
Massively Parallel Single-Source SimRanks in o(log n) Rounds

Siqiang Luo1∗ , Zulun Zhu1∗

1Nanyang Technological University
{siqiang.luo, ZULUN001}@ntu.edu.sg

Abstract
SimRank is one of the most fundamental mea-
sures that evaluate the structural similarity between
two nodes in a graph and has been applied in
a plethora of data mining and machine learning
tasks. These tasks often involve single-source Sim-
Rank computation that evaluates the SimRank val-
ues between a source node u and all other nodes.
Due to its high computation complexity, single-
source SimRank computation for large graphs is
notoriously challenging, and hence recent studies
resort to distributed processing. To our surprise,
although SimRank has been widely adopted for
two decades, theoretical aspects of distributed Sim-
Ranks with provable results have rarely been stud-
ied. In this paper, we conduct a theoretical study
on single-source SimRank computation in the Mas-
sive Parallel Computation (MPC) model, which is
the standard theoretical framework modeling dis-
tributed systems. Existing distributed SimRank al-
gorithms enforce either Ω(log n) communication
round complexity or Ω(n) machine space for a
graph of n nodes. We overcome this barrier. Par-
ticularly, given a graph of n nodes, for any query
node v and constant error ϵ > 3

n , we show that us-
ing O(log2 log n) rounds of communication among
machines is enough to compute single-source Sim-
Rank values with at most ϵ absolute errors, while
each machine only needs a space sub-linear to n.
To the best of our knowledge, this is the first single-
source SimRank algorithm in MPC that can over-
come the Θ(log n) round complexity barrier with
provable result accuracy.

1 Introduction
Evaluating the structural similarity between two nodes in
a graph is fundamental in plenty of data mining and ma-
chine learning tasks. Examples include recommendation sys-
tems [Chen et al., 2022; Mo and Luo, 2021], avoiding cus-
tomer churn [Luo et al., 2019], spam detection [Badola and
Gupta, 2021], link prediction [Zhou et al., 2019; Xu et al.,

*The authors are ordered alphabetically.

2017; Hours et al., 2016] and graph mining [Zhu et al., 2024;
Jin et al., 2011; Liao et al., 2022; Zhu et al., 2022]. Among
many similarity measures, SimRank [Jeh and Widom, 2002]
is one of the most widely adopted measures over graphs. Sim-
Rank is defined based on the intuition that two nodes are sim-
ilar only when their neighboring nodes are similar. Formally,
it uses the following recursive equation to compute the Sim-
Rank between two nodes u and v, where c ∈ (0, 1) and I(u)
denotes the in-neighbor set of node u.

s(u, v) =

{
1, u = v

c
|I(u)||I(v)|

∑
u′∈I(u)

∑
v′∈I(v) s(u

′, v′), u ̸= v
(1)

Since it was proposed by Jeh and Widom [Jeh and Widom,
2002], SimRank has gained increasing popularity in various
application domains, e.g., social analysis [Zheng et al., 2013],
nearest neighbor search [Lee et al., 2012], as well as recom-
mender systems [Antonellis et al., 2008; Chuanyan and Xi-
aoguang, 2021; Symeonidis et al., 2021].

Distributed SimRank Computation. We focus on single-
source SimRank computation, whose importance has been un-
covered in a plethora of recent studies [Wang et al., 2020b;
Li et al., 2015; Wang et al., 2020a; Shi et al., 2020; Wang
et al., 2021; Maehara et al., 2014; Tian and Xiao, 2016;
Kusumoto et al., 2014]. Given a graph G, a single-source
SimRank for source node u evaluates the SimRank values
between u and all other nodes in the graph. Single-source
SimRank computation is widely used in applications where
a ranking of the other objects with respect to an object
is required. For example, it can be applied in search en-
gines to locate the most similar web pages to a given one
[Fogaras and Rácz, 2005], or in social network services to
recommend new friends to a given user [He et al., 2010;
Nguyen et al., 2015], or act as a ranking measurement to clus-
ter objects [Cai et al., 2008].

Given a graph of n nodes, computing single-source Sim-
Rank is challenging for large graphs because it inherently in-
volves O(n) times of pairwise SimRank evaluations, each
of which can already be too costly. Particularly, follow-
ing the recursive form in Equation 1, computing s(u, v) re-
quires accessing many pairs of nodes in the graph, lead-
ing to O(n2) complexity. To address the efficiency is-
sue, recent works [Jiang et al., 2017; Zhang et al., 2017;
Shao et al., 2015] employ a random-walk-based approach to

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2252

approximate the SimRank values. The main idea is to trans-
late the SimRank computation into estimating the meeting
probability of two decay-based random walks from the two
source nodes (See Section 2.2 for more details). The compu-
tational complexity is then dependent on the number of ran-
dom walks sampled, achieving a significant speed-up. How-
ever, even with the improved approach, it is still challenging
to compute single-source SimRanks when n is large.

Therefore, it is increasingly popular to apply distributed
computation [Wang et al., 2020b; Li et al., 2015; Song et
al., 2018] to SimRank computation, which involves multiple
machines to compute SimRank values in a collaborative man-
ner, ultimately scaling up the computation to large graphs. In
modeling distributed computation, the local computation cost
within each machine is typically dominated by the synchro-
nization cost among the machines. Hence, by convention, the
local computation cost is omitted in MPC analysis and the
focus is on reducing communication rounds. Furthermore,
there is an intrinsic trade-off between the number of commu-
nication rounds and space-per-machine.

Open Problem. Existing distributed SimRank algo-
rithms (e.g., [Li et al., 2015; Song et al., 2018; Wang et
al., 2020b]) mostly focus on empirical evaluation, and non-
trivial theoretical analysis with provable approximation re-
sult guarantees is rarely given. We analyze existing rep-
resentative distributed SimRank algorithms and summarize
their requirements regarding communication rounds and ma-
chine space in Table 1*. In a nutshell, they require either
Ω(n) per-machine space (UniWalk [Song et al., 2018]) or
Ω(log n) communication rounds (DISK [Wang et al., 2020b]
and CloudWalker [Li et al., 2015]). We remark that over-
coming the Θ(log n) round complexity barrier in MPC for
natural problems is usually challenging and it has attracted
tremendous interest [Luo et al., 2022; Lacki et al., 2020;
Luo, 2019; Behnezhad et al., 2019; Czumaj et al., 2021;
Luo, 2020] to improve the distributed computation down to
O(poly(log log n)) rounds. Hence, a natural open theoretical
problem is raised:

Given an error threshold ϵ ∈ (0, 1), let an approximate
single-source SimRank algorithm be an algorithm that out-
puts SimRank values with ϵ absolute errors. Is there a dis-
tributed approximate single-source SimRank algorithm over
a graph of n nodes that can be finished in o(log n) rounds,
while each machine only needs o(n) space?

Our Main Results. In this paper, we give a positive answer
to the aforementioned open problem and present a distributed
single-source SimRank algorithm that suits the Massively
Parallel Computing (MPC) model [Karloff et al., 2010]. Par-
ticularly, for a graph of n nodes and m edges, we focus on
the MPC model that involves a set of machines, each having
a sub-linear space S = nα for some α ∈ (0, 1). Our main
results can be stated by the following theorem. To the best
of our knowledge, this is the first distributed single-source
SimRank algorithm that achieves sub-log n communication
rounds while only requiring strongly sub-linear per-machine

*For the limitation of space, we leave the related work analysis
in Appendix C. As the authors did not give an analysis based on the
MPC model, we analyze them on our own.

space. We leave the proofs of lemmas and theorems in the
Appendix of our technique report [Luo and Zhu, 2024].
Theorem 1. Given a source node u in a graph of n nodes and m
edges, there is an algorithm that computes ϵ-absolute-error guaran-
teed SimRank values between u and all the other nodes using M ma-
chines in O

(
log2 log n

)
communication rounds with high probabil-

ity †. This algorithm only requires the space per machine is S = nα

for some α < 1, and M is some value of Õ((m+ n)/S).

2 Preliminaries
2.1 Distributed Computation Model
Distributed computation is one of the most important tech-
niques to address various computation tasks [Luo et al., 2023;
Wang et al., 2020b; Li et al., 2015; Song et al., 2018;
Luo et al., 2022; Luo et al., 2014; Luo et al., 2012; Klauck et
al., 2014]. In recent years, Massively Parallel Computation
(MPC) [Karloff et al., 2010] becomes a popular theoretical
framework in modeling the complexity of a distributed algo-
rithm, because it closely simulates the situation of general
distributed computation. An MPC model has three important
parameters: the input data size F , the number of involved ma-
chines M , and the space capacity (words) S on each machine.
The frequently used notations are listed in Table 2 in the Ap-
pendix. It is required that when given F and S, the number
of machines M should be of Õ(FS), where Õ(·) hides a poly-
logarithmic factor. Our main focus on the MPC model derives
from several perspectives as follows:

Space. Consider an input graph of n nodes. MPC for
graph algorithms can be categorized into three types: strongly
super-linear space (S = n1+ω) for some constant ω > 0,
near linear space (S = Θ(n)), and strongly sub-linear space
(S = nα) for some constant α ∈ (0, 1). A super-linear model
can typically be employed with a local algorithm, which loses
the generality to be employed on a large scale of data. Hence,
many studies focus on sub-linear settings that better capture
the scalability of a distributed system. In this paper, we focus
on the strongly sub-linear setting where each machine cannot
even store the whole set of graph nodes.

Communication Rounds. The computation in the MPC
model is based on communication rounds. Initially, each edge
is randomly assigned to a machine. We assume each node has
an integer ID from 1 to n, and each machine has an integer
ID from 1 to M . The computation proceeds in synchronized
rounds. At the beginning of a round, each machine may re-
ceive the messages sent from some other machines in the pre-
vious rounds. During a round, every machine conducts lo-
cal computation based on its local data or messages received.
Then each machine will send the computed results, packed as
messages, to target machines. Each machine creates message
packages to be routed onto the network and hence the size
of messages sent/received per machine in one round shall not
exceed the space capacity S. A new round starts only af-
ter the end of the previous round. The term round complexity
[Ghaffari et al., 2019] refers to the number of rounds required

†We say an event happens with high probability, if there exists a
constant τ > 0 such that the event happens with probability at least
1− 1

nτ , where n is the number of graph nodes.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2253

Algorithm Rounds Total space cost per round Accuracy error Space cost per-machine

CloudWalker1 [Li et al., 2015] O(nl(I+l)
b

) O
(

bl2 logn
ϵ2p

+ n+m
)

no guarantees O
(

bl2 logn
ϵ2p

+ m+n
M

)
UniWalk2 [Song et al., 2018] O(l) O

(
n2l logn

ϵ2

)
ϵ+ ϵb O

(
n2l logn

ϵ2

)
DISK3 [Wang et al., 2020b] O

(
log2 n

ϵ2
d

+K
)

O (m log n+Kn)
c(1−cK)ϵd

1−c
+ cK+1 O

(
m logn+Kn

M

)
Ours4 O

(
log2 log n

) O
(
m log n+ n1+o(1) log4.5 n+

n log3+o(1) n

2(ϵ− 3
n)

2

)
ϵ O(nα)

1ϵp is the error when estimating the random walk distribution, b is the parameter that controls the number of nodes to be handled in a single machine, and I is the number of
iterations in the Jacobi method. l is a user-defined walk length or number of steps. 2l is a user-defined walk length or number of steps, and ϵb is the absolute error of SimRank
introduced by BiWalk [Fogaras and Rácz, 2005]. 3K is the number of truncated terms of linearized SimRank and ϵd is an internal estimation error threshold. 4α < 1 and
nα > log5 n/(log 1√

c
).

Table 1: Communication rounds of distributed single-source SimRank Computation.

for program execution and serves as a measure of distributed
computation cost, primarily driven by the expensive commu-
nication among machines. The main principle of designing
algorithms in the MPC model is to achieve low round com-
plexity subject to the space constraint on each machine.

Existence of an MPC Algorithm. With a per-machine
space of S = nα, we acknowledge the existence of an MPC
algorithm such that when n ≥ n0 (with n0 being a constant),
a distributed algorithm can operate within this space con-
straint using M machines, where M = Õ(m+n

S). For ease
of analyzing the MPC algorithms, we first give a preparation
lemma regarding machine space expansion, as follows.

Lemma 1. If there exists an O(f(n))-round distributed graph al-
gorithm that works for per-machine space S = Θ(nα) for any
0 < α < 1 using M = Õ(m+n

nα) machines, and f(n) is a func-
tion not related to α (i.e., α only contributes a constant factor to the
round complexity), then there exists an MPC algorithm that works
for per-machine space S = nα with the same round complexity.

This lemma eliminates the obstacle of analyzing round
complexity when there is a constant factor expansion of the
machine space. For example, consider that we have an al-
gorithm with a certain distributed algorithm such that (1) its
round complexity hides α factors; (2) applies to any α ∈
(0, 1) with M = Õ(m+n

nα), and (3) the space per machine
is Cnα for some constant C. Then Lemma 1 guarantees the
existence of an MPC algorithm with nα machine space.

2.2 Approximate SimRank Computation
Given a directed graph G = (V,E), and let n = |V | and
m = |E|. Following [Wang et al., 2020a; Shi et al., 2020], we
aim to compute approximate SimRank values with constant
errors. In particular, given any source node u ∈ G and a con-
stant error ϵ, we aim to compute the SimRank values between
u and any other node v ∈ G, such that |s(u, v)− s̃(u, v)| ≤ ϵ,
where s(u, v) denotes the true SimRank value and s̃(u, v) de-
notes the estimated value.

Calculating the SimRank value iteratively according to
Equation 1 may occupy large memory space and incur a high
computation cost. Therefore, state-of-the-art approaches em-
ploy the following

√
c-decay walk-based computation, first

proposed in [Tian and Xiao, 2016]:

Lemma 2. For any two nodes u, v ∈ G, the SimRank between
u and v is equal to the meeting probability of two

√
c-decay walks

starting at u and v on the reverse graph Ḡ, where two walks meet if
there exists an integer i ≥ 0, such that the i-th step of the two walks
visit the same node.

Here, a
√
c-decay walk on Ḡ from a node u is a traversal on

Ḡ such that at each step of the walk, it has 1−
√
c probability

to stop at the current node, and otherwise jumps to the next
node that is a uniformly chosen out-neighbor of the current
node. Here we define a length-l walk as a path that includes
l + 1 nodes and l edges. We also say a length-l walk has l
steps. Particularly, we have (

√
c)i · (1 −

√
c) probability to

generate a length-i walk from a given starting node.
Monte Carlo Method. By sampling N pairs of

√
c-walks

from u and v, and if H pairs of the walks meet, then H
N is

an estimator of s(u, v). The sampling number N controls the
estimation accuracy since more random walks approximate
the value of s(u, v) more accurately.

3 O(log2 log n)-Round Algorithm
It is not too challenging to design O(log n)-round MPC al-
gorithm (See Appendix E for details), but further improving
the round complexity can be difficult. To explain, we outline
challenges of direct adaptation of

√
c-walk based approach.

First, the maximum length of a
√
c-decay walk can be infinite;

a straightforward method to compute length-l in a distributed
environment easily entails l communication rounds because
one step may require one communication round when some
neighbors are located in a different machine. Such design
easily leads to Ω(log n)-round algorithms. Second, evaluat-
ing single-source SimRank values for node u requires run-
ning random walks from both u and all the other nodes, re-
sulting in a large number of random walks being conducted.
This can lead to a high space cost per machine because some
hub nodes are prone to be passed by many random walks.
Therefore, a careful design of the MPC algorithm is required
to guarantee a small number of rounds and a low space cost
for each machine. Third, the random walks, once computed
in the MPC model, are stored in different machines. As such,
detecting whether two walks meet may overload the machine
regarding space cost.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2254

Algorithm 1: Overall algorithm
Input : Graph G = (V,E); source node u; decay factor c;

Montel-Carlo failure probability δ; accuracy error ϵ
Output: SimRank scores s̃(u, v) for each v ∈ V

1 Store G across multiple machines;
2 Reverse the edges of G within each machine to form Ḡ;
3 l← log 1√

c
n;

4 for i = 0 to l in parallel do

5 Ni =

⌈
log 2n

2(ϵ− 3
n)

2 · (
√
c)i · (1−

√
c)

⌉
;

6 foreach node v ∈ V in parallel do
7 Generate Ni random walks from node v in

O
(
log2 log n

)
rounds;

8 Shuffle and decompose random walks (See Sections 4.2
and 4.3);

9 Run Algorithm 2 to calculate s̃(u, v) for each v ∈ V ;

3.1 New Interpretation of Walk-based Approach
To address the aforementioned challenges, we reinterpret the
SimRank computation between node u and node v in a batch
manner using the following three operations, which are more
MPC-friendly:

(a) Random walk generation. Instead of generating
√
c-

decay random walks whose lengths are non-deterministic, we
generate random walks with deterministic length distribution.
Particularly, to generate N

√
c-walks from u, we will gener-

ate N ·
√
c
i
(1 −

√
c) length-i walks for i ≥ 0, following the

corresponding geometric distribution of walk lengths. Simi-
lar operations are conducted for random walks starting from
v. Fixing the random walk lengths is more MPC-friendly. As
we will show in Section 4.1, we can generate sufficient such
random walks both from the source node u and each node
v ∈ V in only O

(
log2 log n

)
MPC rounds.

(b) Random walk shuffling and matching. Since the ran-
dom walks from u (or v) are generated in the order of increas-
ing lengths (due to Step (a)), pairing up the random walks
from u and v directly for meeting detection is not valid for
estimating SimRanks as the i-th walks from u and v are cor-
related (they have the same length). In order to maintain the
randomness, we shuffle the random walks above.

(c) SimRank computation. Last, we compute the Sim-
Ranks by detecting how many pairs of walks meet and esti-
mating the SimRank value s(u, v) by Lemma 2.

3.2 Overview of Main Algorithmic Steps
Based on the new interpretation, we give our main algorith-
mic steps in Algorithm 1, which consists of the following five
main stages. For ease of presentation, we first outline the
main idea in this section and defer the detailed MPC-related
operations in Section 4.

Initial State. The SimRank algorithms are based on the
topology information of the input graph. Initially, the whole
graph should be partitioned across different machines, as as-
sumed by the MPC model. We assume that each machine
holds a random partition of edges of the graph (Line 1 in Al-
gorithm 1), and hence each machine holds roughly m

M edges.

Algorithm 2: Detect meeting and calculate SimRank
Input : Tuple set DG from Section 4.3; source node u
Output: Estimated SimRank score s̃(u, v) for each v ∈ V

1 Sort all elements in DG;
2 Calculate z = log 2n

2(ϵ− 3
n
)2

, |Zu,l| = z · (
√
c)l · (1−

√
c) and

|Ẑu,l| = ⌈|Zu,l|⌉ for l = 1, ..., log 1√
c
n and u ∈ V ;

3 for all tuple (i, j, vj , l, v) ∈ DG in parallel do
4 if v = u then
5 Label (i, j, vj , l, v) as 1

6 else
7 Label (i, j, vj , l, v) as 0

8 for all tuple (i, j, vj , l2, v) labeled by 0 in parallel do
9 Link it to the closest tuple (i, k, vk, l1, u) labeled by 1

using PREDECESSOR;
10 if (j = k) ∧ (vj = vk) then
11 Send message (j, u, l1, v, l2) to

⌊
vM
n

⌋
-th machine.

12 for each unique message (j, u, l1, v, l2) in each machine in
parallel do

13 s̃(u, v)← s̃(u, v) +
|Zu,l1

|·|Zv,l2
|

|Ẑu,l1
|·|Ẑv,l2

| ·
1
z

We also reverse the edges so that the graph represents Ḡ (Line
2 of Algorithm 1).

Parallel Random Walks Generation. This stage corre-
sponds to Operation (a) mentioned earlier. As we need to
compute single-source SimRank values from any source node
u to all other nodes, we generate N

√
c-walks from each

node. Further, we truncate them at log1/√c n length (Line
3 of Algorithm 1). By setting N = log 2n

2(ϵ−3/n)2 , we show that
the truncated walks only cause negligible influence on the fi-
nal accuracy (see Section 4), and we can guarantee the ϵ error
bound of SimRank values. Another problem is when generat-
ing Ni = N ·(

√
c)i(1−

√
c) length-i walks, Ni may not be an

integer. In Section 5 we give a rounding technique and prove
that the rounding still guarantees the error bound. We also
prove that these random walks can be obtained in the MPC
model using O(log2 log n) communication rounds (Lines 4-7
of Algorithm 1 and details in Section 4.1).

Shuffling Random Walks. It’s important to note that in
Lemma 2, the lengths of the random walks originating from
u and v may differ, as they are independently and randomly
generated. To guarantee the randomness of each pair of ran-
dom walks in our Monte Carlo simulation, the generated ran-
dom walks have to be shuffled (Line 8 of Algorithm 1). The
shuffling operation in the MPC model is not as trivial as in
a single machine because the generated walks from the same
node can be located in different machines. Shuffling these
walks incurs communication between machines, which may
violate the space bound in each machine.

Decomposing Random Walks. After shuffling, we pair
the j-th walk from the source node u with the j-th walks
from other nodes respectively, and detect whether two walks
in each pair meet. Detecting whether two walks meet is rel-
atively simple in the single-machine setting because all in-
formation can be loaded locally. However, in a distributed

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2255

environment, we need to detect whether two paired-up walks
meet while the walks are stored at different machines. This
poses drastically different challenges. To address the chal-
lenges, we decompose the generated random walks into tu-
ples, each containing one visited node in the walk (except the
starting node). Each tuple contains five elements to convey all
the information needed to detect whether the walk intersects
another walk in the specified node. As shown in Figure 1,
there is a walk {u, v1, v2, v3} decomposed into three tuples
(j, 1, v1, 3, u), (j, 2, v2, 3, u), (j, 3, v3, 3, u), where j implies
that the tuple is decomposed from the j-th walk of those start-
ing from u. The remaining elements in the tuple are the walk
step, visited node at the particular walk step, the total steps
in the walk, and source node, respectively.

Computing SimRank Values. Evaluating the SimRank
value between u and v is based on the probability that two
walks from u and v meet. This can be detected by sorting
the decomposed tuples (Line 9 of Algorithm 1→ Line 1 of
Algorithm 2). Figure 1 shows the j-th walks from u and v re-
spectively. The two walks meet because they share the same
node v2 in their third walk steps. Corresponding to v2, there
are two decomposed tuples from the two walks, denoted by
(j, 2, v2, 3, u) and (j, 2, v2, 4, v). We note that they share the
first three elements. In general, it is easy to verify that if two
walks meet, there must be two decomposed tuples, each from
one walk, that share the first three elements in the tuple. More
formally, suppose there are two j-th walks {v0, v1, . . . , vl1}
and {u0, u1, . . . , ul2}(0 ≤ l1, l2 ≤ log1/

√
c n) starting from

v0 and u0. Walk {v0, v1, . . . , vl1} is decomposed into l1
tuples, denoted by (j, i, vi, l1, v0) (1 ≤ i ≤ l1); Walk
{u0, u1, . . . , ul2} is decomposed into l2 tuples, denoted by
(j, k, uk, l2, u0) (1 ≤ k ≤ l2). Then, if the two walks meet,
or equivalently, they share the same node vi in the same step
i, there must be vi = ui and the corresponding two tuples
(for vi and ui) share the first three elements. Again, the chal-
lenges are in a proper rearrangement of the tuples across the
machines, and the collection and aggregation of the walk-
meeting cases within each machine.

With the above five stages, we highlight the major differ-
ences between our approach and the classic

√
c-walk-based

algorithms: (a) the lengths of the walks are regularized to ge-
ometric distributions, and longer walks are truncated and we
show that this would not violate the error tolerance in Sec-
tion 5; (b) most steps are redesigned non-trivially so that all
the steps can be efficiently implemented in the MPC model.

4 Detailed MPC Operations
4.1 Parallel Random Walks Generation
Performing random walks in the MPC model will incur com-
munication rounds because the next sampled neighbor for
each node can be located in different machines. Let us con-
sider the situation of a node v0 sampling its neighboring node
v1 in the walk. In the MPC model, as v0 and v1 can be in
different machines, forming a walk of v0 → v1 may need one
communication round. In general, forming an l-step random
walk in the MPC model typically incurs l communication
rounds. For the purpose of reducing communication rounds,

we first introduce a result provided by WRME [Lacki et al.,
2020], and then give our extension in Theorem 3:
Theorem 2. Let G be a directed graph. Let N and l be posi-
tive integers such that l = o(S)/ log3 n, where S is the available
space per machine. For the task that samples N independent ran-
dom walks of length l starting from each node v in G, there exists
an MPC algorithm that runs in O

(
log2 log n+ log2 l

)
rounds and

uses O
(
m+ n1+o(1)l3.5 +Nnl2+o(1)

)
total space and strongly

sub-linear space per machine S = nα (0 < α < 1). The al-
gorithm is an imperfect sampler that does not fail with probability
1−O

(
n−1

)
.

Essentially, Theorem 2 states that the generation of a
length-l random walk from every node can be round-
efficient in the MPC model. Particularly, it takes only
O
(
log2 log n+ log2 l

)
communication rounds to generate

N length-l random walks, each with different source node.
However, even with Theorem 2, we cannot directly give a
reasonable round-complexity for SimRank evaluations if we
use the original

√
c-decay walk-based method. The reason is

that the length l of a
√
c-decay walk can be infinite. To ad-

dress this issue, as we show in Algorithm 1 Line 3 and Line
5, we carefully design the truncated walk length (Line 3) and
the number of random walks to be sampled for each walk
length (Line 5). The truncated length guarantees a reason-
able bound of O

(
log2 log n

)
communication rounds when

l = log1/
√
c n, and the number of random-walk samples

ensures the SimRank estimation accuracy (we will formally
prove it in Section 5).

Parallel Random Walks in O(log2 log n) Rounds. To ef-
fectively apply Theorem 2, we let Task-i be the generation
of Ni length-i walks from every node. We let all Task-i
(1 ≤ i ≤ log1/

√
c n) be conducted in MPC in parallel. We

apply log1/
√
c n WRME algorithm [Lacki et al., 2020] in-

stances concurrently in the MPC model, where each instance
corresponds to one task.

Unfortunately, concurrently conducting multiple WRME
algorithms will incur a space cost higher than nα in each ma-
chine because by default each algorithm instance can incur a
local cost up to nα. To address this issue, we let β satisfy
that nβ = nα/ log1/

√
c n, and we apply the WRME algo-

rithm concurrently for each Task-i with S = nβ . Particularly,
each machine space nα is divided into subspaces of size nβ to
compute Task-i. By careful analysis of the round complexity
and total space cost, we give the following theorem.
Theorem 3. The random walk generation in Algorithm 1 can be
done in O

(
log2 log n

)
rounds with high probability, with machine

space S = nα such that nα > log5 n/(log 1√
c
) and a total space

O
(
m log n+ n1+o(1) log4.5 n+ n log3+o(1) n

2(ϵ− 3
n
)2

)
.

We note that the WRME algorithm is an imperfect sam-
pler that fails with at most a probability O(n−1). We only
apply O(log n) times the sampler, which can still easily guar-
antee that our algorithm is successful with high probability
(because O(log n) = o(nτ) for any constant τ > 0).

4.2 Shuffling Random Walks
We need to shuffle the generated N random walks sourced
at each node to fully mimic the behavior of generating a

√
c-

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2256

Figure 1: Detect meeting using tuple association.

walk. The reason for shuffling is that when we select two
random walks that start from two nodes and calculate their
meeting probability, the lengths of these two walks are not
bound to be the same. This shuffling operation helps us guar-
antee the randomness in our Monte Carlo simulation of the
generated

√
c-decay walks.

Shuffling in O(1) Rounds. We note that sorting in MPC
can be done in O(1) rounds [Goodrich et al., 2011] as long as
the number of items is O(nη) for some constant η > 0. Ob-
serve that N = O(logn

ϵ2), and hence there exists η such that
nN = O(nη). Hence, sorting the nN walks all together can
be finished in constant rounds in MPC, where the comparison
of two walks is based on the comparison of the corresponding
nodes in the walks. As such, all the walks sourced at the same
node will be clustered.

For sufficiently large n we have nα > 2N log1/
√
c n, and

the walks sourced at the same node, occupying a space of
N log1/

√
c n, can be held in one machine. Since all the walks

are sorted and nα

N log1/
√

c n may not be an integer, each set of N
walks sourced at the same node may go across two machines.
Let Wu be the set of walks sourced at node u. We discuss
two cases to shuffle the walks of the same source node.

Case 1: If the walks in Wu are fully located in a machine,
shuffling is done locally. We shuffle all sets of walks, and for
each set we assign numbers from 1 to N to each walk in Wu

after shuffling.
Case 2: If the walks sourced at the same node are located

at two consecutive machines. Without loss of generality, we
denote the source node as u, and there are N0 walks in the
first machine and N −N0 in the second. We then swap those
N − N0 walks in the second machine with the last N − N0

walks sourced at node u − 1, as illustrated in Figure 2 in the
Appendix. Since nα > 2N log1/

√
c n for sufficiently large n,

it is guaranteed that those N −N0 walks sourced at u− 1 are
located in the first machine and have been shuffled locally in
Case 1. Once swapped, the shuffling within Wu can be done
locally. We note that by guaranteeing nα > 2N log1/

√
c n we

can make sure the swaps are not conflicting and thus can be
done in one round.

Any set Wu can be shuffled in Case 1 or Case 2. During
shuffling, each walk is labeled by 1 to N sequentially, and the
j-th walk refers to the walk assigned with a number j.

4.3 Decomposing Random Walks
Decomposition in O(1) Rounds. Recall that each length-t
walk {v0, v1, . . . , vt} is to be decomposed into t tuples each
of which has 5 elements: (j, i, vi, t, v0), for 1 ≤ i ≤ t. Tu-
ple (j, i, vi, t, v0) implies that in the j-th random walk of the
walks starting from v0, the i-th step of the walk visits node

vi and the walk has overall t steps. In the MPC model, the
decomposition of a random walk can be done within the ma-
chine holding the walk. While each walk will generate mul-
tiple tuples, the total space is only amplified by a constant
factor (i.e., 5 times) because each tuple corresponds to one
visited node along the walk. Hence, this operation will not
incur any communication among the machines, and only has
a constant expansion of the space cost, which has a negligible
effect due to Lemma 1. We denote the set of all the decom-
posed tuples by DG.

4.4 Detecting Meeting-Walks
As the decomposed tuples are stored at different machines,
challenges exist if we use these tuples to detect whether some
pairs of random walks meet. Algorithm 2 shows the pseudo-
code of detecting walk-meetings and computing SimRank.

Sorting in O(1) Rounds. Our first step is to sort all the
tuples across the machines (Line 1). The sorting is based on
the multi-dimensional sorting because the tuple contains five
elements, i.e., sorting is first done based on the first element,
and then for the elements that share the same first element,
sorting is based on the second element, and so on. Elements
are sorted based on their node IDs. We also intentionally let
the node ID of source node u be smaller than other nodes
to guarantee that walks sharing the same first three elements
start with the walk sourced at u.

Recall in Section 3 we show that if two walks meet, then
there must be two decomposed tuples, each from one walk,
sharing the first three elements. After sorting the tuples,
the tuples sharing the first three elements will be clustered
together and the tuple whose fifth element is u, if exists,
will be placed in the first position in the cluster. Particu-
larly, suppose we have tuples (j, i, v, l1, u), (j, i, v, l2, v1),
(j, i, v, l3, v2) that share the first three elements, implying that
the j-th walk started from u meets the j-th walks started from
v1 and v2. These three tuples will be clustered in the order of
(j, i, v, l1, u), (j, i, v, l2, v1), (j, i, v, l3, v2) after sorting. The
formal result is as follows.
Lemma 3. If the j-th walk W started from the query source node u
meets the j-th walk W ′ started from v, then there must be a decom-
posed tuple T of W and a decomposed tuple T ′ of W ′ that share
the first three elements. Furthermore, after sorting the tuples, T is
the closest tuple that is decomposed from W and comes before T ′.

Walk Paired-Up in O(1) Rounds. To compute the Sim-
Rank between u and v1, we need to pair up (j, i, v, l1, u) and
(j, i, v, l2, v1); similarly, we also need to pair up (j, i, v, l1, u)
and (j, i, v, l3, v2) to compute the SimRank between u and v2.
Pairing-up can be challenging because the tuples are stored at
different machines, and hence communication between ma-
chines is unavoidable. In the MPC model, a machine that
communicates with other machines would require the same
space as the size of communication messages. To reasonably
bound the communication cost between the machines, we em-
ploy the following PREDECESSOR procedure [Behnezhad et
al., 2019] to couple the tuples sharing the same first three ele-
ments, which can be finished in O(1) communication rounds.

PREDECESSOR: Considered an ordered list of tuples
such that each tuple is labeled by 0 or by 1. Then, for each
tuple T ′ labeled by 0, PREDECESSOR associates the closest

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2257

tuple T labeled by 1 such that T comes before T ′ in the or-
dering. PREDECESSOR can be implemented in O(1) MPC
rounds with nα space per machine, for any constant α > 0.

To apply PREDECESSOR for pairing up the tuples, each
machine can run a local algorithm to distinguish the tuples
that are generated from the random walks starting at node u
and others. As shown in Figure 1, all machines assign label 1
to the tuples whose fifth elements are u in parallel. Otherwise,
the tuples are labeled by 0. By Lemma 3, we can apply the
PREDECESSOR procedure to associate the closest Label-1
tuple (i.e., the tuple generated from the walk sourced at u) to
each of its following Label-0 tuples. Here, the association
means that the machine holding the Label-0 tuple is aware of
its closest Label-1 tuple before it. For each such associated
pair T and T ′, if their first three elements are the same, then
the corresponding walks of T ′ and T meet.

4.5 Computing SimRanks
The paired-up tuples in the previous step will contribute to
the corresponding SimRank value. For example, suppose two
walks from u and v meet, then this pair of walks contributes
to the SimRank value s(u, v), because s(u, v) is estimated by
the meeting probability of the walks from node u and node v.
The challenge is how to concurrently distribute and aggregate
these SimRank contributions across machines. Note that it
is crucial to let those SimRank contributions corresponding
to the same pair of nodes (e.g., (u, v)) be processed in the
same machine, to avoid repeat counting of walk-meets. For
example, walks {u, u1, u2, w} and {v, u1, u2, k} meet at both
node u1 and node u2. To ensure accuracy, the event of each
walk-meet should be counted only once. For this purpose, we
let each machine specifically handle SimRank evaluations of
n
M nodes with respect to u. Without loss of generality, we
assume the node IDs are from 1 to n. Then, the i-th machine
handles the node set with node IDs in

[
n(i−1)

M + 1, ni
M

]
.

Computing SimRanks in O(1) Rounds. The de-
tailed MPC operations of computing SimRanks are per-
formed as follows (also illustrated in Algorithm 2 Lines 8
- 11). Using the PREDECESSOR procedure, for each tu-
ple (i, j, vj , l2, v) with label 0, it can be linked to the closest
tuple (i, k, vk, l1, u); if j = k and vj = vk, then that in-
dicates the meet of two walks represented by the two tuples.
Then, a walk-meet message (j, u, l1, v, l2) will be sent (by the
machine holding tuple (j, i, vi, l1, u)) to the target machine
that is responsible to computing SimRank s(u, v). Here, the
walk-meet message (j, u, l1, v, l2) indicates that a length-l1
walk sourced at node u and a length-l2 walk sourced at node
v meet. Also, assuming u and v are node IDs from 1 to n,
the target machine that the message is sent to is the

⌊
uM
n

⌋
-

th machine because this machine will compute s(u, v). Each
machine may then receive multiple copies of the walk-meet
message (j, u, l1, v, l2), and only one of them will be kept
because each walk-meet event should be counted only once.
For each unique message (j, u, l1, v, l2) received, we add a
value |Zu,l1|·|Zv,l2

|
|Ẑu,l1

|·|Ẑv,l2
| ·

1
z to the SimRank value s̃(u, v), where

z = log 2n
2(ϵ− 3

n)2
is the expected number of walk samples, Ẑu,l

denotes the set of actually generated length-l random walks

sourced at u, and Zu,l is the expected set of length-l random
walks to be generated sourced at u.

We distinguish actual and expected samples because Zu,l

may not be an integer. Particularly, we note that |Ẑu,l| =⌈
z · (

√
c)l · (1−

√
c)
⌉
, and |Zu,l| = z·(

√
c)l·(1−

√
c). When

z · (
√
c)l · (1 −

√
c) is not an integer, the expected walk set

Zu,l is defined based on size-⌈|Zu,l|⌉ set Z1 and size-⌊|Zu,l|⌋
set Z2, such that there is probability |Zu,l|− ⌊|Zu,l|⌋ that one
walk of Zu,l is selected from set Z1 and otherwise selected
from set Z2.

Space Analysis for Walk-Meet Messages. The walk-meet
messages received by each machine are at most log1/√c n
times the number of the random walks started at the nodes
handled by the machine. To see this, in the worst case,
for each node of a walk W generated from v handled
by the machine, there is a walk W ′ from u that meets
W at the node, creating a walk-meet message. Since
each machine is responsible to compute SimRank values
for n/M nodes, the space per machine for receiving the
message is O

(
n
M log 1√

c
n · log 2n

2(ϵ− 3
n)2

)
= O

(
n log2 n

M(ϵ− 3
n)2

)
.

The total space cost for walk-meet messages is therefore
O
(

n log2 n
M(ϵ− 3

n)2
·M

)
= O

(
n log2 n
(ϵ− 3

n)2

)
.

5 Summary of the Results
Round Complexity. The round complexity is dominated
by the generation of parallel random walks, which is
O(log2 log n) by Theorem 3.

Space Complexity. The total space cost for walk-
meet messages is dominated by the random-walk generation

space cost O

(
m log n+ n1+o(1) log4.5 n+ n log3+o(1) n

2(ϵ− 3
n)

2

)
(see Theorem 3). We note that the total space cost is Õ(m+

n), indicating the existence of M = Θ̃(m+n
S) for S = nα.

All these results give us Theorem 4 as well as Theorem 1.
Theorem 4. Given a graph of n nodes and m edges,
and a constant error ϵ > 0, for sufficiently large n,
Algorithm 1 can be run in MPC using O

(
log2 log n

)
communication rounds, with a total space per-round as
O
(
m log n+ n1+o(1) log4.5 n+ n log3+o(1) n

2(ϵ− 3
n
)2

)
. The space

per-machine needed is S = nα such that nα > log5 n/(log 1√
c
).

Algorithm 1 is an imperfect sampler that fails with probability at
most O

(
n−1

)
.

Accuracy Analysis. The accuracy guarantee of our
random-walk sampling techniques resembles that of a simple
Monte Carlo method, but we also incorporate the techniques
of length-truncation and the rounding of the number of walks.
We only include the main result as follows. The proof and the
methodology for further reducing the threshold 3

n are detailed
in the Appendix.
Theorem 5. Algorithm 1 outputs SimRank values s̃(u, v) with er-
ror at most ϵ (ϵ ≥ 3

n
) and with probability at least 1− 1

n
.

Acknowledgments
This research is supported by the Ministry of Education, Sin-
gapore, under its AcRF Tier-2 Grant (T2EP20122-0003).

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2258

References
[Antonellis et al., 2008] Ioannis Antonellis, Hector Garcia-

Molina, and Chi-Chao Chang. Simrank++: query rewrit-
ing through link analysis of the clickgraph (poster). In
WWW, pages 1177–1178. ACM, 2008.

[Badola and Gupta, 2021] Kshitiz Badola and Mridul Gupta.
Twitter spam detection using natural language processing
by encoder decoder model. In ICAIS, pages 402–405.
IEEE, 2021.

[Behnezhad et al., 2019] Soheil Behnezhad, Laxman Dhuli-
pala, Hossein Esfandiari, Jakub Lacki, and Vahab S. Mir-
rokni. Near-optimal massively parallel graph connectiv-
ity. In FOCS, pages 1615–1636. IEEE Computer Society,
2019.

[Cai et al., 2008] Yuanzhe Cai, Pei Li, Hongyan Liu, Jun He,
and Xiaoyong Du. S-simrank: Combining content and link
information to cluster papers effectively and efficiently. In
ADMA, volume 5139 of Lecture Notes in Computer Sci-
ence, pages 317–329. Springer, 2008.

[Chen et al., 2022] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan
Wang, Qi Li, Buting Ma, Qingbo Hua, Jun Jiang, Yunlong
Xu, Hongbo Deng, et al. Approximate nearest neighbor
search under neural similarity metric for large-scale rec-
ommendation. In Proceedings of the 31st ACM Interna-
tional Conference on Information & Knowledge Manage-
ment, pages 3013–3022, 2022.

[Chuanyan and Xiaoguang, 2021] Zhang Chuanyan and
Hong Xiaoguang. Neural graph filtering for context-aware
recommendation. In Asian Conference on Machine
Learning, pages 969–984. PMLR, 2021.

[Czumaj et al., 2021] Artur Czumaj, Peter Davies, and
Merav Parter. Graph sparsification for derandomizing
massively parallel computation with low space. ACM
Trans. Algorithms, 17(2):16:1–16:27, 2021.

[Fogaras and Rácz, 2005] Dániel Fogaras and Balázs Rácz.
Scaling link-based similarity search. In Proceedings of the
14th international conference on World Wide Web, pages
641–650, 2005.

[Ghaffari et al., 2019] Mohsen Ghaffari, Fabian Kuhn, and
Jara Uitto. Conditional hardness results for massively
parallel computation from distributed lower bounds. In
FOCS, pages 1650–1663. IEEE Computer Society, 2019.

[Goodrich et al., 2011] Michael T. Goodrich, Nodari Sitchi-
nava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In ISAAC, volume 7074 of Lec-
ture Notes in Computer Science, pages 374–383. Springer,
2011.

[He et al., 2010] Guoming He, Haijun Feng, Cuiping Li, and
Hong Chen. Parallel simrank computation on large graphs
with iterative aggregation. In Proceedings of the 16th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, Washington, DC, USA, July 25-28,
2010, pages 543–552. ACM, 2010.

[Hoeffding, 1994] Wassily Hoeffding. Probability inequal-
ities for sums of bounded random variables. In The

collected works of Wassily Hoeffding, pages 409–426.
Springer, 1994.

[Hours et al., 2016] Hadrien Hours, Eric Fleury, and Márton
Karsai. Link prediction in the twitter mention network:
impacts of local structure and similarity of interest. In
2016 IEEE 16th International Conference on Data Min-
ing Workshops (ICDMW), pages 454–461. IEEE, 2016.

[Jeh and Widom, 2002] Glen Jeh and Jennifer Widom. Sim-
rank: a measure of structural-context similarity. In Pro-
ceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, pages
538–543, 2002.

[Jiang et al., 2017] Minhao Jiang, Ada Wai-Chee Fu, and
Raymond Chi-Wing Wong. Reads: a random walk ap-
proach for efficient and accurate dynamic simrank. Pro-
ceedings of the VLDB Endowment, 10(9):937–948, 2017.

[Jin et al., 2011] Ruoming Jin, Victor E Lee, and Hui Hong.
Axiomatic ranking of network role similarity. In Proceed-
ings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 922–930,
2011.

[Karloff et al., 2010] Howard Karloff, Siddharth Suri, and
Sergei Vassilvitskii. A model of computation for mapre-
duce. In Proceedings of the twenty-first annual ACM-
SIAM symposium on Discrete Algorithms, pages 938–948.
SIAM, 2010.

[Klauck et al., 2014] Hartmut Klauck, Danupon Nanongkai,
Gopal Pandurangan, and Peter Robinson. Distributed com-
putation of large-scale graph problems. In Proceedings
of the twenty-sixth annual ACM-SIAM symposium on Dis-
crete algorithms, pages 391–410. SIAM, 2014.

[Kusumoto et al., 2014] Mitsuru Kusumoto, Takanori Mae-
hara, and Ken-ichi Kawarabayashi. Scalable similarity
search for simrank. In SIGMOD Conference, pages 325–
336. ACM, 2014.

[Lacki et al., 2020] Jakub Lacki, Slobodan Mitrovic,
Krzysztof Onak, and Piotr Sankowski. Walking randomly,
massively, and efficiently. In STOC, pages 364–377.
ACM, 2020.

[Lee et al., 2012] Pei Lee, Laks V. S. Lakshmanan, and Jef-
frey Xu Yu. On top-k structural similarity search. In
IEEE 28th International Conference on Data Engineering
(ICDE 2012), Washington, DC, USA (Arlington, Virginia),
1-5 April, 2012, pages 774–785. IEEE Computer Society,
2012.

[Li et al., 2015] Zhenguo Li, Yixiang Fang, Qin Liu, Jiefeng
Cheng, Reynold Cheng, and John CS Lui. Walking in the
cloud: Parallel simrank at scale. Proceedings of the VLDB
Endowment, 9(1):24–35, 2015.

[Liao et al., 2022] Ningyi Liao, Dingheng Mo, Siqiang Luo,
Xiang Li, and Pengcheng Yin. Scara: scalable graph neu-
ral networks with feature-oriented optimization. Proceed-
ings of the VLDB Endowment, 15(11):3240–3248, 2022.

[Luo and Zhu, 2024] Siqiang Luo and Zulun Zhu. https://
sites.google.com/view/massive-technical-report/, 2024.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2259

https://sites.google.com/view/massive-technical-report/
https://sites.google.com/view/massive-technical-report/

[Luo et al., 2012] Siqiang Luo, Yifeng Luo, Shuigeng Zhou,
Gao Cong, and Jihong Guan. Disks: a system for dis-
tributed spatial group keyword search on road networks.
Proceedings of the VLDB Endowment, 5(12):1966–1969,
2012.

[Luo et al., 2014] Siqiang Luo, Yifeng Luo, Shuigeng Zhou,
Gao Cong, and Jihong Guan. Distributed spatial keyword
querying on road networks. In Proceedings of the 17th In-
ternational Conference on Extending Database Technol-
ogy, EDBT 2014, Athens, Greece, March 24-28, 2014,
pages 235–246. OpenProceedings.org, 2014.

[Luo et al., 2019] Siqiang Luo, Xiaokui Xiao, Wenqing Lin,
and Ben Kao. Efficient batch one-hop personalized pager-
anks. In 2019 IEEE 35th International Conference on
Data Engineering (ICDE), pages 1562–1565, 2019.

[Luo et al., 2022] Siqiang Luo, Xiaowei Wu, and Ben Kao.
Distributed pagerank computation with improved round
complexities. Information Sciences, 607:109–125, 2022.

[Luo et al., 2023] Siqiang Luo, Zichen Zhu, Xiaokui Xiao,
Yin Yang, Chunbo Li, and Ben Kao. Multi-task process-
ing in vertex-centric graph systems: Evaluations and in-
sights. In Proceedings 26th International Conference on
Extending Database Technology, EDBT 2023, Ioannina,
Greece, March 28-31, 2023, pages 247–259. OpenPro-
ceedings.org, 2023.

[Luo, 2019] Siqiang Luo. Distributed pagerank computa-
tion: An improved theoretical study. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019,
pages 4496–4503. AAAI Press, 2019.

[Luo, 2020] Siqiang Luo. Improved communication cost
in distributed pagerank computation–a theoretical study.
In International Conference on Machine Learning, pages
6459–6467. PMLR, 2020.

[Maehara et al., 2014] Takanori Maehara, Mitsuru
Kusumoto, and Ken-ichi Kawarabayashi. Efficient
simrank computation via linearizationpublication of this
article pending inquiry. In KDD, pages 1426–1435. ACM,
2014.

[Mo and Luo, 2021] Dingheng Mo and Siqiang Luo.
Agenda: Robust personalized pageranks in evolving
graphs. In CIKM, pages 1315–1324. ACM, 2021.

[Nguyen et al., 2015] Phuong Nguyen, Paolo Tomeo, Tom-
maso Di Noia, and Eugenio Di Sciascio. An evaluation
of simrank and personalized pagerank to build a recom-
mender system for the web of data. In Proceedings of the
24th International Conference on World Wide Web, pages
1477–1482, 2015.

[Shao et al., 2015] Yingxia Shao, Bin Cui, Lei Chen, Ming-
ming Liu, and Xing Xie. An efficient similarity search
framework for simrank over large dynamic graphs. Pro-
ceedings of the VLDB Endowment, 8(8):838–849, 2015.

[Shi et al., 2020] Jieming Shi, Tianyuan Jin, Renchi Yang,
Xiaokui Xiao, and Yin Yang. Realtime index-free sin-
gle source simrank processing on web-scale graphs. arXiv
preprint arXiv:2002.08082, 2020.

[Song et al., 2018] Junshuai Song, Xiongcai Luo, Jun Gao,
Chang Zhou, Hu Wei, and Jeffrey Xu Yu. Uniwalk: Uni-
directional random walk based scalable simrank compu-
tation over large graph. IEEE Trans. Knowl. Data Eng.,
30(5):992–1006, 2018.

[Symeonidis et al., 2021] Panagiotis Symeonidis, Lidija Kir-
jackaja, and Markus Zanker. Session-based news recom-
mendations using simrank on multi-modal graphs. Expert
Systems with Applications, 180:115028, 2021.

[Tian and Xiao, 2016] Boyu Tian and Xiaokui Xiao. Sling:
A near-optimal index structure for simrank. In Proceed-
ings of the 2016 International Conference on Management
of Data, pages 1859–1874, 2016.

[Wang et al., 2020a] Hanzhi Wang, Zhewei Wei, Ye Yuan,
Xiaoyong Du, and Ji-Rong Wen. Exact single-source sim-
rank computation on large graphs. In SIGMOD Confer-
ence, pages 653–663. ACM, 2020.

[Wang et al., 2020b] Yue Wang, Ruiqi Xu, Zonghao Feng,
Yulin Che, Lei Chen, Qiong Luo, and Rui Mao. DISK:
A distributed framework for single-source simrank with
accuracy guarantee. Proc. VLDB Endow., 14(3):351–363,
2020.

[Wang et al., 2021] Hanzhi Wang, Zhewei Wei, Yu Liu,
Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. Exact-
sim: benchmarking single-source simrank algorithms
with high-precision ground truths. The VLDB Journal,
30(6):989–1015, 2021.

[Xu et al., 2017] Linchuan Xu, Xiaokai Wei, Jiannong Cao,
and Philip S. Yu. On learning mixed community-specific
similarity metrics for cold-start link prediction. In WWW
(Companion Volume), pages 861–862. ACM, 2017.

[Zhang et al., 2017] Zhipeng Zhang, Yingxia Shao, Bin Cui,
and Ce Zhang. An experimental evaluation of simrank-
based similarity search algorithms. Proceedings of the
VLDB Endowment, 10(5):601–612, 2017.

[Zheng et al., 2013] Weiguo Zheng, Lei Zou, Yansong Feng,
Lei Chen, and Dongyan Zhao. Efficient simrank-based
similarity join over large graphs. Proceedings of the VLDB
Endowment, 6(7):493–504, 2013.

[Zhou et al., 2019] Kai Zhou, Tomasz P. Michalak, and Yev-
geniy Vorobeychik. Adversarial robustness of similarity-
based link prediction. In ICDM, pages 926–935. IEEE,
2019.

[Zhu et al., 2022] Zulun Zhu, Jiaying Peng, Jintang Li,
Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph con-
volutional networks. In IJCAI, pages 2434–2440. ijcai.org,
2022.

[Zhu et al., 2024] Zulun Zhu, Sibo Wang, Siqiang Luo,
Dingheng Mo, Wenqing Lin, and Chunbo Li. Personalized
pageranks over dynamic graphs–the case for optimizing
quality of service. In Proceedings of the 2024 IEEE 40th
International Conference on Data Engineering, 2024.

Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24)

2260

	Introduction
	Preliminaries
	Distributed Computation Model
	Approximate SimRank Computation

	-Round Algorithm
	New Interpretation of Walk-based Approach
	Overview of Main Algorithmic Steps

	Detailed MPC Operations
	Parallel Random Walks Generation
	Shuffling Random Walks
	Decomposing Random Walks
	Detecting Meeting-Walks
	Computing SimRanks

	Summary of the Results
	Limitation and Societal Impact
	Frequently used notations
	Missing Complexity Analysis
	CloudWalker
	UniWalk
	DISK

	Missing Proofs
	Proof of Theorem 3
	Proof of Lemma 1
	Proof of Lemma 3
	Proof of Theorem 4
	Proof of Theorem 5
	Controlling Truncated Error
	Rounding Up Error

	Reducing Threshold and Failure Probability

	Warm-Up: A -Round Algorithm with Pseudo-linear Space

