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Abstract

Group-level cognitive diagnosis, pivotal in intelli-
gent education, aims to effectively assess group-
level knowledge proficiency by modeling the learn-
ing behaviors of individuals within the group. Ex-
isting methods typically conceptualize the group as
an abstract entity or aggregate the knowledge lev-
els of all members to represent the group’s over-
all ability. However, these methods neglect the
high-order connectivity among groups, students,
and exercises within the context of group learn-
ing activities, along with the noise present in their
interactions, resulting in less robust and subopti-
mal diagnosis performance. To this end, in this
paper, we propose DGCD, an adaptive Denoising
graph neural network for realizing effective Group-
level Cognitive Diagnosis. Specifically, we first
construct a group-student-exercise (GSE) graph to
explicitly model higher-order connectivity among
groups, students, and exercises, contributing to the
acquisition of informative representations. Then,
we carefully design an adaptive denoising module,
integrated into the graph neural network, to model
the reliability distribution of student-exercise edges
for mining purer interaction features. In particu-
lar, edges of lower reliability are more prone to
exclusion, thereby reducing the impact of noisy
interactions. Furthermore, recognizing the rela-
tional imbalance in the GSE graph, which could
potentially introduce bias during message pass-
ing, we propose an entropy-weighted balance mod-
ule to mitigate such bias. Finally, extensive ex-
periments conducted on four real-world educa-
tional datasets clearly demonstrate the effective-
ness of our proposed DGCD model. The code is
available at https://github.com/BIMK/Intelligent-
Education/tree/main/DGCD.

∗Corresponding Authors

Figure 1: (a) The process of group-level cognitive diagnosis. (b) The
interaction between student s2 and exercise e4 might be a noisy one.
We eliminate similar noisy interactions and conduct the experiment,
denoted as MGCD-D. Additionally, experiments are performed on
the raw data employing MGCD and GNN.

1 Introduction
Cognitive diagnosis endeavors to assess students’ mastery
of knowledge concepts by predictively analyzing their ac-
curacy in answering exercises, stemming from their interac-
tions with exercises. With the advancements in deep learn-
ing [Qin et al., 2024; Lin et al., 2017; Wang et al., 2021;
Sun et al., 2019], cognitive diagnostics research has received
increasing attention. Abundant researches have focused on
modeling the abilities of individual students and diagnosing
their understanding of various concepts [De La Torre, 2011;
Wu et al., 2015] through methods such as Item Response The-
ory (IRT) [Embretson and Reise, 2013], multidimensional
IRT (MIRT) [Ackerman et al., 2003], matrix factorization
(MF) [Ackerman et al., 2003], and neural cognitive diagno-
sis (NeuralCD) frameworks [Wang et al., 2020a]. However,
students often participate in collaborative learning activities,
including tests, exams, and group assignments, which offer
additional benefits[Hammar Chiriac, 2014]. Therefore, eval-
uating group abilities is of paramount importance.

Currently, insufficient research has been undertaken in
the realm of group-level cognitive diagnosis. Figure 1(a)
illustrates the process of group-level cognitive diagnosis.
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Traditional approaches consider the group as a unified en-
tity and then apply individual cognitive diagnosis directly
to the group, overlooking the intricate relationship between
the group and the individual. The other approaches derive
group competence by aggregating the competencies of indi-
viduals. For instance, the latest group diagnosis framework
(MGCD) [Huang et al., 2021] utilizes deep neural networks
to handle the group-level cognitive diagnosis task and atten-
tion mechanisms to learn group representation. However, pre-
vious methods failed to consider higher-order connectivity
among groups, students, and exercises, resulting in subop-
timal outcomes. To address this limitation, we construct the
group-student-exercise graph to establish higher-order con-
nectivity among groups, students, and exercises, and employ
GNN to learn higher-order representations of groups.

In the real world, the data about student-exercise interac-
tions exhibits noise [Zhang et al., 2023; Ma et al., 2024]. Pre-
vious models neglected to consider the impact of this noise
on the overall performance of the model, rendering them less
robust. As illustrated in Figure1(b), the interaction data in-
volving student s2 is noisy. The RMSE for MGCD-D is less
than that of MGCD, indicating the adverse influence of noise
on the model’s effectiveness. Meanwhile, although GNN can
model higher-order relationships between groups, students,
and exercises, it is susceptible to interaction noise due to its
reliance on message passing mechanisms [Wu et al., 2021].
As evident in Figure1(b), MGCD exhibits superior perfor-
mance compared to GNN in the presence of noisy data. To
enhance the higher-order representation of the group, it is im-
perative to mitigate the impact of noisy interactions on GNN.
Furthermore, the existence of relational imbalance in the GSE
graph introduces bias in different relation information during
message passing, further undermining GNN’s effectiveness.
For instance, in the message passing, a student node has a
group neighbor node and multiple exercise neighbor nodes.
The relationship between student and group differs from that
between student and exercise.

To this end, in this paper, we propose an adaptive denois-
ing GNN for group-level cognitive diagnosis, namely DGCD.
Specifically, we first construct the GSE graph and employ
GNN to model higher-order connectivity among groups, stu-
dents, and exercises. Subsequently, to address the influence
of noisy interactions, we introduce an adaptive denoising
method to drop the noisy edges based on the reliability of
the student-exercise edges, thus alleviating the impact of the
noisy edges on the learning of subsequent representations.
Additionally, to tackle the bias introduced by the unbalanced
relations in the GSE graph during the message passing, we
propose an entropy-weighted balance module to reweight the
information of unbalanced relations, balancing the informa-
tion aggregation across various relations. Finally, Extensive
experiments conducted on four real-world datasets demon-
strate the effectiveness of our DGCD.

2 Related Work
2.1 Cognitive Diagnosis
In the domain of educational psychology, diverse cogni-
tive diagnosis models (CDMs) have been formulated to pro-

vide comprehensive insights into students’ cognitive abili-
ties [DiBello et al., 2006; Li et al., 2020; Yang et al., 2024;
Zhang et al., 2024]. Previous research mainly focuses on
the individual cognitive diagnosis, with DINA [De La Torre,
2011; Junker and Sijtsma, 2001] and IRT [Embretson and
Reise, 2013]standing out as notable contributions that pro-
file students based on inherent attributes. Additionally,
MIRT [Reckase, 2009], an extension of IRT, enables the
representation of students’ cognitive abilities through multi-
dimensional latent traits. Moreover, certain methodolo-
gies utilize matrix factorization (MF) to reveal underly-
ing eigenvectors of students and exercises via score ma-
trix decomposition [Toscher and Jahrer, 2010; Thai-Nghe
and Schmidt-Thieme, 2015]. Diverging from traditional
approaches representing student-exercise interactions using
linear functions, the neural cognitive diagnostic framework
(NeuralCD) [Wang et al., 2020a] employs neural networks to
capture complex interactions between students and exercises.
ReliCD [Zhang et al., 2023] proposes a Bayesian method to
explicitly estimate the state uncertainty of different concepts
of knowledge for students and enable the confidence quantifi-
cation of diagnostic feedback.

In recent years, group-level cognitive diagnosis has gained
significant prominence across diverse domains [Liu et al.,
2023; Huang et al., 2021; Yu et al., 2024]. The initial strategy
involves extending traditional CDMs and adapting them to
assess group abilities. Traditional group-level cognitive diag-
nostic models primarily build upon Group IRT (GIRT) [Reise
et al., 2006; Mislevy, 1983; Birenbaum et al., 2004], an ex-
tension of IRT tailored for group-level analysis. The sec-
ond approach focuses on initially modeling individual abil-
ities and subsequently assumes that a group’s collective abil-
ities are equivalent to the average proficiency of its mem-
bers [Agrawal et al., 2014; Liu et al., 2016]. The recently
introduced approach MGCD [Huang et al., 2021] utilizes an
attention mechanism to calculate individual student weights
and aggregates student ability states into group ability states.
Nevertheless, existing methods fail to consider higher-order
connectivity among groups, students, and exercises, while
disregarding noise in interaction data. In this paper, we con-
struct the GSE graph to establish higher-order connectivity
between groups, students, and exercises, and we propose an
adaptive denoising method to alleviate the impact of noisy
interactions on model performance.

2.2 GNN-based Representation Learning
GNN-based representation learning methods have gained in-
creased attention in recent years. In contrast to conventional
representation learning methods, GNN-based approaches
leverage graph structures to model node representations. Cur-
rent GNN-based representation learning methods fall into
two main categories: homomorphic graph-based [Kipf and
Welling, 2016; Hamilton et al., 2017; Brody et al., 2021] and
heteromorphic graph-based [Schlichtkrull et al., 2018; Wang
et al., 2019; Hu et al., 2020]. Homogeneous graph-based rep-
resentation learning methods do not account for the distinc-
tions among node and edge types during the aggregation of
information from neighboring nodes. Heterogeneous graph-
based representation learning methods [Yang et al., 2021;
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Figure 2: Overall framework of DGCD. The Adaptive Denoising Module illustrates the denoising procedure for the GSE graph, the Entropy-
Weighted Balance Module showcases the information aggregation process for various relationships when updating student nodes. The
Group-Level Cognitive Diagnostics Module is utilized to predict the scores of the groups in responding to the exercises.

Yang et al., 2023; Liu et al., 2021; Wu et al., 2022] take into
account various node types and relationship types during the
aggregation of neighbor information, allowing for the capture
of diverse and complex relationships between nodes.

Although GNN-based representation learning [Qin et al.,
2023; Shen et al., 2021a] has demonstrated notable success,
its neighbor aggregation scheme enlarges the impact of in-
teractions on representation learning, rendering the process
more susceptible to interaction noises. Furthermore, GNN
may be influenced by relation unbalance. Several meth-
ods [Qiu et al., 2020; You et al., 2020; Wu et al., 2021;
Ye et al., 2023] alleviate the impact of interaction noise
through self-supervision, incorporating data augmentation
and contrast learning to enhance node representation learn-
ing. However, these methods cannot be directly applied to
the group-level cognitive diagnosis. In this paper, we intro-
duce a novel denoising method to eliminate the noise edges
in the GSE graph. Furthermore, to address the relational im-
balance, we propose an information entropy-based approach
that aims to balance the information of different relations in
the message passing.

3 Problem Formulation
We define the group-level cognitive diagnosis task and estab-
lish the group-student-exercise graph to utilize GNN within
the broader context of group-level cognitive diagnosis.

Suppose there are m students S = {s1, s2, . . . , sm}, n
group G = {g1, g2, . . . , gn}, h exercises E = {e1, e2, . . . ,
eh} and t knowledge concepts K = {k1, k2, . . . , kt}. The
l-th group gl ∈ G consists of a set of students, i.e., group
members with student indexes Kl = {kl,1, kl,2, . . . , kl,|gl|},
where skl,∗ ∈ S and |gl| is the size of the group. In ad-

dition, there is an exercise-concept correlation matrix Q =
{Qij}m×n. If exercise ei requires knowledge concept kj then
Qij = 1. We employ a set of triplet (gi, ej , yij) to denote the
response logs H, where gi ∈ G, ej ∈ E and yij is the correct
rate that group gi got on exercise ej .
Group-Student-Exercise Graph To establish higher-order
connectivity between groups, students, and exercises, we con-
struct the group-student-exercise (GSE) graph, denoted as Gr

= (V, R). Here, V = {Vg, Vs , Ve } represents the set of three
node types, with Vg ⊆ G, Vs ⊆ S , and Ve ⊆ E , where G, S ,
and E denote the sets of groups, students, and exercises, re-
spectively. The set of relationships among the nodes is de-
noted as R = {r1, r2, r3}, where r1 indicates the inclusion
relationship between groups and students, r2 and r3 denote
the correct and incorrect relationships between students and
exercises. Each graph comprises a group node, all student
nodes within the group, and the exercise nodes the group has
interacted with. We specify that edges between nodes are cat-
egorized into different types based on distinct relationships.
Problem Definition. Given group-exercise response records
H , student-exercise response records F (the student-exercise
response records in F here are the student-exercise in-
teraction records contained in the group-exercise interac-
tion records H), group-student-exercise (GSE) graphs, and
exercise-concept correlation matrix Q, our task aims to uti-
lize the GSE graphs to conduct group-level cognitive diagno-
sis and obtain more accurate and robust diagnostic results.

4 Methodology
This paper introduces an adaptive denoising graph neural net-
work approach for group-level cognitive diagnosis. The fol-
lowing sections provide a concise overview of our method
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and a detailed presentation of individual modules.
Figure 2 illustrates our method comprising four primary

modules: the representation learning module, the adaptive
denoising module, the entropy-weighted balance module,
and the group-level cognitive diagnosis module. The repre-
sentation learning module captures higher-order connectivity
among groups, students, and exercises. The adaptive denois-
ing module seeks to alleviate the impact of noisy interactions.
The entropy-weighted balance module aims to equalize in-
formation aggregation across various relationships and the
group-level cognitive diagnosis module is employed to pre-
dict scores for interactions between the group and the exer-
cises. The following will introduce their details.

4.1 Representation Learning Module
In practical settings, students within a group collabora-
tively interact with exercises, leading to intricate relationships
among groups, students, and exercises. To capture intricate
higher-order connectivity, we construct the group-student-
exercise graph. Each group, along with its associated students
and exercises they interact with collectively, serves as nodes,
while the connections between them represent the edges. We
then utilize a graph neural network to learn the higher-order
representation of the group. First, this embedding layer takes
the group one-hot vector xgi , student one-hot vector xsj and
exercise one-hot vector xek as its inputs, and obtains the cor-
responding initial embedding vectors g0

i ∈ R1×d, s0j ∈ R1×d

and e0k ∈ R1×d as follows:

g0
i = xgiWG, s

0
j = xsjWS , e

0
k = xekWE , (1)

where WG ∈ Rn×d, WS ∈ Rm×d, and WE ∈ Rh×d are
trainable matrices, n, m, and h denote the number of groups,
students, and exercises, while d denotes the embedding size.

Afterward, we categorize groups, students, and exercises
as three distinct types of nodes, classifying the edges between
them into three different types based on their respective rela-
tionships. Then, we aggregate information from neighboring
nodes based on different node types and relationship edges,
respectively. We denote the embedding of node i (it can de-
note either a group node, a student node, or an exercise node.)
at the l-th GNN layer as ol

i. We formally define the message
passing process from the (l − 1)-th layer to the l-th layer as:

ol
i = W l−1

o ol−1
i +

∑
r∈R

∑
j∈Nr(i)

W l−1
r ol−1

j , (2)

where W l−1
o and W l−1

r ∈ Rd×d are trainable matrices, R
denotes the set of relationships between groups, students, and
exercises. Nr(i) denotes the set of neighboring nodes that
have relationship r with node i. After stacking L GNN layers,
the layer-aggregation mechanism is adapted to generate the
final representation oL

i .

4.2 Adaptive Denoising Module
In the GSE graph, the relationship between groups and stu-
dents is fixed, resulting in no noise in the group-student edge.
However, noise is present in the edges between students and
exercises. This noise is amplified during the message pass-
ing of the GNN, subsequently affecting the learning of the

representation. To mitigate the impact of noise on represen-
tation learning, we propose an adaptive denoising strategy.
This strategy aims to model the reliability of student-exercise
edges and calculate the sampling probability p for each edge
which denotes the retention probability of an edge.

Specially, we model that the reliability of edge vjk between
student sj and exercise ek as a Gaussian distribution. To ob-
tain the unique reliability distribution for edge vjk, We con-
catenate the vector representations of student sj and exercise
ek and subsequently apply distinct transformation matrices to
acquire the mean and variance parameters, respectively, i.e.,

µjk = Wµ([s
0
j , e

0
k]), logσ

2
jk = Wσ([s

0
j , e

0
k]), (3)

q(zjk|sj , ek) = N (µjk,σ
2
jk), (4)

where µjk and σjk ∈ R1 represent mean and variance pa-
rameters for the reliability of edge vjk, respectively. Wµ and
Wσ ∈ R1×2d are different trainable matrices.

We proceed to sample the reliability distribution of edge
vjk to obtain the reliability wjk of edge vjk. To facilitate
gradient backpropagation during training, we employ the re-
sampling technique as follows:

wjk = µjk + ϵ⊙ σjk, (5)

where random variable ϵ ∼ N (0, 1). A larger wjk indicates
that the edge vjk is more important and should be retained,
while a smaller wjk suggests that the edge vjk is more likely
to be a noisy edge. Therefore, we drop the edge vjk based
on wjk. To make the edge dropping procedure differentiable
and enable an end-to-end optimization process, we apply a
Relaxed Bernoulli distribution to obtain edge retention prob-
ability pjk through sampling. Specifically, the probability pjk
is calculated by:

pjk = sigmoid(
1

t
(log(

ρ(wjk)

1− ρ(wjk)
) + log(

u

1− u
))), (6)

where ρ is a sigmoid activation function, t is temperature pa-
rameter of relaxation, and u∼ Unif[0,1]. Then, we can obtain
a new denoising view based on the retention probabilities of
the edges. In the denoising view, the student-exercise correct
answer adjacency matrix Ad

t and the student-exercise incor-
rect answer adjacency matrix Ad

f as follows:{
at
jk = pjk, if sj correctly answered ek

af
jk = pjk, if sj incorrectly answered ek

, (7)

where atjk, afjk are the elements of Ad
t and Ad

f , respectively.

4.3 Entropy-Weighted Balance Module
The number of neighboring nodes varies for nodes in the GSE
Graph across different relationships. Unbalanced message
passing can adversely affect the update of node representa-
tions. For instance, each student has only one group node
neighbor and multiple exercise node neighbors, diminishing
the influence of the group’s representation in updating the stu-
dent’s representation during message passing. Hence, it is es-
sential to balance information from different relations during
the message passing.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2264



Specifically, we employ the entropy weighting approach to
balance information from different relationships by reweight-
ing the information during the message passing. First, we
normalize the aggregation of neighboring nodes for different
relationships, and subsequently, we calculate the information
entropy corresponding to different relationships using Eq.( 9).
The specific process is as follows:

hj,l
st =

∑
k∈Nt

e

at
jk

dstj detk
W l−1

r2 el−1
k , (8)

where hj,l
st represents the normalized embedding regarding

the exercise neighbors correctly answered by student sj in the
l-th GNN layer. dstj is the sum of the j-th row of Ad

t ,and detk
is the sum the k-th column of Ad

t . Similarly we can obtain
hj,l
sf , hj,l

sg , hk,l
et and hk,l

ef . After normalization, we computed
the information entropy for each relation:

FH = − 1√
d

∑
i

hi log2(hi), (9)

Hj,l
st = FH(hj,l

st ), (10)

where hi denotes the value of the i-th position in the vector
h, and d is the dimension of the vector h. Hj,l

st is the informa-
tion entropy of hj,l

st . Similarly we can obtain Hj,l
sf , Hj,l

sg , Hk,l
et

and Hk,l
ef . A higher information entropy indicates a smaller

amount of information. Therefore, to balance the information
from different relationships, we define the weights of infor-
mation corresponding to different relationships as:

λj,l
st =

Hj,l
st

Hj,l
st +Hj,l

sf +Hj,l
sg

. (11)

Then we can get λj,l
sf , λj,l

sg , λk,l
et and λk,l

ef . Using the weights
derived from information entropy, we redefine the message
passing as follows:

gl
i = W l−1

g gl−1
i +

∑
j∈Ns

i

1

|Ns
i |
W l−1

r1 sl−1
j , (12)

sl
j = W l−1

s sl−1
j +

∑
k∈Nst

j

λj,l
st a

t
jk

dstj detk
W l−1

r2 el−1
k

+
∑

h∈N
sf
j

λj,l
sfa

f
jh

dsfj defh
W l−1

r3 el−1
h +

λj,l
sg

|Ns
i |
W l−1

r1 gl−1
i , (13)

el
k = W l−1

e el−1
k +

∑
j∈Net

k

λk,l
et a

t
jk

dstj detk
W l−1

r2 sl−1
j

+
∑

q∈N
ef
k

λk,l
ef a

f
qk

dsfq defk
W l−1

r3 sl−1
q , (14)

where Ns
i denotes the set of students in group gi. Nst

j and
Nsf

j represent the sets of exercises that student sj answered
correctly and incorrectly, respectively. Net

k and Nef
k repre-

sent the sets of students that answered exercise ek correctly
and incorrectly, respectively.

Dataset ASSIST2012 NIPS Edu SLPbio SLPmath

# Students 1,802 2,113 3,922 4,152
# Groups 114 150 145 153

# Exercises 707 688 120 138
# Knowledge concepts 122 77 21 39

# AVG. group size 19.16 14.78 27.05 27.14
# AVG. responses for a group 7.48 31.96 70.49 72.56

Table 1: Statistics of all datasets.

4.4 Group-Level Cognitive Diagnosis Module
After obtaining a group’s representation gL

i through the L-
layer of GNNs, we can diagnose the cognitive state of the
group through the diagnosis layer. Here, we utilize a multi-
layer perceptron (MLP) as a diagnostic layer. The first layer
of the interaction layer is represented as:

edisck = ϕ (xekWB) , e
diff
k = ϕ

(
e0k

)
, gstate

i = ϕ
(
gL
i

)
,

(15)
xg = Qe

(
gstate
i − ediffk

)
edisck , (16)

where WB ∈ Rh×d is a trainable matrix, the edisck is the dif-
ferentiation of exercises, Qe is a matrix of knowledge con-
cepts, and ϕ is an activate function.

Then we can obtain the correct rate of the group gi’s an-
swer on exercise ek through multiple linear layers:

z1 = ϕ (W1xg + b1)

z2 = ϕ (W2z1 + b2)

...

zh = ϕ (Whzh−1 + bh)

. (17)

Finally, we can obtain the prediction score ŷik via:

ŷik = ϕ (Wh+1zh + bh+1) . (18)

To optimize the model parameters and obtain the ability
level of all groups, we maximize the likelihood p(Y ; Θ),
which indicates the correct probability that all groups answer
the exercises. We optimize the parameters with the evidence
lower bound (ELBO):

logp(Y ; Θ) ≥ Eq(w|X)[logp(Y |w)]−KL(q(w|X)||p(w)), (19)

where p(w) is the prior distribution for the reliability of
the edge. q(w|X) is the posterior distribution we con-
structed for the edge. X is the set of representations, X =
{S,E}. logp(Y |w) measures the likelihood that groups an-
swer exercises correctly based on the reliability w of the
student-exercise edge. We follow the variational autoen-
coder (VAE) [Kingma and Welling, 2014; Zha et al., 2023;
Qin et al., 2022; Shen et al., 2021b] and calculate the two
terms in Equation (19) separately:

Lgcd = Eq(w|X)[logp(Y |w)] =

n∑
i=1

∑
k∈He

i

(ŷik − yik)
2 , (20)

Lkl = KL(q(w|X)||p(w))

=
n∑

i=1

∑
j∈Hs

i

∑
k∈He

i

1

2
(µ2

jk + σ2
jk − lnσ2

jk − 1),
(21)
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Model ASSIST2012 NIPS Edu SLPbio SLPmath

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

IRT 0.3214±0.0029 0.2772±0.0035 0.2414±0.0011 0.1919±0.0012 0.1336±0.0035 0.1016±0.0024 0.1316±0.0067 0.0953±0.0059

MIRT 0.2304±0.0012 0.1827±0.0009 0.2145±0.0020 0.1674±0.0016 0.1250±0.0002 0.0953±0.0003 0.1261±0.0002 0.0911±0.0002

NCD 0.2074±0.0012 0.1531±0.0009 0.2036±0.0004 0.1568±0.0011 0.1264±0.0008 0.0955±0.0007 0.1320±0.0010 0.0936±0.0004

ReliCD 0.2088±0.0011 0.1561±0.0019 0.1997±0.0005 0.1548±0.0007 0.1278±0.0007 0.0959±0.0006 0.1308±0.0006 0.0919±0.0006

MGCD 0.2061±0.0012 0.1524±0.0016 0.2022±0.0017 0.1554±0.0022 0.1212±0.0012 0.0927±0.0006 0.1192±0.0013 0.0856±0.0007

RGCN 0.2145±0.0005 0.1622±0.0027 0.2035±0.0011 0.1565±0.0011 0.1260±0.0011 0.0957±0.0010 0.1242±0.0005 0.0893±0.0006

GATv2 0.2123±0.0046 0.1594±0.0018 0.2026±0.0018 0.1542±0.0014 0.1236±0.0026 0.0940±0.0023 0.1153±0.0005 0.0829±0.0014

SGL 0.2072±0.0011 0.1578±0.0021 0.2092±0.0006 0.1582±0.0008 0.1320±0.0006 0.1004±0.0004 0.1384±0.0011 0.0992±0.0009

RocSE 0.2076±0.0012 0.1543±0.0016 0.2066±0.0005 0.1555±0.0008 0.1312±0.0009 0.1005±0.0007 0.1342±0.0005 0.0959±0.0004

DGCD 0.1977±0.0023 0.1437±0.0022 0.1929±0.0009 0.1495±0.0014 0.1127±0.0007 0.0859±0.0005 0.1072±0.0010 0.0762±0.0010

Table 2: Experimental results on group performance prediction. The bold indicates the best result and the second-best results are underlined.
We conduct five experiments and compute the average to derive the final result.

where n represents the number of group, and Hs
i , He

i denote
all students of group gi and exercises responded by group gi.

Finally, we define the final loss function as follows:

L = Lgcd + λklLkl + λreg∥Θ∥22, (22)

where Θ represents all the learnable parameters, and λkl, λreg

are hyper-parameters controlling the effect strength of Lkl

and the regularization.

5 Experiments
5.1 Dataset Description
We conduct the experiments on four public education
benchmarks, including ASSIST12 [Feng et al., 2009],
NIPS Edu [Wang et al., 2020b], SLPbio [Lu et al., 2021],
and SLPmath [Lu et al., 2021]. All of these datasets contain
group labels, with students from the same group belonging
to the same class. Each dataset contains common interac-
tion records for groups: group-exercise responses. Specifi-
cally, for each group-exercise response, we calculated the per-
centage of students in the group who answered the exercise
correctly as the response outcome, and we used the student
responses from the group-exercise response as the student-
exercise responses. Detailed statistics of these datasets are
presented in Table 1.

5.2 Experimental Setup
To verify the effectiveness of our DGCD, each dataset of
group-exercise responses is divided randomly into two sub-
sets: 80% for training and 20% for testing. As group-level
cognitive diagnosis is a regression task to predict the correct
rate of group responses to exercises, we selected root mean
square error (RMSE) and the mean absolute error (MAE), to
evaluate model performance.

In our DGCD, we set the dimension d of the vector
to be the number of knowledge concepts. The number
of the GNN layers in the representation learning module
is set to 2. The number of diagnostic layers is set to
3. Additionally, the hyper-parameter λkl was searched in
[1,1e-1,1e-2,1e-3,1e-4,1e-5,1e-6,1e-7]. And, t was optimized
over the values [0.57,0.67,0.77,0.87].

5.3 Baseline Approaches
To validate the effectiveness of DGCD, we compare it against
two baseline types. Initially, we assess its performance in
contrast to cognitive diagnosis-based approaches as follows:
IRT [Embretson and Reise, 2013], MIRT [Reckase, 2009],
NeuralCDM [Wang et al., 2020a], MGCD [Huang et al.,
2021] and Relicd [Zhang et al., 2023]. Then, we compared
the graph-based approaches as follows: RGCN [Schlichtkrull
et al., 2018], GATv2 [Brody et al., 2021], SGL [Wu et al.,
2021] and RocSE [Ye et al., 2023].

5.4 Performance Comparison
To validate the effectiveness of DGCD, we conducted a com-
parative analysis utilizing the above four datasets. Table 2
presents the experimental results of our DGCD and the base-
line models. We can find that our model consistently sur-
passes all baseline models by a substantial margin. Compared
with IRT, MIRT, NCD ReliCD, and MGCD, our model shows
better performance. This implies that the modeling of high-
order connectivity among groups, students, and exercises us-
ing graph neural networks results in a more accurate group
ability level. Our model exhibits noteworthy improvement
across all four datasets compared to GAT, RGCN, SGL, and
RocSE. This implies that our model outperforms in identify-
ing noisy edges in student-exercise interactions, facilitated by
the adaptive denoising module. Furthermore, in terms of the
reliability of randomly deleting edges (for SGL) and calcu-
lating edges based on similarity (for RocSE), our approach
demonstrates greater flexibility and adaptation to diagnostic
tasks. Additionally, our entropy-weighted balance module
ensures the equilibrium of information related to distinct re-
lationships during aggregation. This mitigates bias in the ag-
gregated information resulting from variations in the number
of neighbors associated with different relationships.

5.5 Ablation Analysis
To study the impact of our key components, we introduced
different variants of DGCD from two perspectives and ana-
lyzed their effects. “w/o AD” and “w/o EB” means remov-
ing the adaptive denoising module and the entropy-weighted
balance module, respectively. As shown in Figure 3, our
DGCD consistently achieves the best performance, demon-
strating the contribution of each component. Meanwhile, it
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Figure 3: Comparison of DCGD and its ablated variants.

is evident that the adaptive denoising module significantly
enhances model performance. This improvement can be at-
tributed to the adaptive module’s ability to eliminate noise
edges, thereby mitigating the impact of noise on the model.

5.6 Effect of Hyperparameters

We study the impact of the hyperparameters t and λkl in Fig-
ure 4. t is a temperature parameter that affects the loose
Bernoulli sampling process of the edge dropout. λkl is the
weight of the Lkl that affects the modeling of student-exercise
edge reliability. It has been observed that varying values of
t yield different outcomes. Specifically, the model achieves
optimal performance on ASSIT12 when t is equal to 0.67 and
on SLPbio when t is equal to 0.77. Notably, different datasets
are associated with distinct values of t. Similarly, optimal
performance is observed for the model on ASSIST12 when
λkl is set to 1e-3 and on SLPbio when λkl is set to 1e-6.

5.7 Case Study

To assess our model’s capability against noise, we systemati-
cally introduced noisy data by replacing a certain percentage
(5%, 10%) of population-exercise interactions in the training
set, while keeping the test set unchanged. Figure 5(a) shows
the result on the ASSIST12 dataset. We observed that the
performance of MGCD, RocSE, and DGCD is influenced as
the percentage of noise increases. In particular, DGCD con-
sistently surpasses MGCD and RocSE, indicating its profi-
ciency in mitigating the impact of noise interactions through
adaptive denoising. Additionally, after introducing 10% noise
to the ASSIST12 dataset, the performance of DGCD exceeds
that of MGCD on the noise-free dataset. This further sup-
ports the superior performance and robustness of our DGCD
in comparison to MGCD.

Meanwhile, we analyzed the retention probability of the
edges learned by the adaptive denoising module on AS-
SIST12. As shown in Figure 5(b), student s547 answered
incorrectly on exercises e7 and e22 but correctly on e20. Ex-
ercises e7, e20, and e22 share identical knowledge concepts
and difficulty levels. Consequently, the interaction between
s547 and e20 is deemed potentially noisy data, with our model
learning a retention probability of 0.2956 for the edges con-
necting s547 and e20. This value is lower than the retention
probability for the edges of s547 with e7 and e22. This ob-
servation demonstrates our model’s ability to identify noisy
edges and mitigate their impact on representation learning.
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Figure 4: Hyper-parameter sensitivity analysis.

Figure 5: Left: Model performance w.r.t. noise ratio. Right: Reten-
tion probability of edges. Red edges symbolize incorrect answers,
while green edges denote correct answers.

6 Conclusion
In this paper, we introduced a denoising graph neural net-
work approach for group-level cognitive diagnosis, namely
DGCD. The method considers higher-order connectivity
among groups, students, and exercises, effectively alleviat-
ing the impact of noisy interactions on diagnostic results.
To be specific, We initially constructed the group-student-
exercise graph and subsequently utilized Graph Neural Net-
works to capture intricate higher-order connectivity among
groups, students, and exercises, thereby obtaining advanced
representations of the groups. Then, we introduced an adap-
tive denoising module to address the impact of noise interac-
tions on diagnostic results. This module selectively removes
noisy edges based on their reliability, resulting in a denoised
view for subsequent representation learning. Furthermore,
we designed an entropy-weighted balance module that uti-
lizes information entropy reweighting to alleviate informa-
tion bias resulting from the relational imbalance in the mes-
sage passing. Finally, we conducted extensive experiments
on four public education benchmarks and the experimental
results demonstrate the effectiveness of our DGCD.
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