal for expert finding; (2) Our CGEF consistently
outperforms other baseline approaches. It is noted that, on
the difficult P@1 metric, CGEF improves the best deep neural
model EFHM more than 22.9% on the History dataset. This
phenomenon could be attributed to our approach’s ability to
capture different-grained high-order connectivity information
from the expert-question interaction graph, thereby enhanc-
ing expert modeling.

4.3 Performance-Interaction Sparsity Level
For experts with little historical behaviors, capturing high-
order connectivity could help model the expert’s interests.
In this section, we conduct experiments on different expert
groups with varying levels of behavior sparsity to explore the
effectiveness of the high-order connectivity. We select ex-
perts randomly and divide these into four different groups ac-
cording to the number of interactions per expert. Taking the
English, History, and Biology datasets as examples, the larger
the group is, the larger interaction numbers the experts have.
Figure 3 illustrates the results with respect to P@1 on various
expert groups in different datasets. We can see that CGEF
consistently outperforms the other methods. It demonstrates
the importance of capturing high-order connectivity, which
include both the first-order interactions learned by most base-
lines and capturing higher-order expert/question information
through recursive embedding propagation. Hence, our model
has the potential to improve the representation learning of in-
active experts.

4.4 Study of CGEF
Effect of Different Contrastive Tasks
In our method, we design two auxiliary tasks for supplement-
ing the supervised expert finding. We explore the behavior-
level and interest-level tasks on the model performance in this

Dataset Print AI

Method
Metric MRR P@1 MRR P@1

w/o IL .5388 .3812 .5256 .3611
w/o BL .5456 .3889 .5320 .3767
w/o All .5297 .3734 .5177 .3558
CGEF .5532 .4043 .5443 .3889

Table 3: Effect of different contrastive tasks.
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Figure 4: Effect of different modules.

section. w/o BL and w/o IL remove the behavior-level task
and interest-level task from the model respectively. w/o All
represents removing all auxiliary tasks. The experimental re-
sults are shown in Table 3 and we have the following findings:

(1) w/o All obtains the worst performance. One possi-
ble reason for this could be that the supervision signals in
expert-question interactions are insufficiently dense to effec-
tively guide the learning of expert representations (e.g. in AI
dataset, the interaction is 0.7% compared with the interaction
space). These results demonstrate the importance of our de-
signed contrastive learning tasks; (2) w/o BL consistently out-
performs w/o IL. The reason may be that supervision signals
of the interest-level task are generated by available question
tag information and avoid changing the original graph struc-
ture. The behavior-level task needs to randomly drop some
edges from the graph, which would dramatically change the
graph structure when modeling experts.

Effect of Different Modules
To explore the impact of various modules on model perfor-
mance, we conduct ablation studies by designing two varia-
tions . Specifically, 1) w/o ATT: we replace the αqj as 1/|Nu|,
where |Nu| is the degree of the expert node u; 2) w/o BERT:
we replace the BERT model with the word2vec [Mikolov et
al., 2013] to explore the role that the BERT model plays.

The results are shown in Figure 4. We can find w/o ATT
and w/o BERT degrade the model performance. This result
highlights the significance of employing an attention mecha-
nism to differentiate the validity of neighboring nodes while
learning the representation of the central expert. Additionally,
it showcases the effectiveness of BERT in learning question
representations.

Effect of Different Propagation Layer Numbers
In fact, the more layer numbers, the higher-order connectiv-
ity could be captured. To investigate the influence of differ-
ent propagation layer numbers, we vary the number of lay-
ers within the range of {1, 2, 3, 4}. Figure 5 shows the
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Figure 6: Hyper-parameter analysis.

experimental results. We can see: (1) Increasing the depth
of CGEF improves the expert finding performance. CGEF-
2 and CGEF-3 consistently outperform CGEF-1 in different
datasets, since CGEF-1 considers only the first-order neigh-
bors. The improvement can be attributed to the effective
expert modeling with the second-order and even third-order
connectivity effect, which could be captured by the high-
order connectivity encoder; (2) Further stacking the layers
(e.g., CGEF-3) might degrade model performance. The rea-
son may be that applying too deep architecture might induce
over-smooth and introduce noises to the expert embedding.
Hence, we set the propagation layers as 2 or 3 for different
datasets carefully.

4.5 Hyper-parameter Analysis

We explore two important hyper-parameters, including λ,
which controls the ratio of title replacing in the graph, and ρ,
which controls the ratio of edge dropout in the graph. The ex-
periments are conducted on the History dataset and results are
shown in Figure 6. In all, the trend of the impact of the two
parameters on the model performance is consistent, both of
which increase and then decrease with the increase of param-
eters. For the λ, introducing fewer (e.g., 30%) question tags
to replace question titles could enhance the model’s ability to
capture expert interests, but excessive replacement would in-
troduce noise into the model. Hence, from the results, we set
λ to 0.3 carefully. For the ρ, though the edge dropout is more
likely to block connections of high-degree nodes and alleviate
the impact of high-degree nodes, the larger ρ would decrease
the model performance. The reason is that the larger ρ would
dramatically change the graph. Therefore, from the results,
we set ρ to 0.25 carefully.
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0.091 0.183 0.083 0.071

0.091 0.126 0.0670.081

Figure 7: Case Study.

4.6 Case Study
In this part, we perform a case study to gain deeper insights
into the what has been learned by the model. We randomly
select one expert u117 from the Biology dataset and one tar-
get question “Does . . . contradict an origin of life?” (from the
testing dataset). We extract the expert u117 partial high-order
connectivity paths in the expert-question graph and the cor-
responding attention scores. Figure 7 shows the visualization
of different high-order path scores. Given the target question,
the path “life began → u23 → traits evolve → u117” can help
guide the model to recommend the expert u117 to answer the
question. Meanwhile, the path could be viewed as evidence of
why the expert has the potential to answer this question. Nev-
ertheless, most existing expert finding methods could not cap-
ture this kind of high-order collaborative information, which
might not match the expert u117 with the question precisely.
Hence, we can find that the weighted high-order connectivity
plays a key role in inferring expert interests.

5 Conclusion
In this paper, we explicitly incorporate high-order connectiv-
ity into the expert modeling. In particular, we employ the
question encoder to learn the question node embedding for
constructing the graph, and then utilize the attention network
to capture different importance of different connectivity. Be-
sides, we recognize the challenges of employing the GNN-
based method in expert finding and explore corresponding so-
lutions. Specifically, for generating self-supervised signals,
we design two data augmentations from behavior-level and
interest-level to construct the augmented interaction graph.
Based on this, we employ two contrastive learning tasks to
supplement the supervised expert finding. In this way, the
model can inject collaborative effect into expert modeling.
We conduct extensive experiments on six real-world CQA
datasets, validating the advantages of our proposed method.
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